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Abstract

Traditionally, v and neutron initiated showers are distinguished in
the electromagnetic and large-angle calorimeters of the CEBAF Large
Acceptance Spectrometer (CLAS) by utilizing time-of-flight informa-
tion to perform a 3 cut. It would be desirable to improve this method
in order to create a more comprehensive technique for feasible particle
identification. Therefore, the purpose of this study is to devise a com-
plementary means to distinguish between electromagnetic showers and
hadronic showers in the ECs and LACs. One possible technique in-
volves utilizing shower topology characteristics such as shower widths
and scattering angles to achieve this goal.
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1 Introduction

Typically, v and neutron initiated showers in the CEBAF Large Acceptance
Spectrometer (CLAS) are discriminated using the time-of-flight (TOF) mea-
surements that utilizes the g cut technique. The most basic difference be-
tween these showers is that the ~-ray and neutron initiated cascades are
electromagnetic and hadronic respectively. One of the key features of the
electromagnetic shower is its longitudinal and lateral size, which is depen-
dent upon the characteristics of the composite material it cascades through
[FABJ03]. It is also well known that hadronic showers typically have a
larger lateral width than electromagnetic ones [ANZI93]. In the following
study, GEANT simulated vy-ray and neutron showers events are analyzed
in order to investigate an alternative or complementary method to the (
cut procedure. This analysis focuses on using the topology of the shower
as a comprehensive method for particle identification. The topology char-
acteristics include the widths of the particle showers and scattering angles
in the electromagnetic calorimeters and large angle calorimeters. This re-
port is a summary of Mark W.H. van Asseldonk’s summer undergraduate
study which took place between July/Aug. 2003 at the Thomas Jefferson
Laboratory Nuclear Accelerator Facility in Hall B of CLAS.

2 A shower-finding algorithm incorporating GEANT3
for analysis

For the following study a nuclear physics analysis program was written that
utilized the GEANTS3 library. The main component of the program is a
shower-finding algorithm [JUENO3], which maps out the entire reaction his-
tory by analyzing all tracks that produce further reaction vertices. This
algorithm seen schematically in Fig. 1 is the central component of the pro-
gram. It is used to develop further the three major functionalities of the
program, which include the analysis of the interaction vertices, the detector
hits, and the shower identification. A hit is referred to as the information
recorded at the tracking time when an interaction occurs between a particle
and a particular detector. A hit is necessary to compute a digitization which
is the detector response after tracking a complete event [BRUY86]. The
simulation software package, GEANT3, greatly assisted the development of
the program by providing prewritten and tested routines. The GEANTS3
routines make accessing data simple and user friendly thus allowing the pro-



grammer to create an effective analysis program without having extensive
prior knowledge of the software. For instance, a simple call of a routine
such as GFKINE needs only a specific track number in order to produce a
vast amount of kinematic data. Typically, these include the following: the
4-momentum, the particle track information, the vertex origin of the track,
and the particle identification.

TAKE INITIAL TRACK NUMBER

I

PUSH TRACK NUMBER ONTO STACK

l PUSH TRACKS

FROM VERTEX
ONTO STACK

POP TRACK FROM STACK

NO TRACKS
) DONE

ADD TRACK NUMBER TO LIST

NO l YES

INTERACTION VERTEX PRODUCED BY TRACK? ISP FIND TRACKS ORIGINATING
FROM INTERACTION VERTEX

Figure 1: For each shower the analysis program conducts an essential algo-
rithm which defines all the tracks and interaction vertices. Shown graph-
ically is the algorithm’s step by step process for mapping out an entire
shower.

The shower-finding algorithm is initialized by taking the first track number
and pushing it onto a stack. Then using a loop, the top track number is
taken off of the stack. First, the track number is recorded in a track list.
Second, it is analyzed in order to check whether at the end of the track an
interaction vertex is produced. If no vertex is created the program loops
back and prepares to pop the next track number from the top of the stack.
However, if an interaction vertex is produced, the algorithm finds the new
tracks originating from the point. All the newly found tracks are pushed
one by one onto the top of the stack. Third, the program proceeds to the
beginning of the loop. The algorithm continues to loop in this fashion,
pushing and popping until there are no more tracks on the stack. Thus, a
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complete track list is constructed.

