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Abstract

We discuss kinematics corrections to the CLAS event reconstruc-
tion that are needed to correct for our incomplete knowledge of the
CLAS detector geometry and magnetic field distribution. We de-
velop simple corrections using the kinematic constraints from overde-
termined reactions, elastic scattering ep → ep, and π+ production
ep → eπ+n. Angle corrections and momentum corrections are deter-
mined independent of each other. We test the resulting corrections on
various exclusive processes, e.g. ep→ epπ◦, ep→ epη, ep→ epω, and
find significant improvements in mass position and resolution.

1 INTRODUCTION

The problem of kinematics corrections for CLAS is as old as when the CLAS
electron scattering events were reconstructed. These were first discussed
initially in a CALCOM meeting [1] during the commissioning phase and
during the early data taking phase of CLAS. The evidence for the need of such
corrections is most directly seen in the dependence of the elastic peak position
on the azimuthal angle of the reconstructed electrons, as shown in Figure
1. If the kinematics remains uncorrected, the physics processes of interest,
e.g. ep → epπ◦, ep → epη, ep → enπ+, ep → epω, ep → epπ+π−, show
wider than expected mass distributions located at slightly shifted masses.
This influences our capabilities to separate signal from background, and has
most undesirable effects on the determination of physics quantities, such
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Figure 1: The missing mass distribution W in ep → eX for all six sectors. The
sector dependence of the elastic peak position and the peak width are clearly seen.
From left top to right bottom, from sector 1 to 6

as energy-dependence of partial waves, etc. from such processes. Since the
effects are of unknown origin, they cannot be simulated in GSIM. This makes
it mandatory to have, at the very least, first order corrections to the 3-
momentum vectors determined in track reconstruction. In our approach we
try to go beyond the first order corrections without attempting to develop
a global procedure to develop corrections for the entire phase space. Such a
procedure is justified, as we will demonstrate by comparing our results with
a much simpler appraoch, resulting in similar results.

2



2 Data sets used

We used the E1-6 full data sets to correct the angle and momentum of neg-
ative charged particle ( e− ) and positive charged particle ( π+ ). E1-6 data
contained only one set of experimental condition with one beam energy (
E0 = 5.754GeV ) and magnetic field setting ( IB = 3375.0A ). We used the
reduced ntuples which contain a minimum number ntuple variables. This
saved time during the correction procedure.

3 Description of Method

3.1 Assumptions

In order to keep the problem tracktable we have made several assumptions
which we feel are reasonable. We will provide some arguments why this may
be the case.

Assumption 1 As a first assumption we equate the beam energy to the en-
ergy as measured by the Hall A procedures (elastic ep scattering and energy
measurements in the arcs. Both measurements agree within less than 6 MeV
[3] for the 5.754 GeV run.

Assumption 2 We further extract all corrections from one data run (e1-
6) with fixed beam energy and fixed torus current of Itorus = 3375 A. We
determine the correction for other torus currents simply by scaling the particle
momenta and torus current. This can only be approximately correct, as the
mini-torus current remains fixed at 6000 A, while only the torus current is
usually changed. The mini-torus current provides only about 5% of the

∫
Bdl

of the full torus magnetic field. We therefore argue that the effect of the mini-
torus field on the particle trajectories is small. And since the corrections are
of the order of O(1%) in momentum, and O(1 mrad) on polar angle, the
effect of the mini-torus is expected to be much smaller than these.

Assumption 3 Our main assumption is that the particle’s polar angle are
reconstructed correctly for scattering angles greater than 35 degrees. Although
one could bring arguments why this should be the case, we prefer to justify
this assumption by the results.
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Assumption 4 In addition, we assume that the angle corrections are inde-
pendent of the particle’s charge.

3.2 Angle corrections

3.2.1 Procedure

Following the suggestion by Cole Smith [2], we separate the angle correc-
tions from the momentum corrections by using the constraints provided by
the elastic ep → ep scattering kinematics. Assumption 2 and 3 allow us to
use the proton recoil angle and the beam energy to predict the polar and
azimuthal angle of the elastically scattered electron.

