CLAS-NOTE 2004-014

"Grid Computing for Physics Environments,"

J. Hone, L. Dennis, P. Eugenio, and G. Riccardi

Florida State University

April 22, 2004

ACKNOWLEDGMENTS

The author wishes to thank Larry Dennis, Mark Ito, Paul Eugenio, Chip Watson,
and Greg Riccardi for substantial assistance and guidance during the completion
of this project. Also, thanks to the thesis committee consisting of Larry, Susan
Blessing, Jorge Piekarewicz, and Dan Schwartz. Last but not least my wife

Meghan as she helped during the entire process.

it

TABLE OF CONTENTS

LIST OF FIGURES ..ottt v
GLOSSARY ottt vi
ABSTRACT .ttt X
Chapter 1: INTRODUCTIONciiiiiiiiticc s 1
Chapter 2: SYSTEM DESIGNcoiiiiiiiitic s 7
Chapter 3: SYSTEM IMPLEMENTATION......coeiiiiininncn e 18
Chapter 4: THE HADRONIC NUCLEAR PHYSICS GSIM SIMULATIONS
CLUSTER at Florida State UNIversitycoovcevevicneinininesiscceseecs s 34
Chapter 5: CONCLUSIONS......oiiieiretrictnie sttt 38
Appendix A: PORTAL INTERFACE HOW-TO....c.ccceniviiririniricnieneeee 42
Appendix B: INSTALLATION AND START-UP.....cccoevviiiinniiiinciiiceiiienns 49
Appendix C: HOW TO DEPLOY AN APPLICATION. .ooocccoooreereeseseeeerssne 52
Appendix D: PROJECT HISTORY .oooocoooeeeesseeessseoessssoessseseesssseesssseessseeee 59
BIOGRAPHICAL SKETCH ..ottt 61

v

LIST OF FIGURES

Number Page
Figure 2.1 Sample grid architecture. 10
Figure 3.1 System Architecture. 19
Figure 5.1 Gridsub. 4
Figure C.1 XML Message Diagram. 53
Figure C.2 Demo XML Deployment file. 55
Figure C.3 Application Schema. 56
Figure C.4 Application Stylesheet. 56
Figure C.5 Batch Schema. 57
Figure C.6 Batch Stylesheet. 58

GLOSSARY

Apache HTTP Server: A very popular, fast, and highly functional open-source

web server hosted by the Apache Software Foundation. It is now included in the
latest versions of Red Hat Linux, and can be used to turn any box with a stable IP
into a web server in several easy steps.

Apache Software Foundation: A host of many open-source projects, including

most of the ones I use in constructing this project. Jetspeed, the Apache HT'TP
Server, and Tomcat are just a few of these projects. Apache is supported by
IBM.

Axis: Apache’s web service server.

DOM: The Document Object Model. This is a way to have an XML document,
entire or fragment, loaded into one object for easy manipulation. DOM is much
slower than its alternative, SAX.

DTD: Short for Data Type Definition, this is one way to specify the structure
and content of a new markup language by declarations of markup elements such
as tags, attributes, and character data.

Grid: A set of connected resources and setvices.

IBM: Supporter of the Apache Software Foundation. Many of its programmers
are involved in Jakarta projects.

Jakarta: A collection of open-source Java projects supported under Apache.
These projects tend to generally support new functionality for web applications.
Java: A platform-independent programming language which is the most popular
in open-source projects because of its focus around object-orientated design. It
achieves platform independence by using its own compiler and runtime execution
machine, meaning that any Java program is compiled to the same machine code
and run with the same environment, limited only by Java version.

Jetspeed: A Jakarta-hosted portal project.

vi

Open-source: Programming projects which are intended to be built by
collaboration of distributed programmers have this name, referring to the fact
that the source code is open to the public. Contributors focus on providing
Application-Programmer Interfaces (API) which ease programmer use of
pluggable open-source pieces in an application’s design.

Portal: A customizable, personalized web application which offers persistent
storage for user data. A common professional example is My Yahoo.

Portlet: The basic unit of content in a portal. Each page in a portal consists of
multiple portlets. For example, a home page may contain an email portlet, a
weather portlet, and a news feed portlet.

SAX: The Simple API for XML, this is a way to process XML by writing code to
parse different XML events, such as encountering the start or end of a tag, or an
attribute. Several layers of filters can be constructed which process the same set
of events in different ways.

SOAP: An acronym meaning Simple Object Access Protocol. SOAP is the
language of web services, describing the messages web services and their clients
pass back and forth to each other.

Sun: The software company which created Java and hosts different
implementations of W3 standards as new open-source projects. Most of its
standard implementations such as the Java API for XML Processing are replaced
by competing Apache projects such as Xerces or Xalan in this application.
Tomcat: A Jakarta-hosted web application container.

Turbine: A Jakarta-hosted web application framework. Turbine is intended to
be a kind of skeleton which allows different web applications to be built around
and on top of its different structures and services.

Velocity: A Jakarta-hosted templating service. A Velocity template contains

markup and references to objects placed in code associated with the template.

The Velocity engine which renders the final markup is in this application
controlled by the portal.

Web Application Container: An engine used to administer multiple web

applications and contain their operation under supervising processes. For
example, the servlet context, logging, and security can all be provided for an
application deployed inside a web application container.

Web Service: A new technology designed to allow complete interoperability
between any service and/or resource an application may need. Complete
interoperability reflects the ability to seamlessly connect deployed services into an
application without knowing the mechanisms of how those services operate. All
a programmer knows is an interface for interacting with and communicating with
the service.

WSDL: The Web Services Description Language. These are XML documents
conforming to the WSDL schema that define web services, from the parameters
they accept to the data they return. They are intended to be parsed by client
programs which can determine from the WSDL content what service the
program will provide, without any foreknowledge about the service itself.

W3: Otherwise known as WWWC, or the World Wide Web Consortium, this is
a group of leading scientists who publish standards for new technologies to
ensure cohestveness among different projects with the same goal. For example,
they create a DOM standard, and projects wishing to implement the DOM, such
as JAXP or Xerces, must adhere to the specifications set forth in the standard.
Xalan: An Apache project focused on XML translation via XSL.

Xerces: An Apache project focused on XML transformation and manipulation
via SAX or DOM.

XML: The eXtensible Markup Language. XML in structure is an abstraction of

markup languages like HTML, and can be used to create other markup languages

Vit

by defining data types and structure via XML Schemas and DTDs. These created
markup languages represent new encodings of data into information.

XML Schema: An XML-oriented way to specify XML structure. This
surpasses DTD functionality in many ways, including allowing character data to
be validated against regular expressions and other data types. Inheritance of data
types is heavily used in this project as well.

XSL: The eXtensible Stylesheet Language. A stylesheet or set of stylesheets
specity rules dictating how to translate input markup to output, be it XML,
HTML, or text.

X

ABSTRACT

Compute grids for physics applications have the potential to solve significant
issues which contribute to low data processing and publication rates. This
potential includes an ability to transparently manage large amounts of data and to
greatly enhance project computing resources. This project proposes construction
of a structured computing grid from the combination of several open-source Java
web application systems, with the main components being the web service server
called Axis and the portal called Jetspeed. This thesis outlines the main
motivations, the system design requirements to answer these motivations, the
details of the system implementation, the underlying technology, and the first
working compute grid application, running at the Hadronic Nuclear Physics
cluster to provide simulation and analysis services to Jetferson Lab (JLAB) Hall B
users. This effort works in conjunction with data grid services provided by the
Storage Resource Manager which allow access to CLAS data on tape at JLAB.
Technical detail on how to install, troubleshoot, upgrade, start up, navigate, and

deploy physics applications to the system is also provided.

Chapter 1

INTRODUCTION

In this paper I discuss a project to implement a highly extensible solution
to use portal technology to provide structure for grid computing. The main
motivation for this is to provide an example of how these technologies can help
meet the needs of the physics community. The physics community is always
striving for improvements in its ability to understand and measure natural
phenomena. Often this requires dramatic increases in data processing rates and
data volume. Experimental and theoretical facilities expand as fast as possible,
taking advantage of advancing technology to increase their raw capability to
collect data. One consequence is that the amount of data the physics community
wants to process has grown monotonically with time, while the number of people
available to process and understand this data remains relatively flat, making
improvements in methods and efficiency necessary conditions for capability
growth.

For example, Thomas Jefferson National Lab' plans an upgrade in
facilities for the beam energy to 12 GeV from 6 GeV. They also plan to build a
fourth experimental hall, Hall D. Current data collection rates are about 130
terabytes per year, while the rates after the expansions are projected to be over a
petabyte per year. In fact, few facilities in the world match the data collection rate
common at Hall B as it stands currently. However, at current data rates the

management of the bulk of the data is problematic. This manifests itself as a low

I www jlab.org

2 http:/ /www.jlab.org/Hall-B/

physics publication rate and/or long periods of time between data acquisition and
publication.

To address this problem, Jetferson Lab added to its existing data storage
system of one tape silo containing 120 tapes at 6GB per tape a second as recently
as the winter of 2001. This second tape silo relieved demand for one year, and
subsequently reached capacity so the lab is now in the same situation as before.
Clearly, when the data not yet analyzed comes in faster than data whose analysis
is finished, accumulation will occur, bogging down the publication process.
Some individual collaborators on an experiment may speed up their part of the
analysis by gaining higher priority on available resources than other collaborators,
as occurs with “fast-tracked” papers or simple batch priority tricks. However,
this does not increase the speed of analysis of the collaboration as a whole until
the total amount of resources is increased. The resulting backlog cannot be
eliminated without more efficient processes.

Jetterson Lab is also moving toward grid use for data replication.
Experiments usually perform such compute-intensive tasks as simulations off-
site, at member university facilities. However, using a grid to replicate Jefferson
Lab data at other sites would allow other major tasks, such as track
reconstruction, analysis, and real-time calibration, to occur with the same ease of
movement and access that would occur on-site at the Lab itself. Grids provide
the tools to coordinate the movement and tracking of multiple gigabytes of
physics data, creating automatic paths to and from major computing facilities.

Grids and portals are the two main tools used in realizing the solutions
discussed here. A grid can be defined as an abstract collection of computing and
data resources whose functionality is accessed by a collection of programs and
packages called web services. A grid is like an abstract batch computing system
where clients sign on to use services already deployed to the grid. They have no
involvement in any other system details, such as cluster membership, security,

data management, logging, accounting, or error handling. Since a grid is meant to

be an abstract gateway to services deployed, published, and hosted at arbitrary
locations, a portal, with its ability to encapsulate a wide array of functionality, is a
natural choice in which to embed a highly extensible grid. A portal can be
defined as an application built for the web which has the ability to hold
customizable, personalized information and content in a persistent, consistent
manner for a community of client users. For example, the portal can easily
remember information such as a history of a user’s last “N” job submissions to
provide a user with a job cache as well as easy resubmission capabilities. The
basic unit of content in a portal is a portlet. Portlets are added to individual pages
within a user’s portal account space and are meant to be easy to customize to
reflect a user’s preferences. Therefore, grid applications deployed as portlets
enjoy the flexibility, extensibility, and added functionality that both new
technologies provide. A more comprehensive treatment of how this combination
satisfies design goals to answer the main project motivations can be found below.

A further motivation was to design a product that fits the application
domain of a physics environment. Physics grid computing needs are among the
most cycle-intensive and data-intensive in the world. The system designed
needed to embody a grid which would be most useful to fit these needs while still
remaining flexible. Two kinds of grid paradigms are available, structured and
unstructured. The difference between the two is that a structured grid uses fixed
destinations or endpoints for services while an unstructured grid uses dynamic
destinations which it will search for at runtime. An example of an unstructured
grid is the SETI@home’ project, hosted by the University of California at
Berkeley. SETI@home is a program which, once downloaded and installed, runs
during idle computer time as a screen saver. While the screen saver is active,
SETI@home will download files of astronomical data from a remote setver and

analyze it with the packages that also come with SETT@home. Finished data is

3 http: / / setiathome.ssl.berkeley.edu/

then sent back to the original server and if possible the process begins again. It is
unstructured since services are performed at arbitrary locations, and any machine
that asks for data 1s given it. A structured grid such as the system described in
this paper knows both client and server beforehand, and our reasons for
choosing this paradigm are included below.

