
CLAS-NOTE 2003-014
CVS: docs/clas notes/tof package

New Operating Software Package for

the TOF Laser Calibration System

Serguei A. Pozdniakov
Institute of Theoretical and Experimental Physics

Moscow, Russia

August 22, 2003

Abstract

This document describes new software package for TOF Laser Cal-
ibration System, which includes User Interface, High Level Interface
and Low Level Interface. New UNIX master based on completely re-
vised new UNIX library gives the opportunity to calibrate the Time-
of-Flight (TOF) counters in full and flexible manner, this procedure
is completely automated and clearly monitored. Set of new scripts al-
lows experts to control and operate filters, masks and lasers remotely
at any time from any CLON clusters. Low level interface has become
more compact and more reliable.

1

Contents

1 Introduction 3

2 User Interface 4
2.1 Generic run configuration file 4
2.2 TOF configuration file . 5
2.3 Useful scripts and programs 6

3 High Level Interface 7
3.1 TOF laser UNIX master . 7
3.2 TOF laser UNIX library . 8

4 Low Level Interface 9

5 Conclusion 10

A CODA run configuration file 11

B TOF configuration file 13

C TOF laser.c 15

D UNIX laser.h 20

E VxWorks laser.h 21

2

1 Introduction

The detail description of the Hall B TOF laser calibration system can be
found in “Operation of the TOF Laser Calibration System” [1]. Briefly,
this system consists of four optical tables. Each table has specific hardware
setup which includes a pulsed nitrogen laser, filter, mask, and set of 24 fiber
bundles [1, 2]. Laser light attenuated by filter and partially intercepted by
mask is distributing by chosen fiber bundles to the currently investigating
scintillation counters on a given support structure (Forward Carriage, North
Clam Shell, South Clam Shell and Space Frame). The calibration proce-
dure suppose to be completely automated and operated by a single CODA
configuration, TOF LASER. Filters and masks are set by Velmex stepping
motors and could be operated remotely. Sequential choice of different combi-
nations of filters and masks gives the opportunity to calibrate all scintillation
counters in full manner.

Since the first version of the software program for TOF laser calibration
had been written a lot of up-to-date changes (upgrades) have been made.
Most of them are interdependent:

• upgrade to the latest version of VxWorks operating system

• upgrade to the newest and fastest CPU

• installation of the new serial board VMIC 6016

At the same time first version of the TOF laser calibration software was not
full and very reliable:

• masks were never used

• low level interface to operate masks was not written

• communication problem were very frequently

• monitoring was not very convenient due to communication problems

All these problems and modifications of system and hardware lead to
necessity of new software package for TOF laser calibration system, which
now has new operating logic more compact and more reliable. This document
describes three main part of this software package User Interface, High Level
Interface and Low Level Interface.

3

2 User Interface

In this Section all necessary steps for successful TOF laser calibration will be
described. This information will be enough for any advanced user to prepare,
manage and make correct TOF laser calibration.

The calibration procedure assumes not only the right sequence of laser
firing and predictable moving of masks and filters, it is also expect proper
data taking. For this purpose CLAS Data Acquisition System (DAQ) will
run specific CODA configuration, TOF LASER. Implementation of the TOF
laser calibration into CODA has been done by including three top level scripts
in generic run configuration file (see Section 2.1).

Flexibility of the TOF laser calibration sequence lies in the TOF config-
uration file ’configuration.txt’ which format will be explained in Section 2.2.

Then some useful scripts and programs will be presented in Section 2.3.
These tools helps to operate filters, masks and lasers remotely and get their
statuses at any time.

2.1 Generic run configuration file

CODA run configuration file selected during ’Download’ transition. This
file determines what actions will be done during different transitions for the
current run and what CODA setting will be up. Below is the name of the
file with the full path:

$CLON PARMS/trigger/config/calib/tof laser.cfg

The whole file is presented in Section A. Some essential part of this file will
be discussed here.