3 Simulation and analysis of reactions

The analysis is based on the following reactions:

vp— prta (1)
vp — pr’ (2)
vp — nrt (3)

vp— prtE” (4)

These reactions are of particular usefulness for an analysis program, because
final state products such as pions, protons, and neutrons are included. Re-
actions (1) and (2) contain a 7° which decays immediately via the 70 — v~y
or 7° — ~vete™ mechanisms. The branching ratios for these two channels
from the Particle Data Group (PDG) are experimental values of (98.798 4 /-
0.032)% and (1.198 4/- 0.032)% respectively [GROOO00]. Since the simula-
tions are carried out using the GEANT3-based event simulator the program
could be easily readjusted for other various targets, such as deuterium or he-
lium isotopes. The showers caused by the reaction products are ordered and
interpreted by the analysis program developed for this study. The possible
reaction products incorporated in the analysis program include the p, 7°,
71, 7=, and n particles. Other desired reaction products could also be an-
alyzed by adding the appropriate GEANT particle-bank information to the
program, assuming the accompaniment of an appropriate event generated
data set. The analysis program includes a specialized procedure to allow the
user to study characteristics of both electromagnetic and hadronic showers.

4 Pertinent detector descriptions

The CLAS detector sets included in the analysis are: the drift chambers
(DC), the forward electromagnetic calorimeter (EC), the large-angle elec-
tromagnetic calorimeter (LAC), the TOF scintillators (SC), the start coun-
ters (ST), and the Ceerenkov Counters (CC). The two detectors of particular
focus in the following study are the ECs and LACs. Both of these detectors
are effective in tracking radiative decays, from particles such as 7° and 5

[AMARO1]. The ECs reside in all six sectors of CLAS, while the LACs are



present in only two sectors. The EC detectors are used to detect electrons,
gamma rays above 0.2 GeV and neutrons [AMARO1]. Note that the actual
lower photon energy limit of the ECs is much less, but the efficiency drops
dramatically for photon energies below 0.1 GeV. Photon angular acceptance
within the CLAS environment is up to 45°. These ECs can be broken down
in six calorimeter detector modules that include U-In, U-out, V-In, V-Out,
W-In, W-Out. Each module contains 216 photomultiplier tubes (PMT) and
thus CLAS has a total of 1296 PMTs in the ECs [AMARO01]. The EC mod-
ules are layers of lead and plastic scintillators stacked in sets of two, (eg.
U-In, U-Out); thereby, these detectors form three parallel running planes
through which showers can be tracked. Although the planes are parallel, the
strips contained in the modules are not, otherwise no detection would occur.
In fact, the strips are rotated by 120° for each successive layer [MECKO03].
The LACs detect the same particles as the ECs but cover an azimuthal
range of 120° and an angular scattering range of 45° to 75°. The two LACs
are composed of two modules which contain 33 layers, each composed of a
lead foil and a NE110A plastic scintillator bar. Within the scintillator the
bars are placed such that each consecutive layer is rotated by 90°; thus, a
40 x 20 matrix of cells are formed [MECKO03]. Both the EC and LAC de-
tectors are read out by photomultiplier tubes (PMTs). The signal times of
the PMTs are determined by FASTBUS time-to digital converters (TDCs)
and the pulse heights are converted utilizing analog-to digital converters
(ADCs). High resolution TDCs are required in order to have accurate time
of flight measurements (TOF), while the ADCs are used to determine the
energy deposited in the various detectors and to correct the TDCs for time

walk [MECKO03].

An example of a reaction and a complete shower going through a cross
section of sectors 1 and 4 of CLAS is shown in Fig. 2. The shower events
produced in this figure are the result of reaction (1). Two ECs and an LAC
can be seen in this cross section of CLAS. This particular event illustrates
a hadronic shower occurring in the upper right EC and two electromagnetic
showers in the lower right EC.
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Figure 2: An example of reaction (1) in sectors 1 and 4 of CLAS [JUENO03].
For this particular event both an electromagnetic and a hadronic shower
are shown hitting the electromagnetic calorimeters. The 7° decay causes
a y-pair to be produced that creates two EM showers in the bottom right
EC. The shower in the top right EC is a hadronic shower initiated by the
outgoing proton.
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5 Interaction of gammas with CLAS detector ma-
terial

Interaction vertices were produced by particles that interacted with material
contained in the CLAS detector. These interactions are not solely composed
of the actual detector components such as the EC, DC, LAC, SC, and ST.
As well, they include the interactions with the magnets, the gaseous par-
ticles inside the DC or between the detectors, or DC material such as the
wires and walls. Such hits typically result in a single DC hit or a small
cluster of DC hits. More important are the showers caused by direct hits
of reaction products with the ECs and LACs. It will be the statistics of
these hits that will be used to the differentiate between showers initiated by
~-rays and neutrons.