Another way this system fits the needs of the physics community
involves the projected use of the system in practice. While the possibilities are
endless, two separate ways are discussed here, which focus on the traits that make
a physics environment distinct from others in which grids may be employed. The
first deals with the fashion in which the system will be used by clients.

There remains the most relevant technological distinction for physics
community grids: that the need for specificity in grid computing applications is so
high that the usual grid model of searching for a service to provide needed data 1s
insufficient. This is in sharp contrast to the envisioned business application of
searching for the best price on a given service. The following three examples set
the general pattern. In one case, grid applications would be deployed
corresponding to theoretical or phenomenological models. Someone wishing to
run these models may subscribe to a specific portal for this purpose. The second
example applies to collaborating scientists who need to run packages or programs
installed outside of their normal working group resources, such as at different
labs or universities. A third example involves the use of roles in the system. A
portal makes use of roles in defining the members of its community, and this
built-in feature eases the job of defining clear distinctions between and among
physicists and computer scientist grid administrators. It is given that as much of
the maintenance and use of new technology as possible should be delegated to
grid administrators, while physicists spend as much time as possible developing
new physics.

The second way that this is an appropriate solution for the physics

community concerns the resources the grid computing environment consumes.

The batch farm 1s the most popular and most capable resource unit in solving
physics data processing problems today. Physics 1s a field where batch
computing is a necessity in many fields, and so our system should and does
encourage an optimized use of these resources. Our premise is that as grid
computing centers develop, they will employ batch systems that focus on
providing one type of job, so that each system can be customized to perform its
task efficiently. It is unlikely that a batch system which handles every type of job
will be most efficient, so examples such as the following will be most prevalent.
For instance, there could be a simulations cluster at FSU, an analysis cluster at
JLab, and a calibrations cluster at Old Dominion, as opposed to each of the three
centers doing all three jobs. This would improve performance by allowing
hardware and scheduling schemes to be customized for the jobs at the different
sites. Also addressed is the bandwidth problem involved in transporting
hundreds of gigabytes of data, which becomes easier to solve by pre-staging the
transfer, so that as one large job is running, another is loading. Then, efficient
scheduling becomes a tractable problem, fewer cycles are wasted, efficiency
improves, and costs go down.

The following list contains design goals to direct this project to address
the motivations already presented.

* The system should reflect a structured grid computing solution in as
transparent a manner as possible. Physicists should not have to study a
large amount of new technology to use, build, or extend the system.

* The system should allow the appropriate level of modularized control of
security and resource utilization. For example, every grid application
should be able to be deployed by a physicist but managed by an
administrator. Additionally, rules for cluster use should be determined by
the cluster owners. Here, deployment refers to the creation of the
necessary files which fully describe the application and any interaction

with it using the expertise of the physicist and any other interested parties.

The grid administrator can work with the physicist to publish the
application in the portal, shifting publication management duties and
issues to the realm of the grid administrator.

* The system should be highly extensible and flexible. Future
improvements should have a mechanism to easily plug into the existing
system, and as many kinds of grid applications should be available as
possible.

" The system should provide a physicist deployer with full control over the
application deployed. The application’s user interaction, documentation,
interface, and data validity should be specified as far as possible with as
many options as possible by the deployer.

* The system should be useful to the physics community outside of its use
for grid computing.

This thesis has eight more sections. In the next section I will discuss
system design requirements and the solutions employed in generic and technical
detail, followed by a chapter on system implementation. A specific physics
application using the completed system is then discussed, which is a particular
implementation of this technology to create a simulations, post-processing, and
analysis service available to members of the portal. Jefferson Iab (JLAB) users
will be able to move data to and from this cluster at Florida State University
(FSU) for the purpose of running GSIM jobs just using the capabilities provided
by the portal. A conclusion provides results and how well the project
motivations are answered. Four appendices then document how to install and
run the system; how to navigate around the portal; how to deploy an application,
including examples of the various necessary files for different situations; and a

project timeline.

Chapter 2

SYSTEM DESIGN

Introduction: In this chapter I first discuss the system design requirements
which served as guidelines for the development of this project. Following that, a
detailed explanation of each requirement is given. Many new technological ideas
are employed by different projects which are incorporated into this system.
Therefore, an introduction of these new ideas and the implementing technology
used to meet these requirements is made, with direction on how the ideas and
technology are used to fulfill the design requirements. These sections are called
Grids and Portals, XML, Web Services, and Templates.

Requirements: These design requirements were intended to implement the
design goals discussed in the Introduction in order to achieve answers to the
main motivations for this project. Each item in the list is described in
comprehensive detail below.

* FEducational without loss of professional advantage.

" Flexibility to work with a broad range of applications while supporting
the same level of control and specification of interaction, as well as
extensibility to ease entry of new applications and upgrades to new
verstons of old applications.

" Self-documentation to reduce physicist documentation workload and
increase deployed application lifetime.

* Short system-use learning curve.

* C(Clear separation and appropriate delegation of system responsibilities.
The first requirement demands a system which can, depending on the

role and sophistication of the user, be as verbose as necessary or as sleek and

solely utilitarian as the user can handle. Some physics applications have very high

learning curves. While a particular interface to an application may be easy to
learn, understanding the physics the application is employing and using the
application to produce contributions to research work is the more difficult task in
most cases. The expertise a physicist must have to use an application effectively
depends on whether he is using the application, extending it, or developing it.
The intention was to provide for personal expert assistance, enabling the system
to serve as an educational tool when that functionality is called for and to simply
perform a job without any extra trappings when it is not.

The ability to determine role and sophistication of a user by an HTML
client is just one feature among many, such as security, session management,
logging, and other aspects of web application infrastructure, which can be
provided by existing open-source systems. It was clear from the beginning that it
was essential to build this system on the work of others, so that web application
specialists could contribute in their area of expertise to enhance the base system
while physics customization remained the main focus of the work. This required
an extensive search of existing technology to find the appropriate software
platform. Factors such as the robustness of features this system provided, the
community support among users and developers of the system, the future
direction and motivations of the developers of the system, and the difficulties
assoctated with any barriers in beginning use of the featured system were
considered.

High flexibility involved searching for a method to simply deploy wide
ranges of applications. This required searching for a solution in describing
physics applications which would be able to cover the broad spectrum used in
compute-intensive research. This must combine with the requirement for a low
system learning curve since a greater level of flexibility usually means more
options for the system user and can require a more complicated mechanism for
system use. Also required was a system with low barriers to the integration of

new technology to upgrade or initialize system functionality. In one sense this

applies to the work of the application deployer, who should have a quick, clear
means to convey upgrades in functionality in the application they deployed. In
another sense, this means that upgrades to the system’s component technologies
should be as easy to introduce as possible, since patching a system is not always
transparent and since new functionality will be desired over the lifetime of the
system.

Self-documentation is important for this system partly because of the
central role that graduate students play in the maintenance and advancement of
physics technology. These students are dedicated but transitory, so that their
systems, applications, and code must be able to be maintained after they have
moved on to other work. Physics as a field in general has a problem with lack of
documentation and other utilities concerning software used in research which
makes reusing, expanding, or patching old code more difficult than necessary.

A short system-use learning curve ensures that the system can be taught
to physics contributors without the need to introduce most of the new
technology employed. Web service technology is still developing, and can be
quite complicated, especially to scientists outside of the computer science
research field. A broad range of integrated technologies is required to create a
viable grid application, and so it is conceivable that a community of physics users
could be disinclined to work with grid solutions as long as other solutions to the
common heavy computing requirements were available. If possible, a system that
requires no code to be written by any application deployer would provide the
lowest barriers to entry of a particular compute grid application into the grid. A
low learning curve would also encourage more rapid development of compute
grid applications and help to create and deploy systems of immediate impact and

use to the physics

community.

Fesource Centers:

Grid Architecture:

JLab

Figure 2.1 Sample grid architecture.

The last requirement for clear separation and delegation of
responsibilities asks that every agent’s role in deploying an application to the grid
be well defined. More than one person should be able to fill a role at one time.
This emphasizes the community nature of creating a compute grid, since multiple
interested parties may want to be involved in every step of the process. This also
requires defining a sensible process for describing, deploying, and publishing
physics applications to the grid which takes these considerations into account.
Grids and Portals: To fulfill the requirements in this list, we sought to rely
solely on open-source Java,'! XMI’, Web Service’, and web application
technology since it can be redistributed at no cost, it is widely available, and
enjoys a high rate of advancement in functionality over time from the open-

source community.

4 http:/ /java.sun.com
5 http:/ /www.w3.org/ XML/
6 http:/ /www.w3.org/2002/ws/

10

Grid and portal interaction is the basis for much of this functionality. A
grid can be defined as a collection of services which can satisty a client’s request
for one or more of those services without a client having knowledge of the
deployment of the service. Servlets, which also provide remote service
performance, require links in client and servlet code which generally increase in
complexity as functionality increases. Grids are a way for a service provider to
publish a service and a client to consume the service without prior collaboration
between the two.

A portal is a customizable personalized web application that remembers
private data about each individual user, maintaining persistent, consistent sessions
of member use. Portals are HITML clients based usually on servlets and are
becoming increasingly popular among e-businesses as ways to more closely
connect with their community of customers. A portal’s unique interface lowers
our system’s learning curve significantly, and we receive the added benefit that
many portal systems have low barriers for the entry of new technology to provide
new functionality. Moreover, a portal can naturally proffer such member traits as
user role or group to portlet applications, which enhances our capability to
separate and delegate system responsibilities. The two applications, grids and
portals, can combine to provide an environment for different grid services to
have access to a wide array of useful portal tools and personal user information.
So, the portal provides a toolkit to encapsulate grid functionality for higher user
or client accessibility. For instance, no grid naturally logs its activities or errors
and no grid naturally provides highly useful interfaces for its specific services. A
grid is simply a network of connected resources and services. The contention
here 1s that other web applications which are created to specialize in other tasks
can and should be integrated with grids.

XML: XML 1s the eXtensible Markup Language, and it is a meta-markup
language that is used to define new markup languages which encode and convey

information. XML documents are determined to be valid and well-formed by

11

restrictions placed in files called Document Type Definition” documents (DTDs)
or XML, Schema® documents. Fither kind can define the rules for content
appearing in an XML document. DTDs specity the allowed order, name, and
structure of elements, attributes, and other nodes of XML content. Schemas go
one step further by allowing a user to restrict the type of character data that is
contained in the XML document by checking the content against regular
expressions and some basic built-in types. Schemas also allow inheritance, so that
types of data structures can be defined from combinations of other basic types.
X8I (eXtensible Stylesheet Language) stylesheets define the translation of XML
documents into other documents, such as XML, HIMIL, or even plain text,
through stylesheet rules contained in XSL documents.

Existing XML technologies provide the foundation for satisfying almost
all of the design requirements. The first requirement under consideration is
flexibility and extensibility. XML structures can be defined by anyone, and so this
freedom to create complete structured languages and to design numerous ways to
translate them provides our grid computing system with tools to deploy any
physics application to the web that can be described by any sort of language
which XML can encode. Closely following this is self-documentation. XML can
define custom languages in a highly self-describing manner, and it gives physics
applications described in this way a layer of natural documentation, so that
someone reading XML documents can by the text in the markup and structure of
elements and attributes gain as much information as the application deployer is
willing to provide. Also, using XML languages to describe physics applications
can mean that physicists do not need to be conversant with the numerous
technologies which can provide web service and grid functionality. They only

need to know one of the ways to create and edit XML documents. Writing what

7 http:/ /www.w3.org/ TR/REC-xml
& http:/ /www.w3.org/XML/Schema
? http: / /www.w3.org/ Style/XSL/

12

amounts to validated configuration files as opposed to writing, compiling, and
integrating code shortens the learning curve significantly. Finally, the division of
XML technology into instance document, schema, and stylesheet provides a
ready means of dividing system responsibilities. The identities of each of these
types of documents are already well-defined by the XML community, and so each
document’s role in an XML information system is well established, accepted, and
supported. One advantage which comes from this is the development of XML,
XSL, and Schema editors which can ease the task of knowing three new
languages and speed up application deployment. This system only assigns to each
document type a job as a step in the process of creating and using the physics
grid and its applications.

