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Abstract

A Monte Carlo study of the Z+ peak has been carried out by varying a
background distribution according to Poisson statistics and then looking for
resulting peaks above background. From this study, I conclude that there is
about a 1 in 500, 000 chance of the observed peak occurring purely by chance.
Under a typical pdg measure, this corresponds to a 4.75σ peak.

A detailed study has been carried out to access the statistical significance of the
Z+ peak observed in the reaction γd → K+K−pn in CLAS. Monte Carlo methods
have been used to determine the probability of a background function statistically
fluctuating into a peak. The data used in this study are shown in Figure 1 below. The
background shape has been taken to be a triangular function, which is also shown in
the figure. The triangle is the intersection of the two lines described as follows:

counts = 113.57 ∗mass− 159.73 (1.40 ≤ mass ≤ 1.626) (1)

counts = −115.83 ∗mass + 213.60 (1.626 ≤ mass ≤ 1.850) . (2)

In reality, the most important part of the background is that on the rising slope under
the Z+ peak. However, the entire background has been parametrized. The spectrum
shown in the figure contains 60 bins of width 10MeV/c2 with the lowest mass edge
at 1.405 GeV/c2. The simulated background spectrum used in this analysis has 43
bins, with the center of the lowest mass bin at m = 1.41 GeV/c2. If we examine the
data in Figure 1, we find that the signal is 38.5 counts on top of a background of 45.5
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counts in a three bin range centered at 1.542 MeV/c2. The paper reports 43 counts
over a background of 54 events in a 3.6 bin wide region centered at the same mass.
All analysis in the paper is performed on the three-bin wide sample. The 54 counts
in the paper is a good estimate of the background, but the 43 counts in the signal is
an overestimate by about 2 − 3, which can be seen in the fit that overestimates the
peak height by about this.
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Figure 1: The K+n invariant mass spectra as extracted from Figure 4 of the PRL.
The triangular function is the background model used for the statistical study.

In order to generate a hypothetical measurement, a spectrum is generated where
the background level (as an integer) is taken as the mean of a Poisson distribution.
The counts in the given bin are then thrown according to a Poisson distribution whose
mean is the background level in that bin.

A simple peak-finding algorithm then scans the produced spectrum and looks
for three adjacent bins whose total contents are at least some threshold level above
the parent background distribution. The threshold is allowed to vary from 35 to 41
counts, and corresponds to the number of counts in the Z+ peak in the experimental
spectrum.

If the background were flat, then there would be equal probability to find a fluctu-
ation anywhere in the spectrum. However, the triangular shape makes it more likely
to have a fluctuation where there are more counts. As such, one needs to be careful
in defining probabilities. In this analysis, the assumption has been made that the lo-
cation of the Z+ peak needs to be reasonably consistent with the SPring-8 and ITEP
results. To do this, I have defined a set of windows in mass. The center of the peak
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is required to fall within the defined windows, which are defined in Table 1. Note
that the first one is the entire spectrum. If I had to choose a reasonable window, I
would probably take 4, where the center of the peak is required to be between 1.515
and 1.565. Because of the binning, this would actually require the center of the three
bins to be in one of the following mass bins: 1.52, 1.53, 1.54, 1.55 or 1.56.

Window Low Mass High Mass
1 1.000 GeV/c2 2.000 GeV/c2

2 1.495 GeV/c2 1.585 GeV/c2

3 1.505 GeV/c2 1.575 GeV/c2

4 1.515 GeV/c2 1.565 GeV/c2

5 1.525 GeV/c2 1.555 GeV/c2

Table 1: Windows used in the analysis. Note that the first corresponds to the entire
spectrum, while the 2 to 5 are more reasonable for this analysis.