In Fig. 3 the CLAS detector is depicted through interaction vertices simu-
lated by v, 77, n*, and p particles from reaction (1). The space shown in
the plots are defined by the Z axis (beam line going downstream), Y axis
(vertical), and X axis (horizontal). The CLAS environment is outlined by
the interactions to give a 3D view of the entire detector. Notice the six
distinct main torus coils which can be seen surrounding the beam target at
the origin of the plot. As well, a ring-like structure is evident upstream of
the coils. This represents the metal support structures that exist in CLAS.
In the top left of Fig. 3, the intense regions above or left of the magnets
represent areas where the photons are interacting with the EC, LAC and
CC. The white lines which cut through these intense areas are gaps where
no detector exists and which are masked by the magnet coils.

Another informative view of the CLAS geometry is a projection in the X-Y
plane. This view portrays a downstream depiction of the beamline seen in
the top left of Fig. 4. Blind areas of the CLAS are illustrated by the six line
white star region produced where the magnets are present. The intensely
dark triangular regions are mainly due to the interaction vertices with the
shower detectors. An alternative view is shown in the top right Fig. 4 which
depicts the relative frequency of interactions.
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Figure 3: This plot shows the interactions of v (top left), == (top right),
7t (bottom left), and p (bottom right) from reaction (1) with the material

present in CLAS.
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Figure 4: A downstream view of the CLAS beamline is created by the
interactions of y-rays. The top left diagram is useful for showing the con-
figuration of the ECs, LACs, and mini-magnet torus. The figure to the top
right is similar except it displays the relative frequency of interactions. In
the bottom figures a cut is applied at 350 cm along the beamline so that the
interactions with the EC would not be present. Notice how few v interaction
vertices remain after this cut.
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A graphical plot of the beamline indicates with which detectors and CLAS
components the y-rays are mainly interacting. This view of CLAS is shown
in Fig. 5; notice that three major peaks of interaction exist. The first
peak around 0 cm represents the beam target and its encasing. The second
major peak between 50-150cm represents the interactions of y-rays with the
magnetic torus coils. These coils are kidney-shaped and have a diameter of
5m and a length of 5m [MECKO03]. For the third peak, consider again the
downstream views of the detector in the top left and right of Fig. 5. If a
graphical cut is applied to Fig. 5 at 350cm along the beam line, one can see
the resulting less intense downstream view of the detector in the bottom of
Fig. 4. The resulting plots do not display the major interactions with the
ECs in the old downstream plots.
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Figure 5: The v interactions with material along the Z beamline of CLAS are
displayed above. Notice if a cut is applied at 350 cm in this plot (indicated
by the vertical line) then the interactions with the EC would not be present.
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6 Interaction of charged particles with CLAS ma-
terial

Particle characteristics such as charge, mass, and collision cross section cause
distinct interaction patterns within CLAS. The top right of Fig. 3 illustrates
the interactions caused by the 7~ particles from reaction (1). Due to the
polarity of the magnets in the CLAS detector it is evident that the nega-
tively charged pions have a tendency to converge towards the direction of
the Z-axis. As a result, the CLAS detector loses more 7~ particles due to
increased convergence at the blind spot downstream of the beam line. If
the magnetic polarity were reversed, then more of the products of reaction
(1) would be lost since the entire reaction has an overall charge of +1. The
oppositely charged 7t and p particles seen respectively in the bottom left
and bottom right of Fig. 3, diverge more from the Z-axis. However, pro-
tons cause significantly more interaction vertices in the forward direction
compared to the 7% particles because of its larger collision cross section at
higher momenta.