Web Services: A web service is the basic tool used to provide functionality to
grids, and SOAP" is the XML language that these web services use in messages
to each other. Web service is the name for the technology which aims to supply
complete interoperability between any services provided by applications
accessible over the web. Web services can be described by XML documents
written in an XML language called the Web Service Description Language''
(WSDL) for the purpose of dynamic service location and invocation. The Simple
Object Access Protocol, or SOAP, is itself an XML language designed to hold
information passed to and from web services and clients. A SOAP message
consists of a SOAP Header, Body, and any Attachments inside an enclosing
SOAP Envelope. The Header contains XML element children known as Header
Blocks. Each Header Block represents an intermediate destination for the
message as it travels to its ultimate destination, and the XML inside each Header
Block must be understood by any intermediate destination for which the Header
Block is targeted. A similar requirement exists for the Body Blocks of the SOAP

Body, except only at the ultimate destination. If any destination does not

10 http:/ /www.w3.org/2000/xp/ Group/

13

understand the XML in any Block targeted for it, or any other type of error, such
as transport, occurs, a SOAP Fault block is added to the SOAP Body and the
message 1s returned to the client. SOAP Attachments are usually large blocks of
data, such as image data, which is simply transferred as is and is not combined
with the SOAP XML Envelope. Our main SOAP tool is the Apache-supported
web service server called Axis'’. A web service server is a server application
servicing clients which call asking for access to locally deployed web services.
Requests are routed to invoke the appropriate service and responses are returned
to the client containing the resulting information. Axis is the most complete web
service server, supporting all of the above SOAP functionality and including
many other useful features, such as a web client for remote deployment and
management of web services.

Axis supports both structured and unstructured grid applications, but we
chose a structured grid for reasons based on a cost-benefit analysis of the
advantages and disadvantages of each. An unstructured grid has the advantage of
tremendous flexibility and potentially unlimited resources which arise from the
open-ended service provider inherent in its design. An unstructured grid can
plug into as many resource sites which normal technological limits such as
bandwidth allow. However, the disadvantages are that the grid’s benefactors
cannot always trust the information that is returned, due to the anonymous
nature of the information generators, and also that jobs are not available on
demand. In an unstructured grid, scheduling and timetables for the benefit of the
client are not available. A structured grid answers the concerns of the
unstructured grid without giving up much flexibility. In particular, this structured
grid utilizes endpoints for services which are fully deployed and maintained by
professional members of the physics community. This allows specialization in

tools for both clients and servers. Client utilities can include rough estimates on

11 http:/ /www.w3.org/ 2002/ ws/desc/

14

completion of services and guarantees of authenticity and security of the service
information. Server utilities can include specialization of resource sites to specific
services for better efficiency and more optimized scheduling. All are examples of
the advantages provided by a structured grid. Security is an especially important
consideration since the resources a physics grid can provide are likely to include
very expensive clusters of grant-funded computers and data management
systems.

This system does not make use of WSDLs for any purpose, due to the
particular nature of the physics community in which the system will be deployed.
Our main reason is that the WSDL features of dynamic location and invocation
of services are not desirable in this context. The contract a web service provides
via its WSDL document concerning performance of its service consists of a
method name, a parameter list, and any XML documentation the WSDL can
contain. It is unlikely that these features can be sufficient to describe the many
facets of a physics application, especially since the scale the two systems were
meant to address is completely different. Web services were meant to provide
small pluggable pieces which together combine to create an application, with the
links between functionality provided by WSDLs. This achieves the main goal of
web services, complete and full interoperability between applications and
functionality in clients and servers across the web. However, physics applications
are often several-million-line programs, usually with features provided in multiple
programming languages in patches and extensions that are intended to be a
conglomerate of functionality. Therefore, describing one in terms of the other is
inappropriate.

With this system, we simply take advantage of the fact that the large
physics applications must have some method for user interaction, and use a grid

computing environment as a uniform way to encode and describe this interaction.

12 http: / / xml.apache.org/ axis/

15

While one can imagine a sequence of such applications (web services) the
practicalities of bandwidth limitations generally do not encourage the random
transmission of large data files from one service to another.

Templates: Another new area of technological enhancement employed in this
system is templating using the Velocity” template engine. A template engine
creates applications by the combination of two files: pseudo-HTML templates
and Action classes. The templates contain HI'ML laced with names representing
objects. These names will refer to actual objects, so method calls and data
members can be inserted which adhere to Java syntax. The Action class contains
code with many pieces which are conditionally executed depending on the state
of the application. This code inserts objects into an intermediate staging area,
where the engine matches objects identified by names given in the Action class
with object names appearing in the template. Once the objects are matched by
name to their template references, object methods and data members can be
resolved and executed in order to deposit relevant information into the text of
the resulting HTML.

One large advantage of a template engine system for web application
design is that this technology utilizes the Model-View-Controller (MVC) design
paradigm. MVC is a way to combine results from the different jobs in web
development, allowing programmers to solely write code while interface designers
solely write HTML and Javascript. This makes application development easier by
enabling a complete separation of these responsibilities and lowering the need for
developer interaction with domains out of their main specialty. Our choice of
Velocity over other main templating engines such as Java Servlet Pages™ (JSPs)

developed by Sun®® or PHP' reflects Velocity’s low learning curve, high portal

13 http:/ /jakarta.apache.org/ velocity/
14 http:/ /java.sun.com/products/jsp/
15 http:/ /www.sun.com/

16 http:/ /www.php.net/

16

and developer community support, excellent MVC realization, and continuing
open-source development.

An example of how templates can be used to meet some of the design
requirements is contained in the following. In most template systems, different
templates can be designed for the same application based on a user’s level of
expertise. One template for beginners could be very verbose in its explanation of
the application, while another template, for experts, can be terse and streamlined
for fast and easy submission. The two can even be combined in one template. In
this case, role information provided by the portal can be interpreted by Velocity
and the template engine filters the template and renders the appropriate content.
Other examples arise when different code needs to be executed depending on
certain parameters like user role. The expert may wish to monitor the progress of
each beginner, but the template may stay the same for users in both roles. Yet
each role needs different programs to execute, one which monitors the beginner
and one that does not, since the expert has no need to be watched. In each case,
portlet configuration and other information can match one template to one
program, so that the appropriate matches, and hence the appropriate functionality
and data, can naturally serve situations with very different user needs and results.
In this way the portal can be educational without loss of professional advantages
such as quick submission in a page not cluttered with lengthy descriptions,

images, and other such documentation aids.

17

Chapter 3

SYSTEM IMPLEMENTATION

Introduction: This chapter gives details on the implementation of the system
design into a running compute grid hosted by a portal. It begins with an
overview of the system implementation and then describes the features the
system supports. Component technologies of which the system is comprised are
described in each section detailing the feature they support, and the reasons for
selecting the technologies along with their features and advantages are presented.
The system features described include Job Submission, Job Monitoring,
Workflow, and Job History.
Overview: The Apache Software Foundation'” is the source of support for most
of the open source component projects which make up this system. The
particular category they are developed under is called the Jakarta Project'®, which
produces systems aimed at resolving the various concerns and responsibilities
assoctated with creating and maintaining server-side applications which support e-
business on the web. Integrating many Jakarta subprojects together can provide a
powerful application with broad functionality, and our system attempted to
implement such a solution.

The system macroscopically consists of a Jetspeed'” portal running inside
a Tomcat™ web application container which plugs in to the Apache web server’.

The Tomcat web application container hooks into the more familiar Apache

17 http: / /www.apache.org/

18 http: / /jakarta.apache.org/

19 http:/ /jakarta.apache.org/jetspeed/
20 http:/ /jakarta.apache.org/tomcat/
21 http:/ /httpd.apache.org/

18

HTTP web server via a module called mod_webapp.so. This module, once
deployed to Apache’s code library, allows a connection to be created in the
Apache HTTP web server’s configuration file between the web server and the
web application container. Pseudo-addresses are then created for web
applications residing in the web application container, allowing a unique name
and address to be assigned to applications deployed to each web application
container. Once the Apache HTTP web server 1s running, it will try to connect
to the web application container when it needs to service HI'TP requests of
pages from the paths of the deployed applications by connecting to the Tomcat
web application container. The Tomcat engine is configured to serve requests on
a specific port only through Apache connections, and provides several highly
reliable container-level utilities, including session management, logical security,
logging, page and servlet caching, and remote application management.

Lrid Deployment
Deplayer;
Violidates Locates

XML XML XML
Schema Cocument Stylesheet

Locaotes Translotes

| Configures, when combined with Axis
servel gddress and service ndme

Fublishear: Portal ﬂ‘A_'Lﬂlje
Torncat Portlet[:| I ——

L

S0AR M ing:
AP ESSGQ'”Q }\\?OAP Request
SEPRkES mod_webapp.so

Tomcat I Apache
Server:

Web
Service Executable

Script
Creates, Submits, Destroys

Axiz Web Service Server

Figure 3.1 System Architecture.

19

Jetspeed 1s based on a general web application framework called
Turbine™. Turbine is intended to be a skeleton which allows developers to easily
build custom applications around the existing base infrastructure, while providing
some unique advantages to the created application itself. Turbine fully employs
the concept of pluggable services, in order to separate different jobs required in a
web application and allocate those jobs to specific services only by configuration.
A pluggable service is a service provided to a web application which 1s used
without knowing what code will provide the service at compile time, so that
multiple services can be plugged in to the application to fill the role. One
common illustration occurs since Turbine recognizes the need for most
applications to have a logging service, but does not provide any code to do that
job. It merely provides a placeholder class for the logging service throughout its
main code. Whenever the logging service is required during runtime execution of
the application, Turbine checks its configuration to see if an appropriate
application has been deployed to perform logging duties. If so, then the
placeholder class is replaced by the plugged class by the runtime environment.
The default logger in most cases is supplied by Log4]”, the Jakarta Logging for
Java project, but an application could use its own logger. In this case Turbine
would search through the application’s configuration files and replace all class
names and parameters appropriate for the default, Log4], with custom values.
This concept i1s employed below in one of the batch monitoring tools which
utilizes a Turbine service to filter an XML description of jobs running on a batch
queue. Information is filtered by a search string and the results are displayed via a
Velocity template and action class combination. Velocity 1s also plugged into
Jetspeed as a template service, but it is not the only one available in Jetspeed. JSP
is also available as a templating service, and both are plugged and called as 1s

appropriate.

22 http:/ /jakarta.apache.org/turbine/

20

The Jetspeed portal itself has many unique features. It allows a user to
create many portal pages, and to select which portlets appear on their pages. It
also presents several layouts, such as two or three column, for the user to choose
from to arrange their portlets. Appendix B discusses the interface which enables
this functionality and how a new user may navigate it to start using these features.
A user may also select multiple color schemes, or skins, from among those
available to apply to individual portlets or whole pages. All this information s
stored in the portal as a set of files for each user in an XML language called Portal
Storage Markup Language (PSML). Alternatively, PSML data for each user can
be stored in a database instead of directly on the file system. PSML files provide
transparent persistent storage of the user’s customized skin, content, and layout
information, as well as all portlet parameter values. Security is maintained in the
portal by helpful administrator level portlets. One portlet lists all current and
potential portal members and allows an administrator to alter security roles and
groups for any individual, as well as approve or deny membership or place an
account on probation. From this area one can also create new security roles and
groups as well as search for particular users based on simple strings or regular
expressions. Fach portlet has associated with it certain permissions, such as the
permission to maximize, minimize, customize, close, or simply view. Permissions
for specific portlets become attached to roles so that a role may grant a particular
permission on a certain portlet but not grant that permission globally to all
portlets. Other administration level portlets survey the status of the portal and
monitor such system information as the current Java runtime or anything flagged
by either the Bad URL Manager daemon, the disk cache daemon, or the XML
feed daemon.