Normally laser requires approximately five minutes to warm up, so it is
better to turn laser on as early as possible. The following lines in ’tof laser.cfg’
turn gas and power on for all lasers in Hall B during ’Prestart’ transition:

<prestart>

TOF_laser_on

</prestart>

’TOF laser on’ could have the input parameters. If somehow, it is necessary
to calibrate only North and South Clam Shells, the upper lines will look like:

<prestart>

TOF_laser_on 2 3

</prestart>

4

’TOF laser start’ script opens the additional Xterm on the workspace
where Run Control is running and starts the TOF laser UNIX master in the
opened Xterm. TOF laser UNIX master (’TOF laser’) starts the calibration
procedure and shows all steps of calibration in real time mode. If any essential
error occurred the calibration will be stopped and adequate error message will
be printed. The next lines activate ’TOF laser start’ during ’Go’ transition:

<go>

TOF_laser_start

</go>

After calibration will be done it is necessary to turn all lasers off. This
realized by starting ’TOF laser off’ during ’End’ transition:

<end>

TOF_laser_off

</end>

Besides of including these three TOF laser scripts in run configuration
file it is necessary to predefine some CODA parameters and activate some
actions. The essential are starting the pulse-generator which will be puls-
ing lasers and enabling the TS trigger bit number 10 which corresponds to
this pulse-generator. These actions are activated by including next lines in
’tof laser.cfg’:

...

<l1enable>

<!-- 1 2 3 4 5 6 7 8 9 10 11 12 -->

<!-- === === === === === === === === === === === === -->

0 0 0 0 0 0 0 0 0 1 0 0

</l1enable>

...

...

<pulser>

pulser_start 100 15 -1

</pulser>

...

2.2 TOF configuration file

TOF configuration file ’configuration.txt’ allows to be very flexible in cali-
bration procedure. TOF laser UNIX master reconfigures sequence of current
calibration in accordance with settings of the parameters inside of this file.
TOF laser UNIX master reads this file at the beginning of its operation from:

5

$CLON PARMS/TOF config

The original source of ’configuration.txt’ are in directory:

$CLON SOURCE/laser/sc/s

The example of TOF configuration file is shown in Section B. The format
description of this file is presented within this file itself in the commented
blocks.

TOF configuration file has two main section ’INIT block’ and ’PROCE-
DURE block’. ’INIT’ keeps expected CODA setting and determines what
lasers will be used. ’PROCEDURE block’ has full information about masks,
filters, their speeds and their sequence of moving.

The mask is wide and long metallic plate placed between laser and set
of fiber bundles. Several different hole patterns along this plate can be po-
sitioned to choose various combinations of fiber bundles. Normally after the
initialization process all plates and filters are set to the extreme ’negative’
positions. So all lasers are wide open and all fiber bundles could distribute
light to the whole TOF detector. It is possible to calibrate TOF counters
partially to avoid crosstalk and to separate electronics channels by choosing
different predefined position of mask.

In example of TOF configuration file ’mask’ is set to zero for all lasers.
It means that masks will stay unmovable during calibration procedure. But
one can use different number (up to 12) of mask positions, for a example it
could be 3 for laser#1:

3 mask 1 /* number of masks (mask#1 positions)

0 mpos 1 0 /* position#0 of mask#1

1000 mpos 1 1 /* position#1 of mask#1

1200 mpos 1 2 /* position#2 of mask#1

1600 mpos 1 3 /* position#3 of mask#1

This means that four mask loops (from 0 to 3) will be done, mask position
(’mpos’) will be changed sequentially: 0, 1000, 1200, 1600. New mask posi-
tions could be added easily just by adding new lines with appropriate values,
meanings and indexes.