Charged particles are typically detected using the drift chambers. However,
another interesting area of investigation is the effect of charged particles
interacting with the ECs and LACs. Figure 6 shows the interactions of pro-
tons, 7, and 7~ particles down the beamline of CLAS. From the products
of reaction (1), protons would create the largest hadronic showers in the
ECs and LACs due to their high forward momentum dependence. Although
charged particles are effectively detected by the drift chambers, hadronic
showers initiated by charged particles in the ECs and LACs could be uti-
lized to provide checks with the DCs or look for missing tracks.
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Figure 6: The charged particle interactions with material along the Z beam-
line of CLAS are displayed above for p, 7%, and 7~ from reaction (1).
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7 Selective analysis of CLAS shower content

Reaction products are created when a target is continuously bombarded by
a high energy photon source. The particles produced by this initial colli-
sion can then interact with subsequent CLAS material to produce hadronic
and EM showers. Photons interact to produce secondary gammas by brems-
strahlung, or secondary positrons and electrons via pair production [FABJ03].
The secondary particles in EM showers produce more particles by the same
mechanism, which in turn creates more particles. This process continues
creating a large cascade of increasing EM particles until the energy of the
electrons within the shower degrade below a critical energy. Hadron show-
ers proceed in a similar fashion, except for the fact that the cascades are
produced by mostly strong interactions until there is insufficient energy to
produce any further interaction products. One functionality of the analysis
program developed in this study is to allow the user to select a reaction
product and view the shower particles it produces in CLAS. For instance, in
reaction (3) one can look at neutrons, and 7%, particles that interact with
the ECs like in the top right of Fig. 7 or the LACs in the top left of Fig. 7
to cause showers. Similar can be shown in the bottom of Fig. 7 for v-rays
and protons from reaction (3). The arrangement of the particles on the
horizontal axis is based on the numbering system of the GEANT particle
banks. Not displayed but also available are the smaller quantities of prod-
ucts such as deuterons, tritons, and alpha particles. The selective nature of
the analysis program allows the user to specify any area of initial detector
interaction in CLAS caused by reaction products and any area of shower de-
tection for subsequent cascades produced by these particles. The selectivity
of the analysis program is especially helpful when examining the contents
and topology of the showers. For instance, it is confirmed from the bottom
of Fig. 7 that EM showers in the ECs and LACs initiated by vy-rays contain
et, e™, v shower particles as should be expected. While hadronic showers
initiated by neutrons, contain significant numbers of e*, €=, v, p, and n
shower particles as seen in the top of Fig. 7. But this same hadronic shower
also contain trace amounts of pions and positively charged muons. These
same specifications can be made when investigating the characteristics such
as the shower widths and scattering angles.
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The contents of showers initiated by n and w«t particles from

reaction (3) are shown for the ECs and LACs in the top right and left

figures respectively.

While the contents of shower caused by ~-rays and

protons from reaction (2) are shown for the ECs and LACs in the bottom

right and left respectively.
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8 Analysis of shower particle widths

The broadness and frequency of showers initiated in the ECs and LACs by
hadrons, mesons, and photons and their corresponding shower particles is
an area of interest. The major goal of this study was to distinguish between
showers caused by neutrally charged gammas and neutrons. Traditionally,
~-n discrimination is achieved through time-of-flight measurements. How-
ever neutron detection efficiency, is zero at 0.4 GeV/c and rises to a plateau
of 60% above 1.6 GeV/c in the ECs. Neutrons are separated from photons
under 1.5 GeV/c by requiring a 8 cut of 0.9 is used [AMARO1]. The other
detector system of interest is the LACs, which have an efficiency of 30%
for momenta greater than 0.5 GeV/c. To distinguish gammas and neutrons
under this energy a 3 cut of 0.95 is applied [MECKO03]. Thus, an effective
complementary means of discriminating between n and + initiated show-
ers in the ECs and LACs could involve utilizing shower-width statistics.
The lateral dimension of hadronic and electromagnetic showers have been
previously used to successfully discriminate between electrons and pions in
different prototypes of a lead /scillating fibers calorimeter, at approximately

50 GeV [ANZI93].

To study showers in the ECs and LACs the analysis program was designed to
focus specifically on the first interaction vertex that would lead to a shower
in CLAS. An algorithm similar to the shower-finding algorithm mapped out
the location of the hits caused by the shower starting from the shower origin.
A basic diagram illustrating an interaction with material causing a shower is
depicted in Fig. 8. If the particles traveling along the branches are detected
then hits are registered on the tracks. Next a hypotenuse is defined from
the shower initiating particle to each individual hit track point. A virtual
line is defined in the direction of the momentum of the shower initiating
particle. The depth of the shower is the length that lies along the direction
of the momentum of the initial shower producing particle. It is a component
of the projecting hypotenuse which connects the primary interaction vertex
and a hit location. The width is defined as the component of the hypotenuse
that connects at a right angle to the depth of the shower. Note that shower
widths quoted in this study are the average of all the widths at full width
half maximum.