Job Submission: To a regular portal user, the job submission portlet appears to

be only an application description followed by a table containing batch and

23 http:/ /jakarta.apache.org/log4j/docs /index html

21

application parameter names, descriptions, examples, and empty boxes for the
values. Pushing the submit button at the bottom will submit the job, returning a
success message at the top of the portlet if the job is successfully submitted. This
information is all that a user who only wants to run jobs will ever need to know.
However, there are other layers to this portlet, and those who wish to take
advantage of other features like creating new grid applications will need to know a
little more.

Portlet instances of the job submission portlet deployed to the Jetspeed
portal contain distributed grid services which have been cast as job submission
services by XML, XSI., and XML Schema files which are authored by the
deployers of the application. The job requests are submitted by constructing a
SOAP message and sending it to a web service running inside an Axis web
service server. This web service then translates the Body Elements of the SOAP
message into a batch submission script via the XSL stylesheets whose addresses
are specified in the SOAP message. So, a many-to-many relationship is
constructed. One portal can send messages to many Axis servers running at
different resource sites, and one server can receive requests from many client job-
requesting portals. Once a user has been given a portal account, he can use the
job submission feature by adding a job submission portlet to one of his pages.

This mode of conveying information means that the web service uses
SOAP messaging for its main communication. One key decision to achieve a
highly extensible structured grid was to employ a generic web service which is
customized by the SOAP messages it receives. For example, our job submission
service builds a script based on a transformation of the content of the input
SOAP message, but since the service is merely translating the message, nothing
specific to any particular grid application is required beyond the restrictions of
XML input form found in Appendix C. In particular no extra code is required,
since standard XML and web service tools provide all of the required

functionality. The application and batch system are described by the SOAP

22

message, and this description is translated by the web service according to
information given in the SOAP message.

This allows a physicist to deploy an application to a grid simply by the
following three steps:

U First, write an XML instance document describing the interaction a user
should have with the application and conforming to the rules of all
relevant Schemas, both system-specific and custom.

U Second, write a Schema for the dual purpose of validating the structure of
the XML message and the form of the data. A logical level of security is
then naturally enforced by the Xerces® validator and is combined with
any wire security in place at the HTTP server or web application
container level.

[Third, write an XSL stylesheet to transform the message to its final form.
This way, the application deployer does not have to learn or write any web service
or other code, but simply writes these files which amount to XML configuration
files.

Once the portal and web service servers are successfully installed, it then
becomes the portal administrator’s job to publish and maintain these applications
for the users via configuration of new portlets, thus creating a clear definition and
separation of roles between an application publisher and an application deployer.
However, other layers beyond this are possible and even desirable. One
application that shall be discussed in more detail later is the deployment of a
GEANT® simulations cluster via this portal. This system used XSLT to
transform the input XML messages into Perl scripts that enforce certain rules
specific to the example without any alteration of the system’s code. Assuming the

SOAP Request to the web service, whose address and method are found from

24 http:/ /xml.apache.org/ xerces2-j/

25 http:/ /wwwasd.web.cern.ch/ wwwasd/geant/

23

portlet configuration, is completed successfully, the web service will extract the
XML document from the SOAP Body and attempt to translate the different parts
of the message into a job submission script according to XSL stylesheets. These
stylesheets are web-accessible documents found at URLs specified by
information within the instance XML document. The translation engine is the
open-source Apache project Xalan®, chosen because of its excellent W3 standard
implementation and useful API. It provides all of the required functionality.

To determine what form the interface will take within the portlet, the
portlet will first read an XML document whose location is specified in the portlet
configuration. To create the required XML document, the application deployer
must first decide what information is necessary to run the application or batch
system being deployed. Once the structure of the information has been decided,
the deployers will add to the XML document markup belonging to namespaces
created as part of this project. This will give the portal cues on how to use the
information structure contained in the instance document to create interaction
between the deployed application and the end user. The portlet’s associated
Velocity Action class will parse the XML input document using Xerces and
return enough information to the template engine to create the HTML
interaction interface. This template is intended to serve as a genetic job
submission template and convey any job submission request by reflecting as
many application and batch structures as possible. Also in this interface, examples
and documentation can be removed by customization to save space on the
screen. Once the submission has been completed with no errors, a success
statement appears and the grid computer can check any job monitoring portlets
for status of the newly submitted job.

The input XML document provides many features to the application

deployer. After deciding the unique structure of the information to be conveyed,

26 http://xml.apache.org/xalan-j/

24

use can be made of the markup from the portal-specific namespaces to tell which
tags contain parameters to display in the portlet. Once this determination has
been completed, the portlet will look for documentation for each parameter
contained in markup from an interaction namespace. Then the portal will look
for any child tags which are marked to be values that it should provide to the
interface. It will also support parameters appearing inside other parameters, so
that logical hierarchies can be created. While the use of the documentation
feature may be straightforward, the others may require further illustration. An
application deployer can use this feature to tell a client portal which application
and batch parameters a user should have access to and which they should not.
One example of this use is a set of batch parameters that describe the Portable
Batch System, or PBS. It might be reasonable that the person who deploys a
certain batch system to the compute grid may want to restrict the parameters that
a job submitter may set. The batch deployer may want to disallow the ability to
set the parameters associated with error and output streams, since a grid user
would probably not be a member on the computing cluster who could gather any
information from those streams. Instead the batch deployer wants to set the PBS
parameters to direct all error and output streams to an email address provided by
the user, so they markup their XML instance document to disallow interactivity
with certain parameters and simply provide appropriate defaults instead. These
defaults will automatically be conveyed to the web service since no interactivity
with those parameters has been approved by the deployer. In this way, certain
rules can be set and enforced, and further examples appear in our own grid
computing center description in Chapter 4.

This input document will also point to fully valid schemas to validate its
structure and element content. Upon submission of the job from the portlet, the
portlet will first validate the XML which it is about to send out to the web
service. If the character data added to the elements is invalid according to the

rules created by the grid application deployer in the Schemas, the request to

25

submit the job will not be made and the user will be informed of his error as far
as possible. If everything s valid, then the input XML document is loaded with
the values given from the input parameters and appended as one large SOAP
Body Element to an outgoing SOAP Request. This feature also helps to provide
logical security as well as natural error recovery for such situations as
“parameter=value | rm *”. Thus, the features provided to the application
deployers by use of Schemas include not only the ability to create well-defined,
self-policing, and self-documenting structures and layers of structures, but also
inheritance hierarchies for types of data and restrictions on the character data as
well according to regular expressions and other built-in basic data types. Reuse of
popular data types through invocation of data type libraries could potentially
become quite common as well.

Third, stylesheets are created by the application deployers which
represent the final layer of control that this system allows a deployer to have over
his application. This level of control, even more so than the other layers, allows
the stylesheets that application deployers write to reflect the composite work of
multiple interested parties. The stylesheets determine how the XML layers which
the deployers created become job submission scripts. A good example which will
be demonstrated later in Chapter 4 occurs when the first layer is only a logical
ordering of input information created by the scientist who deploys the
application. Further layers can be added around this logical translation to enforce
certain resource system rules which reflect site-specific policies on accounting or
security. This example explicitly shows how this method grants the opportunity
to use the stylesheets like configuration files for different systems. In another
example, a stylesheet describing PBS parameters can have ditferent values from
site to site, system to system, in its rule for processing a node that describes the
location of the error stream. So, different stylesheets can describe the same
markup but contain site-specific information as the input XML is parsed. The

system allows for this generality by transforming input according to the URL

26

passed in the input itself. The web service simply recognizes XML attributes
placed in certain tags in layers created as part of this project, all described in
Appendix C.

Job Monitoring: Three different kinds of portlets have been created as part of
this project to facilitate monitoring of jobs submitted from the job submission
portlet. Two of these portlets are XSL portlets, which read an input XML
document and transform it according to XSL stylesheets into readable HTML.
The third is a Velocity portlet which uses a Turbine service to search for specific
strings within user names on running jobs to provide a report on a certain user’s
current activities. All three portlets are dependent on reading XML streams
produced by the batch monitoring system called JPortal”. JPortal was developed
at JLab and can be installed on a machine running a PBS server to produce
output XML streams available over HI'TP. JPortal provides details on the
activities occurring within the batch system. Once JPortal is correctly installed
and running, the three portlets can be configured to read in the XML documents
that JPortal publishes on the web and then display results which inform job
submitters of the status of their jobs on the system where they are running;

The first of these portlets is an XSL portlet which reads the XML stream
and uses a stylesheet to create a graphic which depicts the capacity of each PBS
server. An HTML table is created by the stylesheet containing one column and
several rows. The first row displays the name of the server. The second contains
a number showing the percentage of the available nodes in the server which are

occupied, according to an XPath®

calculation done in the stylesheet. The next
two rows hold different images which are stretched based on the percentages, so
that the result looks like a status bar, with parts of the bar appearing full or empty
depending on the batch server’s state. The last row holds the date and time

which the XML that provided all this information was generated.

27 http:/ /www.jlab.org/hpc/ ClusterInACan/index.html

27

The second XSL portlet operates much like the first. While the first was
a way to determine at a glance the availability of a batch server to accept jobs, the
second is a way for a batch administrator to determine at a glance if the PBS
server 1is reporting any nodes as down, offline, or unknown. The stylesheet
transforms the same XML stream into an HITML table titled after the name of
the batch server. The table has two columns containing the node name and its
state.

The third portlet creates a table of jobs owned by a user whose name has
a string matching a search value submitted by the user. Technically, this portlet
uses Velocity to combine an Action class and a template. The Action class
invokes the Turbine Job Report Service I created to filter the XML looking for
the search string and create matching Job objects which are returned to the
template engine. The information in the Job objects is then inserted into a
HTML table which displays the job name, owner, state, and PBS server ID. Due
to the flexibility of the search, this portlet can provide information on any job
owner, not just the portal uset’s jobs.

These portlets are simple for a portal administrator to create and also for
a user to customize within the portal. Recall that a portlet is created by adding an
entry to an XML registry of portlets in a portal configuration file, most
commonly %]JetspeedRoot%/WEB-INF/conf/local-portlets.xreg. After a valid
portlet entry is added, users can see the new portlet and add it to their pages
within their own portal accounts. Most portlets can be created by following the
patterns of other portlets in the same category. For example, XSL portlets are all
configured as child portlets of a generic parent XSL portlet whose configuration
details the class the portal should use when building any child portlets. The
generic definition of an XSL portlet and other types of portlets can be found in
%]JetspeedRoot%/WEB-INF/conf/portets.xreg. Jetspeed configuration of XSL

28 http://www.w3.org/ TR/ xpath.html

28

portlets requires several parameters to be set, some specific to this type and some
not.

Every portlet needs a parent and a unique name, as well as other
attributes and elements that need not have any value at all, such as a URL tag, a
media-type tag or a category tag. In many cases the portal will provide suitable
defaults, and in others no default is necessary. For instance, only one item
specific to the XSL portlet, the stylesheet, needs to be provided. The value given
can be a relative path or a URL to a stylesheet. The URL tag is used to point to
the XML document which the portlet should transform, and its value can be an
absolute URL or a relative path in the file system on which the portal is deployed.

Once created, a user can customize any of the portlet’s parameters to
which their portal roles allow access, since security restrictions based on role or
even user name can be placed on any parameter in a portlet’s configuration.
Also, any documentation that the portlet creator wishes to place at a portlet or
parameter level will be available in most customize templates.

The third portlet can be created as a child of the CustomizerVelocity
type, which offers three parameters to be customized. The first two are common
to any child of the CustomizerVelocity type, and those are the Action class name
and the template name. An additional parameter has been added to this type for
this particular class so that the default search string will never be null. Anyone
can add parameters to a portlet configuration, and in this case that ability was
very helpful since it gave the Action class direct access to persistent storage and
easy, transparent retrieval of the search string. There are currently no options for
the user to customize this portlet since the portlet is quite one-dimensional, and a
user cannot be expected to provide valid values for a parameter like a path to a
template or a new Action class name.

