
1

Intelligent Agent Based CLAS Drift Chamber High Voltage System Controls

Vardan Gyurjyan, Tanest Chinwanawich, and Amrit Yegneswaran
Physics Division, Thomas Jefferson National Accelerator Facility, Newport News, Va 23606

April 29, 2004

This note details the design of the intelligent agent1-based, network-distributed CLAS drift chamber high voltage (DCHV) sys-
tem control (Syscon), which at the agent level of abstraction, considers agents as atomic entities that communicate to implement
Syscon’s functionality, builds on distributed control and application entities that collaborate dynamically to meet physics experi-
ments’ control objectives, and creates a real time, auto-extensible system in which completely heterogeneous processes coexist and
communicate with each other as peers – simplifying organization of algorithmic control and feedback mechanisms to achieve safe
and efficient control of the experiment. Agents’ engineering aspects are addressed by adopting the domain independent software
standard formulated by the Foundation for Intelligent Physical Agent (FIPA).

The CLAS drift chambers (DC) are powered by three
SY527 CAEN power supplies (CPS); each CPS has ten mod-
ules; modules have twenty-four channels, each of which pow-
ers ~150 DC wires.

CPS can be accessed by the front-panel keypad, the termi-
nal (using a menu-driven CAEN native software), or by the
workstation that hosts Syscon. CPS communicate with the
workstation either via RS232 or CAENET2 (Fig. 1).

FIG. 1. System Configuration of present control system.

The current Syscon has a two-tier client server architecture.
Client, written in TCL/TK interfaces the controls and moni-
toring system (Cosmos) on a Unix workstation with the V288
CAENET VME controller, a VME module PPC (dccntrl).
The CAENET server, written in C, which resides in the PPC
– a single board computer that runs VxWorks RTOS, inter-
faces the controller with the CPS. The communication proto-
col between client and server is CODA TCL/DP. Except for
the CAEN firmware, running inside the CPS, all components
were developed locally – simplifying program maintenance.

Operations parameters such as maximum current, voltage,
and current resolution are downloaded on to the CPS through
the VME interface using the communications port.

The current version of Syscon is stable and meets require-
ments. However, the architecture is inadequate to meet new

CLAS demands and to support features such as distributed
control, distributed monitoring, and dynamic histogramming;
to be able to do this requires using the new control hardware
developed by CAEN and a rewrite of Syscon using progres-
sive programming paradigms and architectures.

The deliberated design is simple and provides a clear sepa-
ration between application and presentation layers. Another
advantage is that client and server operate in the same Unix
environment, which allows use of advanced communica-
tion protocols capable of exchanging entire data objects, and
which is tolerant to programs and system failures.

The proposed PC, open architecture3, and intelligent agent
based system will integrate the data acquisition (DAq) system
and the DCHV Cosmos in the homogeneous multi-agent en-
vironment and will be able to cope in real time with dynamic
reconfigurations of the control environment by auto-generat-
ing or specializing specific software agents, whenever new
controls are added or control relationships are changed.

Software agents have their own thread of control, localiz-
ing code and state, and self-defining when and how to act. In
an open and distributed, agent-based, integrated control envi-
ronment, specifications are needed for ensuring interoperabil-
ity of the autonomous agents; minimum requirements are:

• common communicative mode for agents to exchange
 information and delegate control tasks

• facilities by which agents can locate each other
• unique method for agent identification
• method for interacting with users
• method for migrating from one platform to another
FIPA, the most promising standardization effort in the soft-

ware agent world [4] was selected to provide the normative
framework within which agents can be deployed and can oper-
ate. FIPA specifications establish the logical reference model
for the creation, registration, location, communication, migra-
tion, and retirement of agents. FIPA standards only specify
the interface necessary to support interoperability between
agent systems; the standards do not prescribe the internal ar-
chitecture of agents or how they should be implemented. The
FIPA agent platform (AP) suggests mandatory components or
normative agents:

• Directory facilitator (DF) – provides “yellow pages”
services to other agents. Agents may register their ser-

CLAS-NOTE 2004-015

2

vices with the DF or query the DF for information on
other agents. An AP can have multiple DFs providing
the possibility for creating software agent communities
or domains of agents/virtual clusters with their special-
ized function. DF’s can register with each other forming
a federation of domains.

• Agent management system (AMS) – provides agent name
services (“white pages”) and maintains an index of all
agents, who currently are registered with an AP, exerts
supervisory control over access to and the use of an AP,
and is responsible for creation, deletion, and migration
of agents.

• Agent communication channel (ACC) – the message
transport system, which controls all exchanges of mes-
sages within the platform, as well as messages to and
from remote platforms.

All agent communication is performed through message
transfer. Message representation is based on the Agent Com-
munication Language (ACL) formulated by FIPA [5]. ACL
has well-defined syntax, semantics, and pragmatics, and is
based on speech act theory that has two distinct parts: com-
municative act and content of the message.

Communicative acts have a precise, declarative mean-
ing independent of message content and extend any intrinsic
meaning that the message content itself may have.

From a variety of FIPA specification implementations such
as ZEUS, JADE, GRASSHOPPER, MOLE, RETSINA, FIPA-
OS, JADE was selected because it simplifies agent-based ap-
plication development, while ensuring standard compliance

through a comprehensive set of FIPA services and agents [6].
The control agent (CA)7 platform includes FIPA specified

mandatory agents (ACC, AMS and DF) provided by JADE.
JADE core Java classes are used to implement FIPA specifi-
cations.

The software architecture of the system, Fig. 2, is based
on the coexistence of several Java Virtual Machines (JVM),
which communicate with each other through Java Remote
Method Invocation (RMI). CAs in the same domain share the
single JVM, which plays the role of a basic agent container8.