In order to calculate the electron polar (θe) angle, we selected ep → e′p
elastic events from the W cut ( 0.7 < W < 1.05 GeV ) without any other PID
cut except for proton polar angle cut (θp > 35o). After selection, we used the
following relation (1). The electron polar angle (θe) can be calculated from
the proton polar angle (θp) and beam energy (E0) through 2-body kinemat-
ics. This means the calculated (θe)calc can be represented as a function of
E0, θp ;

θecal = 2 tan−1
(

mp

(E0 +mp) tanθp

)
(1)

The difference (δθe = θcalc − θmeas) of the calculated and measured polar
angles of electron was analyzed for all φ and θ angles. In order to do this, we
divided polar angle from 13o to 26o in 1o bins and selected elastically scatterd
electron angle range. We looked at the distribution of δθe as a function of φ.
The δθe can be represented by the following dunction ;

δθe = θecalc − θemeas = f(θe, φe, sec) (2)

= A(θe, sec) ∗ φ4
e +B(θe, sec) ∗ φ3

e + C(θe, sec) ∗ φ2
e

+D(θe, sec) ∗ φe + E(θe, sec) (3)

= (αAsec ∗ θ2
e + βAsec ∗ θe + γAsec) ∗ φ4

e

+ (αBsec ∗ θ2
e + βBsec ∗ θe + γBsec) ∗ φ3

e

+ (αCsec ∗ θ2
e + βCsec ∗ θe + γCsec) ∗ φ2

e
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Figure 2: Fitting δθe vs. φe. At θe is 13o < θe < 14o in sector 1 : Top and bottom
plots are relate to different φe bin. Fits are with sigle Gaussian in (a), constant +
Gaussian in (b).

+ (αDsec ∗ θ2
e + βDsec ∗ θe + γDsec) ∗ φe

+ (αEsec ∗ θ2
e + βEsec ∗ θe + γEsec) (4)

where, αAsec, β
A
sec, γ

A
sec are the parameters of 4-th order term of φ and

θ and the indecies A, B, C, D and E are related to the power of φ. The
φe dependence of δθe was obtained by fitting a constant + Gaussian to the
δθe distribution for each φe bin. The mean values of the fitted Gaussian are
fitted to construct the correction function. The correction function contains
90 parameters and these parameters can describe δθe. Figure 2 shows an
example of fits to the azimuthal angle and polar angle for 13o < θe < 14o in
sector 1.

Figure 3 and 4 show the fitted δθe vs. φe in sector 1. Clearly, the measured
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Figure 3: After proton angle cut ( θp > 35o ), the plot of the electron polar
angle difference ( as defined by δθe = θmeas− θcalc ) vs. φe for 13o < θe < 17o

in sector 1. Fit function is f = A ∗ φ4 +B ∗ φ3 + C ∗ φ2 +D ∗ φ+ E.

electron angles need to be corrected. However, the maximum correction is of
the order of 1 mrad.

In order to describe the distributed data points, we used a 4-th order
polynomial function. The main reason to using the high order polynomial
function is that the very fowward polar angle region ( between 13o and 17o

) has a more complicated shape than the others. The curvatures are getting
simpler and flatter with increasing polar angle.

However, there could be a problem at extreme angle regions of such a
high order correction function was applied. To avoid this, we make cuts on
the polar angular region.

Figure 5 shows the θe dependence of each of the five fit parameters
(A,B,C,D,E). As the φe dependent fit parameters have different scale range,
we mutiply the scale factor to each parameter in order to determine their
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Figure 4: Electron polar angle difference vs. φe for 17o < θe < 25o in sector
1. Each plot is related to each θe bin. Each plot is fitted by 4-th order
polynomial function. Fit function is f = A∗φ4 +B ∗φ3 +C ∗φ2 +D ∗φ+E
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Figure 5: θe dependency of the φe fit parameters. Each data point ( − ? −
− • − − � − − /− ) corresponds to the order of parameters in sector 1. To
get the parameters, the fit function is used. gA,B,C,D,E = αA,B,C,D,E ∗ θ2 +
βA,B,C,D,E ∗ θ + γA,B,C,D,E. The indices (A,B,C,D,E) of function correspond
to each fit parameters from Figure 3 and Figure 4

θe dependence. We then fit the θe distribution with a 2nd order polynomial
function and obtain the three θe-dependent fit parameters ( αA, βA, γA in each
φe dependent fit parameter ). Finally, we use those parameters to determine
the constants for the electron scattering angle corrections.

3.2.2 Results of angle corrections

After determining the correlation between θe and φe, we constructed the
correction function based on this relation. We measured the same quantities
after applying angle corrections. Figure 6 and figure 7 show the resulting
dependence. Since the angle corrections are small we do not see significant
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Figure 6: Comparison of δθe dependence on φe before (red diamond) and
after (blue triangle) electron angle correction in Sector 1,2,3 and 4. All
sectors show similar improvements.

improvement in Figure 8 with the electron angle corrections applied. The
W is missing mass is little affected by the electron angle corrections. We
conclude that the shift in the elastic peak is largely due to systematic shifts
in the momentum reconstruction.