Workflow: The concept of workflow is important when one is faced with the
problem of constructing a grid. For the physics domain, this idea’s

implementation should prove central in the future’s most advanced grid

29

applications. Workflow is the idea that steps in a work process, designed to
accomplish some job which normally relies on human input, can be codified so
that a machine can understand subsequent steps and take appropriate action
accordingly. For physicists, this has a few important examples. The first is in the
area of calibrations. Typically, a few percent of the experimental data are
analyzed to calibrate the conditions of the experiment. However, these
procedures are almost completely uniform in that they happen the same way each
time there is data to be analyzed for a particular experimental setup. One
workflow example would automatically perform these steps and present the
results to an appropriate expert, who could approve or disapprove of the results,
and then automatically initiate either recalibration or a massive analysis of the
acceptably calibrated data. One suggestion even proposes to take data as it comes
off the detector wires and send it directly to a calibration process and eventually
on to the reconstruction analysis process. This idea of using the physicist to
monitor the computing without having to initiate the computing is not new, but
as data volumes grow is must become more pervasive. The benefits of correct
implementation of workflow would lower significantly the burden of managing
the ever increasing data volume to its analyzers for every step which can be
handed to a workflow manager, and give scientists more time to do science.

A second example arises for a much more general case. As has already
been stated, one contention of ours is that different sites will specialize in
different types of jobs. So, simulations data may need to move from the site
which specialized in simulations to other specialty sites for post-processing,
analysis, or reconstruction. This would require some higher overseer for the job
process which not only knows the appropriate times and places for a job to pass
to its next step, but also knows about the data that 1s important for the next step
and coordinates its transport as well. The general process is that a physics
application may be composed of many steps which may need to utilize many

resource centers, taking and storing the correct data at every step along the way.

30

Since data grids are usually developed as separate applications, much like this
compute grid has been developed to be separate from other parts of the grid, the
integrated workflow application would almost certainly involve a dedicated
workflow application, XML language, or other suitable tool. Indeed several are
already underway, including some complete products.

One important point to illustrate how this system utilizes workflow can
be raised by illustrating the application structure as described so far. The system
has one small bit of built-in workflow in that batch system parameters are
processed before application parameters. This essentially allows the job
submission environment to be configured before application executables are
typically invoked. Therefore, an application deployer has to include information
about the batch system the job will run on as well as any application parameters
as the instance XML document 1s built. However, and this is especially true for a
compute grid, it does not follow that someone able to deploy one set of these
parameters 1s able to describe and deploy the other kind in the same way. So, the
only options are to have the application deployers write original schemas, XML
documents, and stylesheets for specific combinations of application and batch
parameters, or to have them cut and paste examples of unfamiliar systems already
written or in place in other deployments into documents dealing with the
deployers’ realm of specialization. The solution to this problem can be provided
both by the web service style utilized and advancing web service technology. The
messaging style of web service makes it easier and more transparent to add
intermediate destinations to the path of the SOAP message. A SOAP message
operating under the web service protocol of Remote Procedure Call (RPC)
follows a request-response pattern under which it calls the web service and then
returns. With messaging, multiple message patterns can be specified, including
intermediate destinations designated by SOAP Header elements in the SOAP
Request. The transport details are also transparent to the programmer, since Axis

handles routing of the message. Advancing web service technology will provide

31

this system with a more useful tool than the usual intermediate destination
functions such as logging or database entry: grid scheduling. An intermediate
grid scheduler should be able to receive a set of application parameters and find a
batch site for the job to run. It can then retrieve an XML instance document
describing batch parameters for return to the portal. This batch document will be
complete with schema and stylesheet, so that the role of an application deployer
is purely concerned with communicating their area of expertise to the grid. This
grid scheduler may also facilitate other features such as knowledge and
permanence of job submission state to further enhance the utility of the compute
grid.

In much the same way, we postulate that executing workflow is not an
appropriate job for a compute grid. Rather, we hypothesize that any useful
compute grid should be fully pluggable with regards to a worktlow engine, so that
incorporation can be achieved without the benefit of explicit inclusion. Web
service architecture can help to achieve this, by either adding the workflow engine
as an intermediate destination in a SOAP Header or by making the workflow
engine or an engine which can rely upon it the ultimate message destination. In
the latter case the engine could simply redirect the appropriate message pieces to
the correct web service resource site. A separate workflow engine appears to be a
viable solution in part because other tasks; such as grid scheduling, grid logging,
and grid data transactions; are all postulated to be developed as separate pluggable
pieces, for the good reason that the separate functionality should stay separate for
simplicity’s sake. As an example, one compute grid portlet could submit
information describing one particular physics application to the grid. The grid
scheduler searches for a site which can download the required data and execute
the job in the shortest amount of time and returns the batch information the user
needs to fill out to complete the request. This method enables the compute grid

to accurately reflect the current state of the submission, and for the other pieces

32

to maintain the proper place in the workflow chain without the compute grid
taking on that extra job.

Workflow in this system is utilized in a simple way. Jobs that need to be
run concurrently can be simply described in the same XML instance document
and translated into concutrent jobs by use of a script or other means. This
solution is employed in Chapter 4’s deployment of a simulations job which can
conditionally be combined with a post-processor and then an analysis package.
Input data is moved from tape at Jefferson Lab and put through a simulations
program. Post processing may or may not be applied to the data, followed
perhaps by the analysis package. The stylesheets simply create a Perl script which
passes the filename of one program’s output into the parameter specifying the
next program’s input depending on which of the conditional steps have been
taken, achieving a kind of trivial workflow. That 1s, this workflow only passes
data from task to task while residing on one site and in one step of computing,
execution of the script. This workflow occurs implicitly, since the machine is
only following the order of commands given. It does not understand them as
separate steps in a process, which could enable it to find better sites to perform

these steps, or facilitate any of the other benefits workflow can provide.

33

Chapter 4

THE HADRONIC NUCLEAR PHYSICS GSIM SIMULATIONS
CLUSTER AT FLORIDA STATE UNIVERSITY

Introduction: This section details the implementation of this system installed at
the Hadronic Nuclear Physics computing cluster at Florida State University. First
we describe the cluster, the data grid, and the physics applications which were
published to the grid. Next, the steps which were necessary to install the system,
populate it with users, and create, deploy, and publish physics functionality are
detailled. This includes an example of the situation-specific rules and policies
which were built into this application to illustrate a general capacity to create and
enforce rules on any system. The last section details how the system is being
utilized and what areas may be improved in the future.

Batch System and Application Description: The Hadronic Nuclear Physics
cluster comprises 20 commodity computing nodes running under the control of a
PBS batch system on Linux operating systems. A RAID array is available for
data storage and file staging to handle the large amounts of data involved in
running physics applications. The main node is also a grid node, or a node which
has been enabled as part of the DOE. Science Grid” project to take part in a data
grid application known as SRM*. SRM is the Storage Resource Manager, and it
can securely move data via restrictions on user credentials which are supplied by
the DOESG in the form of certificates and proxies. 'This application was
installed by Bryan Hess of Jefferson Lab and moves data from tape at Jefferson
Lab to the grid node and also from the grid node to tape. The particular physics

applications which were deployed to this compute grid during the trial run were

29 http://doesciencegrid.org/
%0 http:/ /sdmbl.gov/srm-wg/

34

GSIM, GPP, and A1C™. GSIM is a specific casting of GEANT* for the
detector geometry in Jefferson Lab’s Experimental Hall B, host of the CLAS>
detector. GEANT was developed by CERN to simulate the response of
detectors to elementary particle and nuclear physics reaction products. The
common setup in nuclear physics experiments in Hall B is a high energy beam of
electrons or photons which collide with heavier matter, producing other
elementary particles after possibly passing through interesting intermediate states.
GEANT simulates the interactions with detectors to produce signals of the same
form as those produced by the actual experiment, so that the two sets of events
can be compared to evaluate the appropriate etror in the calculated result. GPP
was developed by Kyungseon Joo to be run after GSIM to correct for temporary
imperfections in the detector. For example, GPP uses GSIM output to remove
dead detector wires and burnt tubes as well as to simulate noise and background
effects. A1C is an analysis package run on Hall B data to reconstruct the reaction
information (particles, momenta, energies) from the detector responses.

Installation and Use: This system was first installed following the instructions
of Appendix A in January 2003. An upgrade in Jetspeed version was performed
in March and was necessary so that the same portlet could be added multiple
times to a page, among other features. The batch system where the web service
server resided runs behind a firewall, and so only connections from the machine
where the portal ran, outside the firewall, were allowed in order to maintain the
security. Root runs and owns the portal on the machine where it is running, and
a special user was created to run the web service application inside the firewall.
This was necessary because all scripts are executed under the ownership of the

process which created them and root cannot run jobs on PBS.

31 http:/ /clasweb.jlab.org/ offline/utilities /al/al_docs.html
32 http:/ /wwwasd.web.cern.ch/ wwwasd/geant/

33 http:/ /www.jlab.org/Hall-B

35

The first jobs were submitted in February, while the first useful jobs
incorporating the data grid application SRM were submitted in May. GSIM,
SRM, GPP, and A1C were all described with Schemas, XML Instance
documents, and XSL stylesheets and deployed to the portal following the steps
given in Appendix C. The stylesheets were designed in two ways to show the
flexibility of the approach. One way simply creates a PBS batch script full of PBS
parameters and the application command, allowing the web service to directly
submit the script with the PBS command gsub. The second is more complicated,
since the batch system administrator wanted to enforce a rule to load and boost
all data from the web using only one node, leaving the other nodes hidden safely
behind the firewall. In this case the XSL stylesheets were written to compose a
Perl script which created a batch script, loaded all data onto the batch system’s
RAID array, submitted the job once the data was ready, moved the resulting data
back to tape at Jefferson Lab after waiting for the job to be done, and cleaned up
all created files so that the file system would not be cluttered after the job was
done. The web service executed the Perl script in this case. Since the RAID
disks were visible to all batch nodes, input card and monte carlo data files were
easily accessed by the running jobs.

The text output method which allows the web service to generate scripts
ensures that many different types of system rules can be created to enhance and
protect grid functionality. XSL can simply serve as a pipeline for transporting
information encoded in XML documents into scripts designed by batch system
administrators to enforce rules which protect the security of the systems they
employ. Other administrators may wish to enforce rules which allocate only a
certain percentage of their deployed resource to grid users, while leaving the rest
for local use. Situations where information can be shared also exemplify
important applications of physics data grids, illustrating rules that can be made
about not only bringing the data back to a user, but shipping it to other interested

parties, or any other use to which a local data grid can be applied.

36

System Use and Future Improvements: The system has been deployed to the
physics community at Jefferson Lab which is interested in using the FSU cluster
for simulations. The Jetferson Lab cluster discourages simulations jobs since they
usually take up to eight hours to complete, in addition to usually requiring the
simultaneous completion of many jobs at one time. For these jobs a batch
system’s resources become tied up quickly. However, the grid resources at FSU
can be employed in a completely transparent manner as a substitute for running
jobs on the JLAB cluster. FSU currently offers simulations service to approved
JLAB grid users, so that the batch system is rarely idle while serving the
simulations needs of the CLLAS community. Since the resource is open to serve
the simulations needs of the CLAS community, and job monitoring tools help
scientists to visualize the availability of these resources, the deployed resource
system efticiency is raised by grid users requesting as many jobs as the resource

can service.

37

Chapter 5

CONCLUSIONS

The general problems of high data volume management and the
assoctated computing jobs involved in processing and analyzing this data
contribute much to the complexity of the physics research environment. It was
shown above that a significant solution for these problems comprises compute
and data grids when combined with portals. In the system design, an open
source Java portal hosted an application which communicated with a web service
server, incorporating many other open-source projects, to form a highly
functional compute grid. To deploy physics applications to this grid, the system
consumes XML, Schema, and XSL Stylesheet documents written by physics
experts and administrators, providing both logical consistent structure and several
levels of security. 'This project created the first data and compute grid between
FSU and JLAB, a system which is being utilized by CLAS research groups for
CLAS nuclear physics simulations, post-processing, and particle track
reconstruction analysis, showing that the system can be used for a broad range of
applications. This system is also one of the first applications of a structured grid
to be deployed to a physics environment, and the advantages of this approach
were developed and studied. A timeline of my activities in carrying out this
project is available in Appendix D.