The system’s architectural structure is based on hierarchies
of agent containers dispersed over the network. CAs are dy-
namically created and grouped in virtual clusters that, as well
as agent containers, can be created or destroyed as needed
within the CA platform.

The Front-End is a special container running the FIPA nor-
mative agents and high level mediator agents, which take care
of CAs’ management and overall system coordination. The
Front-End container maintains an RMI registry internally,
Fig. 2, and is used by other agent containers to register them
with the Front-End and to join the CA platform.

A special, lightweight, extensible markup language (XML)
and resource definition framework schema (RDFS) devel-
oped by the WWW Consortium [9], based control oriented
ontology markup language (COOL) has been developed to
assist agents in sharing and annotating control specific infor-
mation to support the heterogeneous nature of Cosmos and
information resources – a language which enables agents to
understand and develop domain specific services and devices’

FIG. 2. DCHV Control system agent..

3

requirements, and standardize the description of the DCHV
Syscon data processor. A node and arc diagram of the process
description part of COOL is shown in Fig. 3.

Using COOL, information in Syscon can be expressed in a
precise, machine-interpretable form so that the agents partici-
pating in the conversation understand meaning of terms that
describe specific controls.

COOL uses RDFS to define hierarchical descriptions of
concepts (classes) in a control specific domain and is exten-
sible via XML-namespace and RDFS based modularization.

Properties of each class describe features and attributes
of the control concept. Logical statements describe relations
among concepts. COOL has a set of predefined instances to
simplify knowledge base development.

A set of classes to define GUI components and their rela-
tions have been designed. Some of the Java swing classes
are mirrored in COOL to simplify the GUI design for the spe-
cific control process. COOL descriptions of DCHV Cosmos,
knowledge base, are integrated in DAq at runtime, without
actual programming.

The created control knowledge base saved in RDFS format
is accessed by the cortex, the specialized high-level mediator
agent. The cortex agent is the interface between a specific Sys-
con designer and global Syscon, and enables the integration
of the controls provided by non-agent software into a multi-
agent control community. The cortex auto-generates wrapper
agents and necessary ontology classes by parsing COOL spe-
cific Syscon descriptions – DCHV control processes. Agents
on the control platform relay messages to the wrapper agent
and have them initiate action over the CAENET network.
Figure 4 shows the main design architecture components.

The Hepatic high level mediator agent is responsible for
the AP management and recovery processes – creation, re-
covery, and removal of the agents, agent clusters, or entire
containers, and resurrection of any fallen agents or containers,
thus achieving AP stability and fault tolerance.

FIG. 4. Design architecture of the DCHV system.
Coordination of the agent cluster is accomplished by the

Thalamus that ensures that partial, local solutions to control
problems are integrated into the global framework.

To conclude, the new Syscon design based on intellegent
agent technology will meet new CLAS demands. Currently, a
prototype based on FIPA compliant JADE AP has been tested;
COOL control process abstraction has been implemented, al-
lowing description and integration into the general control en-
vironment of all control processes; high-level mediator agents
specialized in AP management and system coordination have
been developed, increasing the Syscon’s reliability and fault
tolerance and external software or systems integration based
on COOL description files has been accomplished by the spe-
cial mediator agent responsible for auto-generating wrapper
agents on the platform. A new GUI is under development.

FIG. 3. COOL schema and taxonomyplatform.

4

[1] An agent is a software entity capable of acting intelligent-
ly on behalf of a user to accomplish a given task. Agents
are capable of addressing both knowledge processing and
control specific actions simultaneously in a real-time dis-
tributed environment. A society of agents can combine
their efforts to achieve a goal.

The characteristics of agents are:
• autonomy
• proactive intelligence (agents do not simply act in re-

sponse to their environment, but are able to take initia-
tive)

• temporal continuity (they are continuously running pro-
cesses)

• mobility, rationality/benevolence (agents don not have
conflicting goals)

• adaptive intelligence (agents have the ability to learn)
[2] CAENET allows up to 100 crates to be daisy-chained, per-

mitting 24,000 channels to be controlled and monitored
by a single VME V288 CAENET interface.

[3] Presently, Syscons in high energy and nuclear physics ex-
periments are becoming more heterogeneous and diverse.
Increasingly proprietary industrial Syscons with their spe-
cific hardware are being used and proving to be reliable.
PC use, as it is inexpensive and extensible, is accepted and
supported as is development in the MS Windows environ-
ment. Cosmos and DAq problems with interoperability,

scalability, and standard user interface are resolved by
the open architecture design – an open architecture de-
sign adds flexibility by shifting the focus from hardware
to software.

[4] Foundation for Intelligent Physical Agents. Available at
http://www.fipa.org

[5] FIPA ACL Message Structure Specification. Available at
http://www.fipa.org/specs/fipa00061

[6] Java Agent DEvelopment Framework. Available at http://
sharon.cselt.it/projects/jade

[7] Control agents (CAs) are active objects, having more than
one behavior and can engage in multiple activities simul-
taneously. To minimize the number of threads required to
run the AP, each CA implements a scheduler, who carries
out a round robin non-preemptive policy among all be-
haviors registered with the agent. Agent behaviors can be
added or removed at run time.

[8] An agent container provides a complete run time envi-
ronment for agent execution and allows agents to concur-
rently execute on the same host. Each agent container is
a multi-threaded execution environment composed of one
thread for every agent.

[9] K. Ahmed, D. Ayers, M. Birbeck, J. Cousins, D. Dodds, J.
Lubell, M. Nic, D. Rivers-Moor, A. Watt, R. Worden, A.
Wrightson. “Professional XML Meta Data”.Wrox Press
Ltd.