From Fig. 9 and Fig. 10 it is evident that v-ray initiated shower particles
occur substantially in regions under 5 c¢cm for both the ECs and LACs,
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Figure 8: The following is a diagram which depicts and interaction vertex V;
and the shower which emerges from this point. This diagram explains the
analysis terminology used to describe the topology of showers. A hypotenuse
could be pictured from V; to a hit in a detector such as Hz. The depth and
width of the shower are defined as the horizontal and vertical component of
the hypotenuse.

while hadrons and mesons produced shower widths exist in substantially
frequencies over a much larger range. A close-up of this width range is seen
in Fig. 11 and 12 for the ECs and LACs respectively. The symmetric nature
of the v distribution is an artifact due to the momentum distribution of the
original simulated data. However, if one analyzes projections of the shower
widths this artifact rapidly disappears and is of little influence to the shower
data. In Fig. 9 - 12, a cut of widths less than 0.01 cm and 0.001 cm were
applied to the ECs and LACs respectively to eliminate low energy shower
particles. This cut was applied simply to illustrate the frequency of shower
widths over a broader range.
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reaction (2) and (3) in the LAC. A range of showers of widths between (0-

30)cm are plotted against a reaction product particle momentum range of

(0-2) GeV/c. The reaction product particles causing the showers are n, 7+,
p, and 7 particles in the top left, top right, bottom left, and bottom right
respectively.
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Figure 11: In the following plot showers are initiated by the products of
reaction (2) and (3) in the EC. A range of showers of widths between (0-
5)cm are plotted against a reaction product particle momentum range of
(0-3) GeV/c. The reaction product particles causing the showers are n, 7+,
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respectively.
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In order to analyze the showers in an accurate manner, it is necessary to
examine the various momentum ranges of the shower initiating particle.
Therefore, shower properties were investigated over low, medium, and high
momenta ranges. These arbitrary momentum classifications were defined in
1.0 GeV/cincrements. The momenta bands of each of these shower initiating
particles are seen in Fig. 13. One major goal of this study was to detail
the topology of showers initiated by neutral v-rays and neutrons. Therefore,
to contrast the topology of these particles, overlapping momentum ranges
described as “low” (0-1 GeV/c), “medium” (1-2 GeV/c), and “high” (2-3
GeV/c) ranges were defined. It should be noted that gammas from the
simulated data set have negligible frequency for momenta over 3 GeV/c.
However, the dependence of shower topology on the shower initiating particle
absolute momenta makes this classification necessary.
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Figure 13: The following is a diagram which depicts the momentum bands of
the products from three reaction (2), (3), and (4). These reaction products
in turn could be shower initiating particles depending on how and where
they interact in CLAS.
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The following tables detail the average (AVG) and the root mean square
(RMS) particle shower widths. Since vy showers are mainly composed of e*,
e~, and v components, no other individual shower particles were included.
The average particle shower width in the ECs and LACs caused by gammas
and neutrons are given in Tables (1) and (2). Note that primary shower-
initiating particles in the LACs do not exist in sufficient numbers to quote
meaningful statistics in the high momenta ranges. The statistics in Table
(1) for the ECs and LACs were derived from the width projections seen in
Fig. 14 and Fig. 15 respectively. Similarly, the statistics in Table (2) for
the ECs and LACs are obtained from the width projections in Fig. 16 and
Fig. 17 respectively.