2.3 Useful scripts and programs

Besides of the TOF laser UNIX master there are several scripts and pro-
grams which can be useful for remote operating and control of the laser
calibration system. All of them are available from any CLON clusters. Their
executable codes are in ’$CLON BIN’ directory and their sources are in

6

’$CLON SOURCE/laser/sc’ directory. In accordance with their function-
ality scripts can be divided in two parts, operation scripts:

TOF_laser_on - correct turn lasers on

TOF_laser_off - correct turn lasers off

TOF_laser_enable - enable lasers (if they are ready)

TOF_laser_disable - disable lasers

TOF_move_mask - move mask for specified laser

TOF_move_filter - move filters for specified laser

and control scripts:

TOF_laser_status - get lasers statuses

TOF_get_mask_position - get mask position for specified laser

TOF_get_filter_position - get filter position for specif. laser

Control scripts could be executed at any time and by anybody. Operation
scripts have to be executed only by experts or by advanced users and NOT
during TOF calibration runs. Input parameters for some scripts are optional,
for some of them are necessary. Options ’h’, ’-h’ or ’help’ will give the synopsis
of the script.

3 High Level Interface

The whole software package for TOF Laser Calibration System was written
in C language. Sources for UNIX part of the package are in directory:

$CLON SOURCE/laser/sc/s

executable codes are installed in:

$CLON BIN

This Section is mostly for experts, but it could be helpful for anybody who
wants to know more about logic of TOF laser UNIX master (see Section 3.1)
and communication interface between UNIX part of calibration and VxWorks
part (in Section 3.2).

3.1 TOF laser UNIX master

’TOF laser.c’ is the main program for TOF laser calibration. Logic of this
program became more simple and straightforward. At the same time it is
easy to read and to understand. Almost half of the program is comments,
which explain not only the logic of ’TOF laser.c’ itself, but also the logic of

7

included routines. To avoid many words of logic explanation here the whole
C code of ’TOF laser.c’ is presented in Section C. The secret of the simplicity
of TOF laser UNIX master logic lies in the completely new UNIX library for
TOF laser calibration, which is presented in the next Section.

3.2 TOF laser UNIX library

TOF laser system uses standard NIM, VME, CAMAC modules and special
hardware controlling lasers, masks and filters. During calibration procedure
TOF laser UNIX master is doing a lot of conversation with hardware elec-
tronics, mostly with standard VME controllers using VxWorks operating
system and with Velmex stepping motor controllers connected to VME via
new serial board VMIC 6016. Low level library providing control of these
hardware electronics will be discussed in Section 4.

All communication between UNIX and VxWorks now collected in one
place ’TOF laser library.c’ and all other routines use this communication
interface. Mainly it is four functions using DP protocol:

int command_init ()

int command_execute (char *roc, char *cmd)

char *command_get_result ()

void command_print_result ()

First of them initializes DP protocol, second executes VxWokrs command
(’cmd’) in chosen VME crate (’roc’ is a name of VME crate), third gets
result of DP command execution and stores it in global variable, and the
fourth one prints the result of DP command.

For this moment TOF laser system has two VME crates ’camac3’ and
’sc-laser1’, four serial port channels for Velmex stepping motor controllers
and four lasers. To avoid multiplicity of variables and to have strict corre-
spondence between low level electronics a few arrays of global variables were
implemented in TOF library:

/* rocname vs laser_number */

char *rocname[]={"",

"camac3","sc-laser1","sc-laser1","sc-laser1"};

/* laser_number vs serial port channel number */

int lsrN[]={0,1,2,3,4};

/* serial port channel number vs laser_number */

int chnlN[]={0,1,2,3,4};

8

So now it is very easy to track any modifications in hardware redesign and
to keep them correct in software part.

’TOF laser library.c’ also includes almost all essential routines, list of
them are in Section D. Some meaningful routines are in separate files:

bits.c - bit operations

init_checks.c - read configuration.txt

system_check.c - check statuses of CODA and TOF system

system_setup.c - setup lasers, masks and filters

system_shutdown.c - close motor ports and turn OFF lasers

All routines have short but sufficient descriptions in commented blocks in the
same files, almost all of them are equivalents of VxWorks library routines and
have the same synopsis.