Each project design goal has been addressed and solved in some way.
The first requirement focused on building a structured grid with low barriers for a
physicist to use, build, and extend. To solve it, the combination of grids and
portals was examined and determined to have great potential. Portals are easy to
learn to use and are highly conducive to features such as personalization that

make each use easier than the last. Grids allow access to resources and services in

38

an open and transparent manner impossible to achieve by any other means, in
line with the general grid and web service goal of achieving complete
interoperability among applications over the web. Heavy use of open source web
application technology such as the portal and its many component technologies
enabled a system to be created with many layers of functionality which can both
evolve over time and extend the lifespan of the original system.

The thrust of the second goal was to provide a way to modularize system
control of security and resource utilization, so that physicists can deploy grid
applications while administrators publish them to the community of users. This
concern was answered by the creation of portlets whose configuration and
individual parameters create addresses to be used by web services, so that a
structured grid is maintained by portal administrators who also are able to help in
writing the XML files which deploy physics applications to this compute grid.
The concept of a structured grid was applied and incorporated successfully into
the design of this system through this feature. Portal administrators are also for
the most part responsible for publishing these services within the portal, so that
physicists from the deployment stage only need to provide input if they have any
specific concerns. The open source systems employed, from main applications to
minor services, are continually being developed, so that their functionality can be
enhanced and reincorporated with a minimum of physics resource investment.

The third design goal requested both a broad range of applications and
high application flexibility to operate within the grid. Incorporation of and the
central role given to XML and its related technologies provide the flexibility to
create languages of well-defined meaning to both man and machine, increasing
the lifetime of both this system and its deployed applications. The system is not
specific to any area of physics, only those which require prohibitively large
amounts of computing resources for completion. When the applications are
upgraded or otherwise changed, these changes may be made to the application-

defining documents at any time without the system missing a beat. Further,

39

upgrades or enhancements to the web service do not for the most part affect its
availability to the system. Thanks to the web service server, large extensions to
the service may be developed without alteration to the underlying framework.

The fourth goal carried an obligation to enable as much control over the
deployed application as possible. In much the same manner as in the above goal,
XML technologies related to the regulation and wvalidity of XML related
documents helped achieve the scope of control currently available. The
deployers have full control over the applications and batch systems deployed by
controlling the data structure, information content and validity, and literal
translation to scripts at the end of the process. In addition to this, the portal has
several built-in means of control, including the use of existing portal tools such as
security roles for a user’s group and permissions to further secure the deployed
applications.

The multiple tools that are being developed both for this specific
application by computational physics groups at FSU and for the general
environment and tools which form this system’s base by the open source
community ensure not only long-term viability but the enhancement of physics
community activity outside of this grid, encapsulating the fifth design goal as well.
This project will be presented at the upcoming CLLAS Collaboration meeting at
Jefterson Lab, where we will introduce this project to a much larger community
of users. I am working with Dr. Riccardi on a job submission history feature
which will operate based on web service messages to a database. This feature
should be able to support applications such as a portlet job submission history, in
which the last X jobs of a certain type are displayed, and other applications which
draw on the messages, documents, and scripts which this database will store.
One application would be for all job state information to be kept in this database,
so that a workflow engine could simply use it as a client to keep track of what
phase each job currently occupies. Other computational physics groups, like the

one headed by Paul Eugenio, will continue to develop the project in directions

40

that will be of most use to physicists, with a focus on quickly creating
functionality focused on serving the needs of the physics community.

A working system implementation of this structured grid was installed at
the Hadronic Nuclear Physics computing cluster at Florida State University in
connection with users and data from JLAB’s CLAS community. A twenty-node
batch processing farm was securely made available for use first in simulations and
later in post-processing and track reconstruction analysis of nuclear physics data.
A data grid in use between JLAB and FSU was employed to complete the
simulations deployment. The system was installed on a Physics Department
personal computer using the version of Apache which came with its Linux
distribution. Situation-specific rules and policies were embedded into this
application to keep all batch nodes but one closed to HI'TP while still allowing
the data grid to bring physics event files from JLAB over HI'TP to each job.
This shows a general capacity to create and enforce many rules on a generic

system.

Rescurce Centers

"Gridsub” Resource Abstraction:

JLab

Figure 5.1 Gridsub.

41

Appendix A

INSTALLATION, START UP, TROUBLESHOOTING, AND
UPGRADES

Introduction: This Appendix will first show how to install both sets of
software, the client and the server, and then provide instructions on how to start
things up and troubleshoot some problems to keep things running smoothly. A
tentative how-to on performing a Jetspeed upgrade is also included.

Installation: Both systems follow the same installation procedure up to a point.
Begin by downloading an Apache HTTP server. This may the easiest step since
most new Linux distributions come with it already installed. However, there are
different versions of Apache and also different install procedures for Windows
operating systems than for Linux. T could never get the Windows way to work
properly, so in what follows I will only treat the Linux case. In this case the
Apache HTTP daemon is invoked usually by the command /etc/init.d/httpd
plus an argument like stop, start, or restart, and the configuration files reside in
/etc/httpd/conf. Refer to Apache documentation to correctly configure the web
server for your domain and IP, and then the process of connecting to Tomcat
can begin. The first thing to do is to find the library in this software distribution
which allows the connections and then deploy it to the modules directory in the
Apache root directory. You can find the file mod_webapp.so inside the Tomcat
home directory of this system’s distribution. The next step is to reconfigure the
Apache configuration file to recognize the new library and make connections
between Apache and the Tomcat engine. Add a line like this at the end of the
section in %ApacheRoot%/conf/httpd.conf where there are several
LoadModule statements clustered together:

LoadModule webapp_module modules/mod_webapp.so

42

Again where there are many AddModule statements, add:
AddModule mod_webapp.c
Then at the bottom of the file the connections can be created like the following:
WebAppConnection connection_narme warp server_name:port
Following this several lines which deploy individual applications can be made like:
WebAppDeploy application_name connection_name path_name
In the WebAppDeploy lines the connection name must be the value created in
the WebAppConnection line. Warp in the Connection line refers to the type of
connector bridging together Tomcat and Apache, while the server name and port
is the name and port that Tomcat can be configured to listen for as it waits for
requests to be forwarded its way. In the Deploy lines, the application name refers
to the name of a web application in Tomcat’s webapps folder, located at
%TomcatRoot%/webapps. The path name refers to the path part of the URL
that Apache will serve. 'This allows the actual file system to be masked to help
divert hacker attacks. At this point, Apache is aware of web applications
contained by a Tomcat container and has the code needed to make connections
to them. Tomcat configuration is the next step and fairly straightforward.
Suitable Tomcat distributions are included as part of the system
distribution, and the Axis server and portal server are already in place within their
own Tomcat distribution. Before they can start to run they need a version of
Java installed on the system. Any version will be fine, especially the latest ones
since none of the ones I have tried have broken the system in any respect. Once
they are installed, point to the root directory of the mstallation in the file
% TomcatHome%/ bashrc to set the environment. Of course there are other
ways to set the environment, and so long as the variable names stay the same they
are equivalent for the purposes of this install. The Tomcat configuration files
have already been altered from their original state so that only minor amounts of
information need to be changed to allow the system to run on the new site. All

XML belonging to the localhost setup has been removed from the configuration

43

file, %TomcatRoot%/conf/server.xml, and only that which corresponds to the
Apache connection remains. In all this XML, only one item needs to be changed
to just get the system up and running, the port number in the Connector element
under the Service element registering Tomcat-Apache. The port number to be
used corresponds to the port number written into the Apache httpd.conf file in
the WebAppConnection line. This port 1s used as an internal redirection port,
where Apache will forward requests it receives for the applications named in
WebAppDeploy lines to the port where, by virtue of its configuration, Tomcat
will be listening. Tomcat will then call the appropriate application, service the
request, and return pages to Apache. At this point, Tomcat is fully configured for
its new site and ready to start running,

Startup: Starting both of these engines is a fairly simple process once you are
assured the installation 1s completed correctly. Simply set the environment
variables with the scripts provided or some other method, enter the
%TomcatRoot%/bin directory and run startup.sh, and then restart the Apache
server with the command /etc/init.d/httpd restart. This ensures immediate
pickup of Tomcat by Apache. Both Tomcat engines containing the applications
are started the same way. One caveat can be offered about startup, which is to
pay attention to which user is starting up these machines. Since the Axis server is
submitting scripts that start jobs, you may not want to have root do this. PBS for
example does not allow root to submit jobs. However, there is most likely
nothing wrong with root owning and starting the portal, and that is the policy I
employed at the FSU site. This is just an extra caution which should also be
taken into consideration if the startup of these engines is written in to the
computer’s initialization routines which run as its power is turned on and the
operating system starts up. Finally, at this point each Tomcat engine is running
and has initialized all applications in its webapps folder. Only the applications
deployed in the httpd.conf file are available for service, since Tomcat’s own

excellent standalone HT'TP server has been disabled by removing it from the

44

server.xml configuration file. The Axis server has no properties that care about
any site specific information at its new home. However, the portal still needs
further configuration to enable some features and services at its particular host.
Additional Considerations: The Jetspeed directory %JetspeedRoot%/WEB-
INF/conf holds many configuration files. One is for Turbine properties, one for
Jetspeed properties, and one for properties which affect this particular
application. The ones that need to be changed are mostly just server names. In
TurbineResources.properties, the property mail.smtp.from should be changed to
an appropriate email address for a person like an administrator who can answer
concerns about email the portal sends out. At the bottom of this file are several
include statements for other property files. If you wish to add your own property
file which overrides any other properties set in any of the others, simply add the
file to this list. The rest of the properties in this file deal with system policies and
service configurations and as such they are all very important to running a good
system and deserve careful attention. A good example is the properties on
lifetime of certain portlets and other resources in portal cache, which can
determine how fresh the portal’s content stays. However, these properties do not
affect the main features this system provides for physics grid computing. The
excellent Jetspeed and Turbine online documentation and community support
can supply explanations to these and many other concerns dealing with the
general setup of the system. The next file to consider,
JetspeedResources.properties, must be customized in much the same way.

This file contains properties which apply to Jetspeed as its own
application. Remember that Jetspeed is built on top of the Turbine framework,
so some Turbine properties may be superceded by Jetspeed properties, and some
Jetspeed applications may not be mentioned at all by any corresponding Turbine
instructions provided in the documentation in these configuration files. To
override these properties I created another file T called JLabJR.properties which

listed some of the same properties as JetspeedResources.properties but had

45

appropriate values for my particular system. The file begins with some system
properties on how often the disk cache daemon should check for updates to files
in its cache and similar concerns. Following that is a configuration of the
Jetspeed email system which enables the features of email account requests,
account acceptance or rejection notification, and password reminders. These set
the templates to use for each type of email which is exchanged with the user and
other properties like the applicable return address and title of the administrator,
as well as the server name running the email daemon to which Jetspeed will try to
connect to conduct all this email traffic. The last set of parameters specifies
exclusively parameters for web services and physics grid computing. After setting
the new application name under the property webservice.application.name, others
may be changed much later as the new administrator gains understanding of the
ways and means by which the system works. The two most important are the
namespaces for interactivity and job submission. The portal depends on
understanding XML from these namespaces to provide its main functionality, but
these parameters are included so that other namespaces which extend the main
namespaces can be used. Simply put, the portal looks for certain information in
the form of specific tags and attributes and if it does not find them it does
nothing. However, this basic framework can always be extended by adding new
information in new structures as long as new code 1s added, and these parameters
provide for that situation.

Other files of note which are involved in the cultivation of a customized
application include the data sources, security definitions, and so on. Every file in
the conf directory allows for custom structures to be built and seamlessly
integrated into the portal, from new skins and security roles to lists of XML
streams which may be sources of information for particular portlets an
administrator may create. Consulting the mainstream Jetspeed documentation
and the extremely helpful development community will prove invaluable to any

effort in developing a particular portal’s identity.

46

Troubleshooting: Sometimes the portal completely crashes and the reason why
it happened may not be immediately obvious. Perhaps you were testing some
new code, perhaps there was a database error during an upgrade, or maybe there
is an even more subtle answer. The way to get around this is to try to return to a
state where things were working correctly, and be sure to clean out Tomcat’s
% TomcatRoot%/work/Apache/server_name directory. This stores versions of
the servlets in persistent storage at the container level, and if it is not erased then
the old broken servlet contexts will keep breaking your application, even if you
have fixed the problem that broke everything in the first place.