In this study, 15 × 106 hypothetical spectra were generated, and the number of
peaks under each condition was then tabulated. The results of this are given in
Table 2. The results from can be directly read off from the table, i.e. the chance of
a peak at least 38 counts above background in window number 4 is (38/15× 106) =
2.5 × 10−6, or approximately 1 in 400000 randomly chosen background spectra will
have such a peak. Whereas the probability of finding such a peak anywhere in the
spectra is (1851/15× 106) = 1.2× 10−4, or 1 in 8100. Finally, for completeness, the
study has been repeated with somewhat larger backgrounds. I have examined the
cases where every background bin has 1 additional count, and 2 additional counts.
The results of these studies are shown in Tables 3 and in 4.

The last part of this study is to attempt to define a σ measure for the significance
of the peak. While the numbers in the previous tables are straightforward, I suspect
that there are several ways to convert them into a σ measure. The method chosen
here is as follows. We assume that we are some number of σ into the tails of a
Gaussian distribution, say α× σ. We then ask: “What is α such that the probability
of being that far out in the tails is equal to the probability as computed from the
numbers given in Tables 2, 3 and 4?”. Assuming a normalized Gaussian distribution,
the probability of being at ασ or larger is described by the error function complement,
erfc(x),

Probability(α) = erfc(
α√
2
) . (3)

Figures 2 and 3 show plots of the resulting σs for these events. The first figures shows
all results except for those from window 1, (the entire spectrum). Figure 3 is for the
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Threshold Window Number
1 2 3 4 5

35 7372 622 365 183 84
36 4600 357 209 99 49
37 2913 229 120 54 22
38 1851 155 86 38 15
39 1166 101 53 24 11
40 725 68 35 16 9
41 438 41 22 8 4

Table 2: The number of identified peaks in each mass window (see Table 1) which
are at least as large as the given threshold. These arise from 15 × 106 hypothetical
spectra.

Threshold Window Number
1 2 3 4 5

35 9758 946 529 290 153
36 6328 587 307 168 88
37 4086 371 190 100 49
38 2633 230 113 61 28
39 1640 136 70 34 15
40 1018 80 48 17 7
41 643 52 31 13 5

Table 3: The number of identified peaks in each mass window (see Table 1) which
are at least as large as the given threshold. These arise from 15 × 106 hypothetical
spectra and have a background offset of +1 count.

special case of window 4 and offset 0. Note that there are almost no measures in
which we have a so-called 5σ peak.

Using the number of counts in the peak as something between 38 and 39, and
taking the background function with no offset, I estimate that there is approximately
a 1 in 500000 chance of the measured peak occurring purely by chance. (Results from
Table 2, and window 4). If this is converted to a σ, then I estimate that it has a
statistical significance of 4.75σ. If we ask what the probability of getting a peak at
exactly the right place with 40 counts above background, (window 5 with zero offset),
this corresponds to (9/15 × 106), or a 5σ effect. As a cross check for this, using a
simple Poisson distribution with a mean of 45 counts. The probability of observing
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Threshold Window Number
1 2 3 4 5

35 13734 1509 945 564 284
36 9106 941 576 336 158
37 5824 563 329 193 86
38 3721 346 194 112 50
39 2428 214 112 58 22
40 1515 130 69 32 11
41 933 77 40 18 7

Table 4: The number of identified peaks in each mass window (see Table 1) which
are at least as large as the given threshold. These arise from 15 × 106 hypothetical
spectra and have a background offset of +2 count.
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Figure 2: The left-hand figure shows the distributions of σ for all thresholds and
offsets in combination with windows 2 through 5. The right-hand figure plots the
thresholds versus the σ for the same set of data.

83 = 45 + 38 is given as:

P (83 : 45) = (45)83e−45/83! . (4)

Using the fact that ln(n!) ≈ nlnn− n, we can estimate the chance of this fluctuation
to be 1 in 366000. A number that is somewhat larger than this study indicates. The
5.4 ± 0.6σ quoted in the PRL draft corresponds to a 1 in 15000000 chance of this
occurring. This is somewhat of an over estimation of the peak significance, but the
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Figure 3: A plot of threshold versus σ for the case of window number 4 and and offset
of 0.

method is well defined in the paper and presumably the knowledgeable reader will be
able to figure this out what the tru probability is.
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