3.2.3 Effect of angle corrections on missing mass

By measuring the process ep→ e′π+X we can use the missing mass technique
to calculate the neutron mass. Table 1 shows the missing mass of the neutron
before and after electron angle corrections are applied in each sector. The
shift is very small. The reason is that each sector contains the integrated
events over all φe and θe. However, if we plot the missing mass versus cosθe
as shown in Figure 9, we can recognize a very small difference.
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Figure 7: Comparison of δθe dependence on θe before (red diamond) and
after (blue triangle) electron angle correction in Sector 1,2,3 and 4

SECTOR Before Correction After Correction
mean sigma mean sigma

1 0.9550 0.2159E-01 0.9550 0.2159E-01
2 0.9518 0.2304E-01 0.9518 0.2305E-01
3 0.9503 0.2317E-01 0.9503 0.2317E-01
4 0.9539 0.2608E-01 0.9540 0.2610E-01
5 0.9398 0.2784E-01 0.9398 0.2784E-01
6 0.9463 0.2506E-01 0.9463 0.2505E-01

Table 1: The mean and width of missing mass neutron before and after
applying the electron angle correction [GeV/c2]
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Figure 8: W spectrum with electron angle correction. From left top to right
bottom, from sector 1 to 6

3.2.4 Conclusion from angle corrections

The effect of the electron angle correction on the neutron missing mass in
each sector is very small. However, we can truly recognize the very small
difference in the cosθe dependence before and after corrections are applied.
The main reason for such a small electron angle effect is that the missing
mass technique strongly depends on both electron momentum and hadron
momentum which at this step have not been corrected for.
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Figure 9: Missing mass of neutron ( peak centroid (left) and width (right) )
vs. cosθe before (top) and after(bottom) electron angle correction is applied.
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3.3 Momentum corrections

3.3.1 Procedure

A systematic study of shifts in the elastic peak position in W and the neutron
peak position in missing mass spectra have been performed by correcting the
reconstructed electron angles. As mentioned in Sec.3.1, the shifts are due
to the uncertainties in the torus field and misalignments in drift chamber.
After corrections are applied, we can assume the measured electron angles are
correct. We then calculate the exact electron momentum from true electron
angles. The electron momentum correction is performed in two steps ; (1)
Use the elastically scattered ep events to correct the electron momentum. (2)
Verify the missing mass using e′X and e′π+X kinematics.

To correct the electron momentum, two assumptions ( 1 and 3 ) as ex-
plained in Sec.3.1 are adopted. First, we use the beam energy E0 = 5.754
GeV measured in Hall A and second, the electron polar angle is correct after
angle correction. The angles are based on the assumption the proton polar
angle is correct for angles greater than 35o. Then, the elastic scattered elec-
tron candidates are chosen using a W cut in region 0.7 < W < 1.05 GeV.
We ignore a possible small shift of the peaks due to radiative effects.

The corrected electron momentum pecalc can be calculated from the known
beam energy and the corrected electron polar angle. The calculated electron
momentum has the correct value because we assumed that we had two pieces
of exact information ( beam energy E0 and proton angle θp ).

pecalc =
E0

1 + 2 E0sin2

(
θe
2

)
/mp

(5)

where, E0 is the initial beam energy and mp is the proton mass ( = 938.26
MeV).

In general, there is no consensus on the expression that the correction
function should have [4] . Therefore, the electron momentum correction
should be a function of both momentum (pe) and angles (θe and φe). And
we can make separate correction function corresponding to each sector. The
function is then ;

pcorr = f(pemeas, θe, φe, sec) (6)

where, pcorr is the ’real’ value, and ’sec’ indicates the sector. Since the
main uncertainties are due to the distribution of the torus field and angles
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mainly defined by DC geometry, we corrected electron angles and then used
correctly measured angles, to determine the momentum values. We can write
:

pecorr = pemeas × g(θe, φe, sector) (7)

δpe ≡ pecorr/pemeas (8)

We consider the correction function (g) as a scale factor which can be
represented as a function of θe , φe and also depends on the specific sectors.
We can write the relation (8) also in the following equations.