Upgrading: Performing a Jetspeed upgrade is a complicated procedure. This 1s
one area where it definitely helps to have a separate development environment
from the main production environment, so that if things break during a test
upgrade the system i use does not also implode. The high impact newly
integrated features of these new versions make the trouble worth experiencing
more often than not. One step is to move all files from one version to another.
This includes template files in WEB-INF /templates, configuration files in WEB-
INF/conf, class and library files in WEB-INF/classes and WEB-INF/lib, XSL
stylesheets in WEB-INF/xsl, XML and GIF/image files in
%]JetspeedRoot%/xml and %JetspeedRoot%/images and PSML files in WEB-
INF/psml. Every file that customizes your particular application should be
transported. The harder part of this 1s how to move the users from the user
database in one version to the next. The procedure that usually works for me is
to start up the new version without the new users first. Then shut it down,
leaving the sign-in screen open in a browser window. Next, open the file WEB-
INF/db/jetspeed.script in the new version and try to introduce all the
information from the file in the old version, following any syntax changes that
seem to have taken place. This script starts up a database of Jetspeed objects and
is based on Turbine notions of users and other system objects. This database

method also has its roots in a corresponding Turbine method. Once the script

47

looks complete, start the Tomcat engine up and sign in using the existing browser
window as any user who existed before the upgrade, preferably an administrator.
Then you should be able to sign out and sign back in as the new users. If
anything goes wrong, you are likely to receive a Turbine Horrible Exception, and
you would need to follow the procedure outlined in the troubleshooting section
to recover and start over.

Upgrading the other components is less complicated. Tomcat upgrades
are usually unnecessary since we only expect Tomcat to perform a limited range
of functionality and are not currently interested in complicated applications of its
more advanced features. New versions of Axis should be pluggable in ‘Tomcat in
place of the old, requiring only redeployment of the web service to its new server.
Many services in Jetspeed are actually provided by pluggable separate open-
source projects, and it is recommended that their manual upgrade is not
attempted because of the existing complex portal infrastructure. New versions of
significant difference can be incorporated by Jetspeed developers during

milestone builds, so changes to these should be reserved for experts only.

48

Appendix B

PORTAL INTERFACE HOW-TO

Introduction: One of the first questions a new subscriber to a portal may ask is
simply how to navigate in the new environment. Since portals specialize, among
other things, in providing members with high content and layout flexibility, one
of the first subjects to which a new user should be introduced is how to take
advantage of these features. During the initial deployment of the HNP portal,
this was one of the first areas of improvement to be suggested. Many excellent
Jetspeed tutorials on these and other topics, including building custom
applications, can be found, starting from the official Jetspeed website itself.
However, much of what has been written assumes a more expert web application
background than should be expected of a new user, so this appendix is dedicated
to providing a simple explanation on basic portal actions.

How to Create a New Account: The first page a user sees in Jetspeed is the
page belonging to the anonymous user, created to show a glimpse of the portal
without allowing any permissions on that content. The top right corner of the
screen displays two blanks to sign in with username and password, and below it
are two links which allow someone to create a new account and be reminded of
their password. To create a new account, first follow that link and fill out the
fields in the resulting form. If the portal email features have been configured
correctly, submission of this form will send an email to a portal administrator at
an address determined in portal configuration. The email will contain a link that
the portal administrator can use to bring up the page which displays all users,
both existing and pending, once the administrator has signed in. This portlet can
be found under the security tab of the portal administrator’s main account. The

first portlet displayed is the User Browser, which holds a list of all users with

49

potential users highlighted in yellow. To approve a user, click the Edit link by
their name and check the approve box. To deny, check the other box. A user
can be removed by following the remove link located across from the name in
the User Browser, but denying membership does not remove the user, so that
admittance may be granted after membership has been denied. Acceptance will
generate an email to the address provided in the account request and the new
user may subsequently sign in. Reminder of password may be achieved by
following the other link at the top right of the anonymous page and typing the
account’s email address in the field before submission of that form.
How to Create a Personalized Page: Once a new user signs in, they see a set
of default pages which have been created by a portal administrator. These pages
are set apart by tabs at the top of the screen. To simply create a new page, click
the pencil icon at the far right of the tabs, and hit the Add Pane button in the
resulting page. Type in a name for the new pane and hit the apply button at the
bottom of the next two pages. Click on the link the new name appears in and a
blank page should appear.

Adding content requires that much of the same procedure be followed.
The pencil icon on the tab of the new pane will display the current content along
with its layout, which should be blank for the new page. The Add Portlet button
at the top of this page should display a list of portlets with checkboxes. Click a
box to add a portlet to the page. Thanks to the last Jetspeed upgrade, an
individual portlet can be added to the same page many times. If a portlet is
already on the page, a blue checkmark will appear next to the portlet title. After
making a selection of portlets, click the Apply button and the layout page will be
presented again. The arrows in the upper right corner of each portlet,
represented by a box, will move the content around the page. Click Apply once
more and the new page will have new content arranged to the preferences of the

user.

50

Additional Features: Once these basic actions have been mastered, a new user
has the ability to move on to more advanced portal use. This is recommended,
since these features enable interaction and customization which are entirely new
to web applications. Available features include skin (color and presentation
scheme) customization, security settings, role and group creation and permission
assoctation, portlet groupings and layout personalization. Whether a portal
administrator, a regular user, or both, the advanced tutorials provide a wealth of
information for those interested in enhancing a particular application for personal

and community use.

51

Appendix C

HOW TO DEPLOY AN APPLICATION

Introduction: An application may be deployed to this physics grid by following
the steps outlined above in Chapter 3. However, the XML documents whose
creation comprise most of the deployment require additional explanation, since
they have particular structure and meaning to this compute grid. In the following
I first provide an overview of the design together with the motivation for
following through with this particular solution to the problem. Then I describe
the structure and functionality of the XML I created which addresses the above
concerns. This description contains a working example as shown in the figures
which is offered in addition to the examples which come packaged with the
distribution of the code. Since I offer writing these XML files as substitutions to
writing web service code, any interest in deploying an application to the grid must
first begin with an introduction to XML and its related technologies, Schema and
XSL. This tutorial is not intended to substitute for the many excellent books
which can be found by now at any bookstore on these topics, and a basic
understanding is recommended before proceeding. However, I have also
provided examples of these files which are capable of servicing a wide range of
physics applications after only introducing minor semantic permutations for the
purpose of getting a new user quickly started.

Overview: In order to create meaningful interaction between the portal interface
and the job submission web service, I created XML languages to describe each
aspect of the job submission process. These layers of XML are interpreted by the
code which runs each part of the compute grid, and so they dictate the
functionality which will be employed each time the system is used. As I describe

the XML layers and elements implemented in the portal and web service in detail,

52

AML Message Diagram:

SOAP Envelope Jab Submission Envelope

[SOAP TR——] Batch Parameter Data

SOAP Body (Bateh xmL]
U _ Application Parameter |Data
|
1 T
Job Submission Body Element ‘[Apphcohon XMLJ

Figure C.1 XMI_ Message Diagram.

I would like to first note the motivation for this design. Simply put, these layers I
created act as very general flags to the application, which looks for specific tags
and attributes to describe job parameters and construct interactivity. A concern
may be expressed that it would be preferable to allow any markup to perform
these roles I have described above, rather than only markup from one of my
namespaces which matches in form the elements I created. However, steps have
been taken to ensure that the framework is flexible for extension in functionality
and form, by following the general model set by SOAP XML and WSDL XML.
These widely accepted languages provide a framework for their respective
purposes while allowing as much XML content, and therefore as much
information in as many ways, as possible. Also, any content with one of my
namespaces that matches in form can be substituted without the application
losing any functionality, since the same namespace can be attached to different
Schemas.

Job Submission XML: FEach instance XML document contains a root element
of <jobSubmission> subsequent to the XML declaration. The root element

contains two child elements: <batch> and <application>. These sections

53

contain respectively batch and application parameters encoded in any XML
language which has been attached to a namespace in the root element. Fach of
the two child tags has a required stylesheet attribute whose value is a URL where
the stylesheet which translates each fragment of XML resides. Additionally, the
batch element has a command attribute whose value 1s the command that the
web service should use to execute the script on the file system where 1t resides.

Job Interactivity: The second namespace I created s the interactivity
namespace. This namespace is intended to hold XML that describes to the portal
how an interface describing any physics application deployed to the grid should
be structured. Interaction can be described with <examples> and <description>
tags placed as appropriate with respect to the schema regulating the instance
document. Also, Boolean attributes such as isParameter can be placed on
elements which are children of <batch> and <application>. Once the portal
application discovers a tag with isParameter="true”, it looks for child tags with
the attribute isValue. If that value is set to true, the application looks for a
parameter name contained by the same tag in the attribute valueName. It will
take the value of valueName and create a parameter in the portlet interface with
that name. Whatever value is entered into the field of this parameter in the
portlet interface will then become the character data of the element with

p—)

isValue="true”. Note that one tag with isParameter="true” can have both
multiple value children and also contain isParameter="true” children, allowing
for subtrees of parameters to be described.

A sample XML mstance document fragment looks like the following,
The instance document defines namespaces and specifies their location in the
root element, and then goes on to display a simple structure defining a few
parameters for the PBS batch submission system and the common physics
application GEANT. In both the schemas and the stylesheets, the ability to use

hierarchy to define data types and rules for processing elements adds to the

robustness of description and functionality of the system. Data type libraries can

54

be constructed for different kinds of parameters and layers of stylesheets can be
developed for different methods of script construction that can significantly
reduce the complication in deploying new applications by building on the past
work of others. Schemas describing both custom and generic layers can be found
at the addresses presented in Figure C.1, as well as stylesheets which translate
them according to the appropriate attributes. These Schemas and stylesheets
were written according to the rules and examples which are widely distributed
across many bookstores and the Web. The simplest way to change these
documents to reflect a particular application is to avoid changing the document’s
logical structure. Copy and paste interesting and useful definitions and rules and
then change element and attribute names. More complicated applications can be
created after more careful study of the capabilities of these XML technologies,
but the preceding instructions are sufficient for beginners to use in deploying

physics applications to this compute grid.

<?uml version="1.0" 7
- <jsijobSubmission xmins: js="http:/ /www .jlab.org/~hone/jobSubmission"
zmins:interact="http:/ /vevew jlab.org/~hone/jobInteractivity" xmins:history="http:/ fwww jlab.org/~hone/jobHistory"
smins: pbsParams="http:/ /www . jlab.org/~hone /demo/pbs" xmins:demoParams="http:/ /www.jlab.org/~hone/demo/demo"
smins: wsi="http:/ fwww . w3d.org/ 2001/ XMLSchema-instance' xsi:schemalocation="http://www.jlab.org/~hone/jobInteractivity
http:/ fwww . jlab.org/~hone/jobInteractivity.xsd http://www.jlab.org/~hone/jobSubmission
http:/ fwww.jlab.org/~hone/jobSubmission.xsd http://www.jlab.org/~hone/jobHistory
http://www.jlab.org/~hone/jobHistory.xsd http://vwww . jlab.org/~hone/demo/pbs
http:/ /www jlab.org/~hone/demo/pbs.xsd http:/ /www.jlab.org/~hone/demo/demo
http:/ /vaww jlab.org/~hone/demo/demo.xsd">
- <js:batch js:stylesheet="http:/ /www .jlab.org/~hone/demo/PBS .xsl" js:userlD="" js:command="gsub">
- «<pbsParams:mail_options interact:isParameter="false">
«interactiexamples=n or a, ab, e, abe...</interact:examples:
=interact:description=0Options associated with job notification email. n=none,a=on job abort, b=on job beginning, e=on
job ending.</interact:description=
=pbsParams: mailoptionsData interact:isValue="true" interact; valueName="Job Email
Options">eab</phsParams: mailOptionsDatax»
</phsParams: mail_options=>
- «pbsParams:mail_list interact:isParameter="true">
«interact:description=This is a comma-separated list of email addresses. These email addresses will be notified upon job
completion.</interact: descriptions>
«interact:examples>joshhone@yahoo.com;hone@jlab.org</interact: examples>
«<pbsParams:maillistData interactiisvalue="true" interact:valueName="Email Address List" /=
=/phsParams: mail_list=
</fjsibatch>
- <js:application js:stylesheet="http:/ /www.jlab.org/~hone/demo/Demo.xsl">
- <demoParams:comnand interact: isParameter="false">
<interact:examples=printenv</interact: examples>
<interact:description=The only command that is valid is "printenv"</interact:description:
zdemoParams:commandData interact:isValue="true" interact:valueMame="Command to be
Executed">printenv</demoParams: commandDataz
«fdemoParams: commandz
«</fjs: applications
</jstjobSubrmission:

Figure C.2 Demo XML Deployment file.