4 Low Level Interface

Low level library (controlling lasers, masks and filters) and drivers for new
VME serial board VMIC 6016 are loaded directly into the VME controllers
by adding the next lines in ’camac3’ and ’sc-laser1’ boot scripts:

#adds support for VMIC 6016 serial board

ld < drv6016

ld < install6016

load TOF

ld < laser_ppc.o

ld < motor_ppc.o

The library codes and support for VMIC 6016 are in directory:

$CLON VXWORKS/code

and the sources are in:

$CLON SOURCE/vxworks/laser

One laser has one mask and one filter, both of them (mask and filter) are
controlled by one Velmex stepping motor. Laser and motor have different
way of controlling. Laser operations go through VME ECL Input/Output
module, it is mainly address operations and processes of reading and writing
to VME registers. So all laser routines base on the next four:

9

void set_address ()

void hexbin (unsigned short h)

char *output (int laser_number)

char *input (int laser_number)

The motors are driven by Velmex motor controllers which are connected
to VME via different channels of VME serial board VMIC 6016. Correct
motor operation bases on stable communication with Velmex controller. It
means proper opening and closing serial port channel, sending valid command
to Velmex and recognizing response from Velmex. All this done by the next
five routines, other motor routines using these five:

int open_port (int channel)

int close_port (int channel)

int writeBuffer (int channel, char *buff)

int readBuffer (int channel, char *buff, int nbytes)

int decodBufferChar (char *str, int ch)

Function prototypes for all low level routines are collected in ’laser.h’ in
’$CLON SOURCE/vxworks/laser’ directory and are presented in Section E.

5 Conclusion

The described software package has been tested. It has been already used for
mask calibration [3]. Several TOF laser calibration runs have been success-
fully done, but still without using mask. Unfortunately the process of mask
calibration still not done in the full manner. Some test TOF laser calibra-
tion runs with random set of mask positions were also done. All above show
reliable work of new package.

At this moment we have TOF laser UNIX master. This leads to a lot
of network communications during TOF laser calibration, that makes the
main procedure slow and fragile. One of the way to improve robustness of
calibration procedure is to replace UNIX master by VxWorks master. It could
be done only if all controlling electronics will be collected in one VME crate.
Of course that expects a lot of work, new cabling, new hardware upgrade,
but TOF laser software package even now almost ready for VxWorks master
because of low level routines have the same synopsis and functionality in
both UNIX and VxWorks libraries.

10

A CODA run configuration file

<!-- tof_laser.cfg -->

<!-- TOF Laser calibration configuration file -->

<trigger>

<prestart>

TOF_laser_on

</prestart>

<go>

TOF_laser_start

</go>

<end>

TOF_laser_off

</end>

<l1trig ignore="yes"/>

<l2trig ignore="yes"/>

<tsprog>

default

</tsprog>

<l1enable>

<!-- 1 2 3 4 5 6 7 8 9 10 11 12 -->

<!-- === === === === === === === === === === === === -->

0 0 0 0 0 0 0 0 0 1 0 0

</l1enable>

11

<prescale>

<!-- 1 2 3 4 5 6 7 8 -->

<!-- === === === === === === === === -->

0 0 0 0 0 0 0 0

</prescale>

<rawbanks>

s_pmt_raw_true

</rawbanks>

<scalers>

s_exclude_scaler

</scalers>

<pulser>

pulser_start 100 15 -1

</pulser>

<ccpretrig ignore="yes"/>

<ecpretrig ignore="yes"/>

<scpretrig ignore="yes"/>

<cctdc ignore="yes"/>

<ectdc ignore="yes"/>

<sctdc ignore="yes"/>

<lactdc ignore="yes"/>

<photon ignore="yes"/>

</trigger>

12

B TOF configuration file

configuration.txt

#

This is the initialization and control file for

TOF laser running

#

This is a comment block.

Everything before BEGIN_INIT is ignored.

#

In INIT block:

first field is a value,

second field is a meaning,

all rest fields are comments.