δp = pecorr/pemeas = g(θe, φe, sec) (9)

= A′(θe, sec) ∗ φ3
e +B′(θe, sec) ∗ φ2

e + C ′(θe, sec) ∗ φe
+D′(θe, sec) (10)

= (αA
′
sec ∗ θ2

e + βA
′
sec ∗ θe + γA

′
sec) ∗ φ3

e

+ (αB
′
sec ∗ θ2

e + βB
′
sec ∗ θe + γB

′
sec) ∗ φ2

e

+ (αC
′
sec ∗ θ2

e + βC
′
sec ∗ θe + γC

′
sec) ∗ φe

+ (αD
′
sec ∗ θ2

e + βD
′
sec ∗ θe + γD

′
sec)

(11)

where, αA
′
sec, β

A′
sec, γ

A′
sec are the parameters of 3-rd order term of φe

and θe and the indicies A′, B′, C ′ and D′ are related to the order of φe.

In the momentum case, the procedure is similar to the angle correction.
The correction function is simply the ratio between the calculated modules of
the electron momentum pecalc and the measured pemeas for each sector. The
ratio contains 3-rd order φe term, 2nd order θe term and cross terms between
θe and φe in each order term. Requiring pecalc = pemeas we fit the φe and θe
dependence for elastic events and extract the 72 correction parameters.

We used the same fit function (constant + Gaussian) as we have done for
the angle corrections. We calculated and plotted the ratio of the calculated
electron momentum and measured one for different φe and θe.

There is a significant correction in momentum needed after applying an-
gle correction in φe and θe. Figure 11 and 12 contain the histograms of
momentum difference versus φ in sector 1. Events detector edges and data
points with large error at extreme φe values were ignored. The distribution

14
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Figure 10: Fitting δp vs. φe slice bin in case of 13o < θe < 14o in sector 1 : Top
and bottom plots are relate to different φe bin. Fitting with sigle Gaussian in (a),
constant + Gaussian in (b).

can be described by a 3-rd order polynomial function shown in Figure 11.
There is no polar angle ( θe ) boundary to observe the electron momentum
ratio. We can clearly see that the ratio of momentum moves toward 1.0 as
electron polar angle increase ( Figure 12 and 13 ).

We can extract four of the φe dependent fit parameters (A,B,C and D) in
each θe bin as shown in Figure 14. We then fit these parameters with 2-nd
order polynomial function. Figure 15 shows that the electron momentum
difference ( δp ) approaches zero as the electron polar angle increases.

For polar angles greater than 35o ( this angle is approximated the angle
which we assume for the proton polar angle range), we do not need mometum
correction parameters.
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Figure 11: Electron momentum difference ( δp = pmeas/pcalc ) vs. φe in small
polar angle range ( 13o < θe < 17o ). The fit is performed by 3-rd order of
polynomial function f = A ∗ φ3 +B ∗ φ2 + C ∗ φ+D.
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Figure 12: Electron momentum difference vs. φe in middle range ( 17o <
θe < 25o ) of polar angle.
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Figure 13: Electron momentum difference vs. φe in large range ( 25o < θe <
41o ) of polar angle. The bin size of polar angle is 2o.
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Figure 14: The φe fit parameters of δp versus θ around forward polar angle
region. Each data point ( − ? − − • − − � − − / − ) corresponds to the
order of paramters in sector 1. To get the parameters, the fit function is
used. gA,B,C,D,E = αA,B,C,D,E ∗ θ2 + βA,B,C,D,E ∗ θ + γA,B,C,D,E. The indices
(A,B,C,D,E) of function correspond to each fit parameters from Figure11
and Figure12
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Figure 15: The φe fit parameters of δp versus θ around large polar angle
region. All parameters converge zero over 35o in sector 1. The indices
(A,B,C,D,E) of function correspond to each fit parameters from Figure13
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Figure 16: δp vs. φe before (red diamond) and after (blue triangle) electron
angle and momentum correction in Sector 1,2,3 and 4

3.3.2 Electron momentum corrections from elastic scattering

After having determined the electron momentum correlation between θe and
φe, we plot the same quantities (δp versus φ , θ) to help display details of
the momentum correction function. Figure 16 and 17 show the improvement
after applying momentum correction.
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Figure 17: δp vs. θe before (red diamond) and after (blue triangle) electron
angle and momentum correction in Sector 1,2,3 and 4
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Figure 18: W spectrum after the correction for electron angle and momentum is
applied