55

<Tuml version="1.0" 7>
— «zusischema smins:xs="http:/ /vww . w3.0rg/2001/XMLSchema" targetNamespace="http:/ /www.jlab.org/~hone/demo/demo"
zmins: tns="http:/ /www.jlab.org/~hone/demo/demo" xmins: jobParam="http://www.jlab.org/~hone/jobParameter"
xmins: paramTypes="http:/ /www.jlab.org/~hone/jobParameterTypes"
smins:interact="http:/ /wwww.jlab.org/~hone/joblnteractivity" elementFormDefault="qualified" attributeFormDefault="qualified">
— «xsrannotations
=xsidocumentation xmllang="en"=Job submission schema for FSU, JLab, PPDG, etc.</xsdocumentation:s
</ wsiannotation>
<xsiimport narmespace="http:/ /www jlab.org/~hone/jobParameter"
schemalocation="http:/ /www.jlab.org/~hone/jobParameter.xsd" />
«xstimport namespace="http:/ /www.jlab.org/~hone/jobInteractivity"
schemalocation="http:/ /www.jlab.org/~hone/jobinteractivity.xsd" />
- <xsicomplesType name="DemoParamDataType" abstract="true">
- <xsisimpleContents
— <umiextension base="xs:anySimpleType">
«ws:attribute ref="interact:is¥alue" use="required" />
«usiattribute ref="interact:valueName" use="required" />
</usiextensions
<fusisimpleContent>
<fus:icomplexType>
<wsielement name="command" type="tns:CommandType" />
- «xs complexType name="CommandType">
- «xs:complexContents
— «xs:extension base="jobParam:JobParameterType">
- <¥sisequences
<5 element ref="tns:commandData" minOccurs="1" maxOccurs="1" />
</%s| segquences>
</wsiextension:>
</rsicomplesContents
<fdsicomplesTypes
<xsielement name="commandData" type="tns:CommandDataType" fized="printenv" />
- <xsicomplesType name="CommandDataType">
— <xsisimpleContents
- «<xsirestriction base="tns:DemoParamDataType":>
- «xsisimpleTypes
- <xsirestriction base="xs:string">
<usipattern value="[\8]*" />
<fwsirestrictions
=fusisimpleType>
«/wsirestrictions
</usisimpleContent
< fwsicomplexTypes
«/usischemax

Figure C.3 Application Schema.

<7uml version="1.0" encoding="150-8859-1" 7>
— «xslistyleshest version="1.0" zmins: xsl="http:/ /www.w3.0rg/ 1999/XSL/Transform"
zmins:js="http:/fwww.jlab.org/~hone/jobSubmission" smins:interact="http:/ /www.jlab.org/~hone/jobInteractivity
zmins:demo="http://www jlab.org/~hone/demo/demo" xmins: xsi="http:/ fwww . w3.org/ 2001/ XMLSchema-instance"
#si:schemalocation="http:/ /wwve.jlab.org/~hone/jobInteractivity http://www jlab.org/~hone/jobInteractivity.xsd
http://www.jlab.org/~hone/jobSubmission http:/ /www.jlab.org/~hone/jobSubmission.xsd
http://www.jlab.org/~hone/demo/demo http://www.jlab.org/~hone/demo/demo.xsd">
<xsloutput method="text" indent="yes" omit-zml-declaration="yes" media-type="text/plain" />
<xslistrip-space elements="js:application" />
<xslinclude href="http://www.jlab.org/~hone/grid/webservices/xsl/JobInteractivity.xsl" /=
<xslitemplate match="/">
<nsl apply-templates select="child::js:application" />
</=slitemplate=
£l=~ Here are
- «<xslitemplate match="j
<usl;walue-of select="child::demo;command/child::demo:commandData" />
</uslitemplate=
=/uslistyleshests

zeript is to be input ZML. Bt

Figure C.4 Application Stylesheet.

56

<?uml version="1.0" 7>
- <usischema wimins: we="http:/ fwww.w3.org/2001/XMLSchema" targetiarmespace="http://www.jlab.org/~hone/demo/pbs"
winlns: tns="http:/fvwww.jlab.org/~hone/demo/pbs" xmins: jobParam="http:/ /www.jlab.org/~hone/jobParameter’
xmins:paramTypes="http:/ fwww.jlab.org/~hone/jobParameterTypes"
wrnlnstinteract="http:/ /www.jlab.org/~hone/jobInteractivity" elementFormDefault="qualified" attributeFormDefault="qualified">
- «xsiannotations
«usidocumentation xml:lang="en">8chema for PBS parameters. Valid data types are required for joh
submission.=/4s: documentations
</wsrannotation>
<rstirport namespace="http:/ /www jlab.org/~hone/jobParameter"
schemalocation="http:/ /www.jlab.org/~hone/jobParameter.xsd" />
<retirmport namespace="http:/ /www jlab.org/~hone/jobInteractivity"
schemalocation="http:/ /www.jlab.org/~hone/jobInteractivity.xsd" />
- «us:complexType name="PbsParamDataType" abstract="true"=
- «xs simpleContent:»
- <rsiextension base="ws:anySimpleType'=
<ws:attribute re nteract:is¥alue" use="required" />
«rgiattribute ref="interact:valueName" use="required" /=
</usiextensions
<« simpleContents
«/xs complexTypex
=<xsielement name="mail_options" type="tns:MailOptionsType" />
- <xzicomplexrType name="MailOptionsType":
- <¥sicomplexContents>
- <xsiexrtension base="jobParam:JobParameterType"s
— LHSISEQUENnCEX
«<wselement ref="tns:mailOptionsData" minOccurs="1" maxOccurs=
(/"KSI sequence
</usiextensions
< fwsicomplerContents
<fus complerTypes
<rsielement name="mailOptionsData" type="tns:MailOptionsDataType" default="n" />
- «us:complexType name="MailOptionsDataType">
— ausisimpleContent:s
- «usirestriction base="tns:PbsParamDataType">
- wxsiEimpleTypes
- «wsirestriction base="ws:string">
<xsipattern value="(n|[abel{1,3}){1}" />
< wsirestrictions
</usisimpleType>
«/wsirestrictions
=/usisimpleContent>
<fusicomplexTypes
<rsielement name="mail_list" type="tns:MailListType" />
- <xzicomplesType name="MailListType">
- <xs:complexContents
— «us:extension base="jobParam:JobParameterType">
- <xsisequences
<xsielement ref="tns:mailListData" minOccurs="1" maxOccurs="1" />
</¥sisequences
“/wsiertensions
<fssicomplasContents>
<fusicomplerTypes
«<xsielement name="mailListData" type="tns:MailListDataType" />
- <xzicomplexType name="MailListDataType"=
— «xs simpleContent>
- =xsirestriction base="tns:PbsParamDataType">
- axsisimpleTypes
- «xsirestriction base="xs:string">
<reipattern value="{[~\sT*@[~\s]*)?" /=
</ msirestriction>
</wsisimpleTypes
</usirestrictions
<fasisimpleContent>
</usicomplerTypes
=/msischemas

Figure C.5 Batch Schema.

57

=7urml version="1.0" encoding="150-8859-1" 7=
<xslistylesheet version="1.0" smins: xsl="http://www.w3.org/ 1999 /X8L/Transform"
wmins: js="http:/ /wwew jlab.org/~hone/jobSubmission” xmins:interact="http:/ /vwww.jlab.org/~hone /jobInteractivity"
smins: pbsParams="http:/ /www.jlab.org/~hone/demo/pbs" xmins: zsi="http:/ /www.w3.0rg /2001 /X¥MLSchema-instance"
wsiischemalocation="http:/ /www jlab.org/~hone/joblInteractivity http:/ /www.jlab.org/~hone/jobInteractivity.xsd
http:/ /vewew jlab.org/~hone /jobSubmission http:/ /www jlab.org/~hone/jobSubmission.xsd
http:/ /voww jlab.org/~hone /demo/pbs http:/ /veww jlab.org/~hone/fdemo/pbs.xsd">
sl output method="text" indent="yes" omit-sml-declaration="yes" media-type="text/plain" />
<uslistrip-space elements="js:batch" />
<xslinclude href="http://www.jlab.org/~hone/grid/webservices /«sl/JobInteractivity.xsl" /=
<xslitemplate match="/">
=<usl apply-templates select="child::js:batch" />
</xslitemplates
<l-- Here are the rule C
- <ushtemplate match="js:batch">
<xsl apply-templates /=
<f«slitemplates
<uslitemplate match="pbsParams:mail_options">
<xsl:apply-templates />
</uslitemplate>
- sl template match="pbsParams:mailOptionsData">
— <ushif test="not(.="")">
#PBS -m
«uslivalue-of select="." />
wuslitent f=
<fxsliif>
</usl templates
- <xshtemplate match="pbsParams:mail_list">
<usl apply-templates /=
</xslitemplates>
<wslitemplate match="pbsParams:mailListData">
- <xshif test="not(.="")">
#PBS -M
<xsli value-of select="." />
wuslitent S
fnslif>
</ush templates
</xslistylesheet>

iz to ke formed from input EML. i

Figure C.6 Batch Stylesheet.

58

Appendix D

PROJECT HISTORY

This project when it began in January 2002 had several goals, which are
reflected in the project motivations found at the end of Chapter 1. Each feature
that we desired was studied and appropriate technology was sought to supply a
fitting solution for each problem. The first goal was simply to get a portal up and
running and to understand how to learn about and use the new realm of software
that the large collection of open source projects represented. Once T arrived at
Jefterson Lab to spend the summer of 2002, I worked on just running the portal
on my laptop and trying to get the basic features described in its documentation
to work, and this was when I developed the job monitoring tools. Much of this
was based on the experience I had working with XML, DTDs, and Schema at
Jefferson Lab in the summer of 2001 under Mark Ito. T spent a lot of time asking
Jetspeed developers and other experts like Chip Watson how to understand user
interaction with the portal, how to use the portal environment to activate the
portal’s extra features, and what features would be most useful in a physics
community. I also had to figure out how to create a link between Apache and the
Tomcat engine in which Jetspeed resided. That June, I attended a conference of
the Grid Computing Environment working group of the Global Grid Forum at
Indiana University and presented talks on current FSU portal projects and what I
had learned about using Jetspeed.

At the end of that summer and in the first part of the fall semester I
wrote most of the job submission code and features. It was during this time in
November when the first version of Axis was released, so with some help from
Greg Riccardi I found out about its capabilities, downloaded and installed it, and

wrote a first edition web service which would create scripts on my desktop. In

59

January I installed and populated the portal and web service on the HNP cluster
data grid node at FSU. Later in the spring semester this was polished and it
gained its final form, and subsequently the first job submission was made in
April. The first useful job submission of a simulations job was in May, and a little
after that the SRM data grid was integrated. June saw the completion of this
thesis as well as further refinement of the simulations service to contain

conditional steps such as the post-processing and the analyzer.

60

BIOGRAPHICAL SKETCH

I was born in Norman, OK, USA, in 1980, and moved to Tyler, Texas in 1980,
where T attended school from first grade through high school graduation at
Robert E. Lee High School. I was accepted to Florida State University in 1998,
attended on a National Merit Scholarship, and received a B.S. from the College of
Arts and Sciences in Fall 2001, majoring in Computational Physics.
Computational Physics is a unique program at FSU in which a student takes all
required classes for a physics major and heavily minors in Computer Science and
Math. Upon graduation, the student may pursue a Master of Science in Physics
specializing in a Computational Physics project, and that was the basis for this

project.

61