Any line can be commented by putting "#" at the beginning

of line, in this case commented element will keep default

value, which preassigned to him in init_checks.h

#

BEGIN_INIT

1 debug /* 0=OFF, 1=ON (extra prints)

TOF_LASER configuration /* configuration

10 bit_number /* trigger bit

active coda_state /* expected CODA state

1 laser#1 /* Forward Carriage \ laser usage:

1 laser#2 /* North Clam Shell > ------------

1 laser#3 /* South Clam Shell / 1 = YES

1 laser#4 /* Space Frame / 0 = NO

END_INIT

#

In PROCEDURE block:

first field is a value,

second field is a meaning,

third field is a meaning index (laser id),

fourth field is a second meaning index (only for mpos),

all rest fields are comments.

Any line can be commented by putting "#" at the beginning

of line, in this case commented element will keep default

value, which preassigned to him in init_checks.h

#

13

BEGIN_PROCEDURE

laser = 1

0 mask 1 /* number of masks (mask#1 positions)

0 mpos 1 0 /* position#0 of mask#1

1000 mpos 1 1 /* position#1 of mask#1

1500 mpos 1 2 /* position#2 of mask#1

200 mspeed 1 /* mask speed

30 fspeed 1 /* filter speed

2 floops 1 /* number of filter loops

laser = 2

0 mask 2 /* number of masks (mask#2 positions)

0 mpos 2 0 /* position#0 of mask#2

2000 mpos 2 1 /* position#1 of mask#2

4000 mpos 2 2 /* position#2 of mask#2

200 mspeed 2 /* mask speed

30 fspeed 2 /* filter speed

2 floops 2 /* number of filter loops

laser = 3

0 mask 3 /* number of masks (mask#3 positions)

0 mpos 3 0 /* position#0 of mask#3

2000 mpos 3 1 /* position#1 of mask#3

4000 mpos 3 2 /* position#2 of mask#3

200 mspeed 3 /* mask speed

30 fspeed 3 /* filter speed

2 floops 3 /* number of filter loops

laser = 4

0 mask 4 /* number of masks (mask#4 positions)

0 mpos 4 0 /* position#0 of mask#4

2000 mpos 4 1 /* position#1 of mask#4

1000 mpos 4 2 /* position#2 of mask#4

3000 mpos 4 3 /* position#3 of mask#4

200 mspeed 4 /* mask speed

30 fspeed 4 /* filter speed

2 floops 4 /* number of filter loops

###

END_PROCEDURE

14

C TOF laser.c

/* TOF_laser.c - TOF laser UNIX master.

*

* Logic of this code:

*

* 1. Get initial values for the checks and procedure:

* - read configuration file configuration.txt,

* get and set initial values;

* - check rationality of continuation.

* 2. System setup:

* - turn ON (gas ON and power ON) all selected lasers

* to the point from where they can be easily enabled;

* - disable all lasers, only 1 laser will be enabled

* and used at an appropriate moment;

* - initialize masks and filters (set them to the CCW

* limits and nullify mask’s and filter’s motors);

* - set masks and filters speeds.

* 3. System check:

* - get and check statuses for all the lasers;

* - get and check trigger bit setting;

* - get and check coda configuration;

* - get coda state;

* - check and return lasers ready status and coda state.

* 4. Main execution:

* - main loop over all selected lasers;

* - inside laser_loop loop over all chosen mask

* positions selected in configuration.txt;

* - inside mask_loop for each mask positions activate

* n-times filter_loop, n get form configuration.txt;

* - for each step in mask_loop:

* . pause the run,

* . move mask at new position,

* . resume the run,

* . enable appropriate laser,

* . activate filter_loop n-times,

* . disable current laser.

* 5. Shutdown:

* - close motor ports;

* - turn OFF all lasers.