3.3.3 Corection results on elastic peak

Electron corrections are applied to 17% of E1-6 data set. Figure 18 shows
the missing mass spectrum of e′X. Figure 18 indicates the proton mass
with narrow resolution. The σ of elastic peak in each sector is less than 30
MeV. By comparing the resolution of Figures 1, 8 and 18, we can see that
the resolution actually has improved, significantly. As shown in Figure 19,
the electron corrections give significant improvement to mean and sigma of
the elastic W distribution. The mean value of the missing mass e′X is well
aligned its the exact proton mass line and its sigma value has a maximum of
less than 30 MeV.
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Figure 19: W spectrum versus cosθ without (top) and with (bottom) electron
corrections.
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3.4 Conclusions from electron angle and momentum
corrections

We have observed the effect of electron corrections for angle and momentum.
The angle corrections for electrons are too small to result in visible improve-
ments in physics quantities. However, angle corrections are needed for the
very forward polar angle region because of the possibility of misaligned drift
chambers. It is clearly understandable when we look at the φe angle distribu-
tion through θe in Figure 3 and 4. We can see that there is an imrpovement
on angle itself as shown in Figure 6 and Figure 7 . For the electron mo-
mentum, we can clearly see that the momentum correction functions give
remarkable improvement.

3.5 Corrections for outbending trajectories

3.5.1 Effect of missing mass shifts in ep → eπ+n after electron
corrections

The missing mass of e′π+X is well matched to the neutron mass ( Mn =
939.55 MeV ) with corrections for angle and momentum of the electron. All
sectors show a well defined neutron peak with σ less than 20 MeV. Figure
21 shows the result of missing mass spectrum after applying electron angle
and momentum correction. The effect of correction through θe in Figure 22
shows also remarkable improvement.

However, it is neccessary to correct the angles and momentum also for
the positive charged particle, which could be different from the electron cor-
rections due to the different trajectory. Looking at the Figure 20, it is clear
that for θπ < 40o and pπ > 2 GeV. Some corrections are needed.

3.5.2 Angle corrections for outbending particles

The angle correction for outbending particles ( especially in this case, π+

particle ) were performed using the same procedure as for electron angles.
We assume that angle corrections do not depend on the particle charge.

3.5.3 Momentum corrections for outbending particles

To correct the momentum of outbending particles, we used the missing mass
of the neutron in e′π+n final state. Events were selected that contained only
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Figure 20: Plotting the missing mass of neutron versus the pion quantities
(pπ, θπ). We can still see the wrong neutron mass spectrum around high
momentum of pion and low θπ region even electron corrections applied.

one electron and one π+. We applied a missing mass cut in the range from
0.85 and 0.99 GeV. The position of the missing mass peak of the neutron
should be checked with quantities such as momentum and φ and θ angle
of pion. Basically, the missing mass technique needs parameters of electron
angles, momentum of electron, pion angles and momentum of pion. Figure
23, 24 show us the relation. As we have corrected the electron kinematics
and pion angles, the missing mass of neutron is only dependent on the pion
momentum. Now, we can plot the ratio ( δMX ) of missing mass spectrum
divided by the known neutron mass versus pion quantities ( pπ, φπ, θπ ). We
can parameterize this ratio, and then extract the correction function for pion
momentum. ( See equation 12 )

MX
2 = En

2 − pn2 (12)

= (E0 +mp − pe′ − Eπ)2 − (pnx
2 + pny

2 + pnz
2)

=
(
E0 +mp − pe′ −

√
pπ2 +mπ

2

)2

−
(

(qx − pπx)2 + (qy − pπy)2 + (qz − pπz)2
)

where, MX is the neutron missing mass, En the neutron energy and pn
the 3-vector momentum. The first term in Equation 12 can be represented
with the initial beam energy, proton mass, the scattered electron momentum
and pion energy. The second term in Equation 12 can be re-written in terms
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Figure 21: Missing mass spectrum of e′π+X after electron angle and momentum
correction

of ~q and pπ. The variables in Equation 12 such as E0, mp, mπ are known
constants, and some of them ( pe′, qx, qy, qz ) are the reliable values because
of the already applied electron corrections. Therefore, the missing mass
of the neutron should only depend on the pion momentum. The ratio of
the measured missing mass of neutron and the known neutron mass can be
represented as a function of θπ, φπ and sector as in Equation 13. We plot the
δMX through the φπ and θπ angles and extract the correction function by
fitting all φπ and θπ cases. Figures 23, 24 and 25 show this ratio versus φπ.
As we can see from Figure 23 and 24, the small pion angle range ( especially,
10o < θπ < 24o ) has a distorted distribution of ratio.