*/

15

#define INIT 1

#define TIMEOUT 600

#include <stdio.h>

#include <time.h>

#include <stdlib.h>

#include <strings.h>

#include "laser.h"

#include "init_checks.h"

extern int chnlN[];

extern char *rocname[];

extern int current_mpos[];

char prog_msg[1024]; /* message buffer; */

int

main(int argc, char *argv[])

{

time_t tp;

int tmpval;

int lsri, mski, fltri, i;

int step;

/*****!!!!!!!! Init, Setup and Check !!!!!!!!*****/

/* Get time */

tp=time(NULL);

sprintf(prog_msg,"\n TOF_laser \n\n Start time = %s \n",

ctime(&tp));

ss_prog(prog_msg);

/* Get initial values for the checks and procedure: */

/* read configuration.txt */

ss_prog("Read configuration.txt");

tmpval = init_checks(debug_value);

sprintf(prog_msg,"init_checks() return status = %d \n",

tmpval);

ss_prog(prog_msg);

16

/* Check rationality of continuation */

if(!use_laser[1] && !use_laser[2] &&

!use_laser[3] && !use_laser[4]) {

ss_prog("All use_laser[i]=0, Program stopped !!! \n");

return(-1); }

/* Begin system setup */

ss_prog("Begin system setup");

tmpval = system_setup(debug_value);

sprintf(prog_msg,"system_setup() return status = %d \n",

tmpval);

ss_prog(prog_msg);

if(tmpval != 0) {

ss_prog("Some error occurred.

Fix problem and restart program. \n");

return(-1); }

/* Begin system check */

ss_prog("Begin system check");

tmpval=10;

while(tmpval != 0) {

printf(" wait a few second ");

for(i=0;i<10;i++) {printf(".");fflush(stdout);sleep(1);}

printf("\n");

tmpval = system_check(debug_value);

sprintf(prog_msg,"system_check() return status = %d \n",

tmpval);

ss_prog(prog_msg);

if(tmpval < 0) {

ss_prog("Some error occurred.

Fix problem and restart program. \n");

return(-1); }

if((time(NULL) - tp) > TIMEOUT) {

sprintf(prog_msg,

"SYSTEM_CHECK_TIMEOUT of %d seconds passed.\n",TIMEOUT);

ss_prog(prog_msg);

ss_prog("TIMEOUT EXIT: System still not ready

for Main Execution. \n");

return(-1); } }

17

/*****!!!!!!!! Execution !!!!!!!!*****/

ss_prog("Main Execution");

for(lsri=1; lsri<=4; lsri++) {

if(use_laser[lsri] == 1) {

for(mski=0; mski<=seq_mask[lsri]; mski++) {

ss_prog(" ---");

sprintf(prog_msg," main loop for laser#%d

mask’s position = %d", lsri, seq_mpos[lsri][mski]);

ss_prog(prog_msg);

/* pause the run */

if(coda_pause() == 0) {

if(debug_value) ss_prog(" run paused"); }

ELSE_Error("clastrig2");

/* move mask at new position */

step = seq_mpos[lsri][mski] - current_mpos[lsri];

if(step != 0) {

ss_prog(" move mask at new position \n");

if(move_mask_ctrl(chnlN[lsri], step) < 0) {

ss_prog("\n Error: Can not set mask properly \n");

return(-1); } }

/* resume the run */

if(coda_resume() == 0) {

if(debug_value) ss_prog(" run resumed"); }

ELSE_Error("clastrig2");

/* enable laser */

if(TOF_laser_enable(lsri) == 0) {

if(debug_value) {

sprintf(prog_msg," laser#%d enabled", lsri);

ss_prog(prog_msg); } }

ELSE_Error(rocname[lsri]);

18

/* activate filter loop */

for(fltri=1; fltri<=seq_floops[lsri]; fltri++) {

ss_prog(" =============");

sprintf(prog_msg," filter loop#%d \n", fltri);

ss_prog(prog_msg);

if(loop_filter_ctrl(chnlN[lsri]) != 0) {

ss_prog("\n Error: Can not loop filter properly \n");

return(-1); } }

/* disable laser */

if(TOF_laser_disable(lsri) == 0) {

if(debug_value) {

sprintf(prog_msg," laser#%d disabled", lsri);

ss_prog(prog_msg); } }

ELSE_Error(rocname[lsri]);

} /* end of "for(mski=1;mski<=seq_mask[lsri];mski++)" */

} /* end of "if(use_laser[lsri] == 1)" */

} /* end of "for(lsri=1; lsri<=4; lsri++)" */

ss_prog("main execution done \n");

/*****!!!!!!!! Shutdown !!!!!!!!*****/

ss_prog("Begin system shutdown");

tmpval = system_shutdown(debug_value);

sprintf(prog_msg,"system_shutdown() return status = %d \n",

tmpval);

ss_prog(prog_msg);

if(tmpval != 0) {

ss_prog("Some error occurred. Do shutdown manually. \n");

return(-1); }

return(0);

}

19

D UNIX laser.h

/* laser.h - for UNIX */

.....

/* function prototypes */

int command_init ();

int command_execute (char *roc, char *cmd);

char *command_get_result ();

void command_print_result ();

/***** equivalents of VxWorks laser.c *****/

char *output (int laser_number);

char *input (int laser_number);

int gas_ON (int laser_number);

int gas_OFF (int laser_number);

int pwr_ON (int laser_number);

int pwr_OFF (int laser_number);

int TOF_laser_enable (int laser_number);

int TOF_laser_disable (int laser_number);

/***** equivalents of VxWorks motor.c *****/

int open_port (int channel);

int close_port (int channel);

int nullify_motors (int channel);

int set_mask_speed (int channel, int speed);

int set_filter_speed (int channel, int speed);

int get_mask_position (int channel);

int get_filter_position (int channel);

int move_mask (int channel, int step);

int move_mask_ctrl (int channel, int step);

int move_filter (int channel, int step);

int loop_filter (int channel);

int loop_filter_ctrl (int channel);

int init_set (int channel);

int init_ctrl (int channel);

.....

20

E VxWorks laser.h

/* laser.h - for VxWorks */

.....

/* function prototypes */

int writeBuffer (int channel, char *buff);

int readBuffer (int channel, char *buff, int nbytes);

int decodBufferChar (char *str, int ch);

void set_address ();

void hexbin (unsigned short h);

/***** laser.c *****/

char *output (int laser_number);

char *input (int laser_number);

int gas_ON (int laser_number);

int gas_OFF (int laser_number);

int pwr_ON (int laser_number);

int pwr_OFF (int laser_number);

int TOF_laser_enable (int laser_number);

int TOF_laser_disable (int laser_number);

/***** motor.c *****/

int open_port (int channel);

int close_port (int channel);

int nullify_motors (int channel);

int set_mask_speed (int channel, int speed);

int set_filter_speed (int channel, int speed);

int get_mask_position (int channel);

int get_filter_position (int channel);

int move_mask (int channel, int step);

int move_mask_ctrl (int channel, int step);

int move_filter (int channel, int step);

int loop_filter (int channel);

int loop_filter_ctrl (int channel);

int init_set (int channel);

int init_ctrl (int channel);

.....

21

References

[1] K. Kim et al., “Operation of the TOF Laser Calibration System”, CLAS-
NOTE 2001-004, February 22, 2001.

[2] E.S. Smith et.al., “The time-of-flight system for CLAS”, Nucl. Inst. and
Meth. A432, 265 (1999).

[3] Kiho Chu et.al., “Mask Calibration of the TOF Laser System”, CLAS-
NOTE 2003-013, February 12, 2003.

[4] E.S. Smith et.al., “CLAS TOF Online Manual”, CLAS-NOTE 2001-019,
October 29, 2001.

[5] CLAS TOF Group, “Calibration of the CLAS TOF System”, CLAS-
NOTE 1999-011, November 1999.

[6] Vxworks Programmer’s Guide, Wind River Systems, Inc.

22