δMX = MXmeas/MXvalue = h(θπ, φπ, sec) (13)
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Figure 22: Missing mass of neutron versus cosθ without (top) and with
(bottom) electron kinematic corrections. After applying the electron angle
and momentum correction, the uncorrected missing mass of neutron (top) is
significantly improved as a result (bottom).
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= Ah(θπ, sec) ∗ φπ4 +Bh(θπ, sec) ∗ φπ3 + Ch(θπ, sec) ∗ φπ2

+Dh(θπ, sec) ∗ φπ + E(θπ, sec) (14)

= (αAh sec ∗ θ2
π + βAh sec ∗ θπ + γAh sec) ∗ φ4

π

+ (αBh sec ∗ θ2
π + βBh sec ∗ θπ + γBh sec) ∗ φ3

π

+ (αCh sec ∗ θ2
π + βCh sec ∗ θπ + γCh sec) ∗ φ2

π

+ (αDh sec ∗ θ2
π + βDh sec ∗ θπ + γDh sec) ∗ φπ

+ (αEh sec ∗ θ2
π + βEh sec ∗ θπ + γEh sec) (15)

where, αAhsec, β
Ah

sec, γ
Ah

sec are the parameters of 4-th order term of relation
between pion angles ( φπ, θπ ) and missing mass neutron. And the indicies
Ah, Bh, Ch and Dh are related to the order of φ.

Therefore, we decide that we apply the pion momentum correction to
specific region only as the pion momentum correction are needed only in the
high momentum region ( pπ > 2 GeV ), corresponds to small pion polar
angle ( θπ < 40o ). We used the final fit parameters in Figure 25 for correc-
tion. Figure 26 shows the final result for the missing mass spectrum after all
corrections are applied.

3.6 Tests using other reactions

We have tested both angles and momentum corrections of the electron and
positive pion also in e′pX reaction channel. Especially, this reaction channel
has three missing mass distribution ; π0, η and ω. The Figures 27 and 28 show
that the correction functions work also in the e′pX reaction. All sectors have
quite improved spectra with peak positions close to the known particle masses
and quite improved good resolution. We can see the significant improvement
of mean and width of π0, η and ω from results of the ep→ e′pX and neutron
from ep→ e′π+X in Table 2.
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Figure 23: The ratio between measured missing mass of the neutron and
known neutron mass versus φπ through forward ( 12o < θπ < 16o and 20o <
θπ < 24o) angle ranges.
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Figure 24: The ratio ( δMX ) of measured neutron missing mass and known
neutron mass vs. φπ through large ( 24o < θπ < 28o and 32o < θπ < 36o )
angle ranges.
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Figure 25: δMX vs. θπ. Each data point ( − ? − − • − − � − − / − )
corresponds to the order of paramters in sector 1. To get the parameters,
the fit function hA,B,C,D,E = αhA,B,C,D,E ∗ θ2 + βhA,B,C,D,E ∗ θ + γhA,B,C,D,E
is used. The indices (A,B,C,D,E) correspond to the fit parameters in Figure
23 and Figure 24

MMX PDG value Before Correction After Correction
mean mean sigma mean sigma

π0 0.13498 0.1586 0.4667E-01 0.1360 0.4093E-01
η 0.54730 0.5601 0.1535E-01 0.5467 0.1321E-01
ω 0.78257 0.7871 0.1838E-01 0.7806 0.1690E-01
n 0.93956 0.9495 0.2446E-01 0.9391 0.1831E-01

Table 2: The mean and width of missing mass of e′pX and e′π+X before and
after applying the kinematic corrections
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Figure 26: The missing mass of neutron after all corrections have been applied.
From left top to right bottom, from sector 1 to 6

4 Conclusions

We have studied kinematic corretions for the e′π+n final state. We per-
formed kinematic correction by observing the invariant mass ( W , proton
) and missing mass ( MX ) spectra and developed an explicite polynomial
parametrizations for the corrections. The quatities depend on both angle
and momenta of the electron and the pion, respectively.

We find that angle corrections have very small effects on the W , MX

variables, while momentum corrections have much more important effects.
Both the peak positions for the predictive and searched missing mass and
their respective widths are significantly improved after the corrections are
applied.
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Figure 27: Missing mass spectrum of e′pX ( η ) in sector 1
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Figure 28: Missing mass of e′pX vs. proton polar angle ( θp ) in sector 1,2
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