Width (cm)
ECs LACs
Particles | Statistic | Low | Med | High || Low | Med
~y AVG 6.2 6.2 4.5 5.9 5.6
RMS 5.4 5.1 6.8 7.5 7.5
et AVG 3.0 1.7 1.5 2.6 2.2
RMS 2.6 2.4 2.5 3.9 3.4
e AVG 3.9 3.8 2.8 5.0 4.8
RMS 4.8 4.8 5.2 6.5 6.6
All AVG 6.1 6.0 4.3 5.3 5.1
RMS 5.1 4.8 6.3 3.9 6.9

Table 1: The average width of showers (cm) in the ECs and LACs caused
by gammas from the decay of the 7° in reaction (2).
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Width (cm)
ECs LACs

Particles | Statistic | Low | Med | High || Low | Med
0l AVG 21.5 | 22.5 | 19.5 | 20.1 | 22.2
RMS 39.0 | 35.9 | 32.8 | 27.5 | 34.5

et AVG 21.8 | 185 | 13.9 | 18.9 | 25.0
RMS 404 | 30.5 | 20.4 | 22.8 | 47.2

e AVG 21.8 | 224 | 18.1 | 20.7 | 234
RMS 38.8 | 36.0 | 30.7 | 25.8 | 31.6

All AVG 214 | 22,6 | 20.1 || 17.7 | 20.0
RMS 37.8 | 35.0 | 33.0 | 24.1 | 29.1
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Table 2: The average width of showers (cm) in the ECs and LACs caused

by neutrons from reaction (3).
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Figure 14: The following plots depict the width of specific shower particles
and all shower particles combined in the ECs for specific momentum ranges
(GeV/c). These showers were initiated by gammas.
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Figure 15: The following plots depict the width of specific shower particles
and all shower particles combined in the LACs for specific momentum ranges

(GeV/c). These showers were initiated by gammas.
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Figure 16: The following plots depict the width of specific shower particles
and all shower particles combined in the ECs for specific momentum ranges
(GeV/c). These showers were initiated by neutrons.
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Figure 17: The following plots depict the width of specific shower particles
and all shower particles combined in the LACs for specific momentum ranges

(GeV/c). These showers were initiated by neutrons
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From the projections Fig. 14 - 17 and the tables (1) and (2) a definite dif-
ference between showers initiated by v-rays and neutrons becomes evident
for both the ECs and LACs. Showers caused by 7-rays on average have
much smaller shower widths in comparison to neutrons. This holds true for
both the individual components in the showers such as photons, et, and e~
and the entire composition of the shower. For instance, notice between 2-3
GeV/c the showers initiated on by 7-rays in the ECs had an average entire
shower width of 6.1 cm. While a neutron initiating a shower in the ECs for

the exact same absolute momentum range would have an average shower
width of 21.0 cm.

Although interesting, experimentally it is impossible to distinguish between
individual shower particles as in Tables (1) and (2). Instead it is more
appropriate to analyze the average width of an entire shower caused by a
particular shower initiating particle as in Table (3). The average widths and
RMS values in Table (3) were determined by the projections from Fig. 18,
19, and 20 for showers in the ECs, while the statistics for the LACs were
determined by the average distributions in Fig. 21 and 22. For comparison,
other charged hadrons and mesons that initiate showers from reactions (2)
- (4) are also included.
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Width (cm)

ECs LACs

Reaction | Particle | Statistic | Low | Med | High | Low | Med
2 04 AVG 6.1 6.0 4.3 5.3 5.1
RMS 5.1 4.8 6.3 3.9 6.9

2 p AVG 21.1 | 21.7 | 19.0 | 17.9 | 18.5
RMS 37.5 | 35.0 | 29.1 | 289 | 24.2

3 n AVG 214 | 2266 | 20.1 | 17.7 | 20.0
RMS 37.8 | 35.0 | 33.0 | 24.1 | 29.1

3 ot AVG 206 | 185 | 17.3 | 185 | 18.0
RMS 33.9 | 29.1 | 245 | 247 | 214

4 p AVG 19.9 | 22.1 | 188 | 17.9 | 17.2
RMS 384 | 35.8 | 27.9 | 294 | 25.7

4 7t AVG 183 | 181 | 19.8 | 16.5 | 17.8
RMS 334 | 28.2 | 246 | 21.1 | 26.2

4 T~ AVG 17.9 | 206 | 23.6 | 17.4 | 22.9
RMS 29.4 | 35.8 | 36.6 | 28.2 | 40.7

Table 3: The average width of showers (cm) in the ECs and LACs caused

by all shower initiating particles from reactions (2), (3), and (4).
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Figure 18: The following plots depict the width of all shower particles com-
bined in the ECs for the momentum range of 0-1 (GeV/c). These showers
were initiated by the particles specified in the plot.
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Figure 19: The following plots depict the width of all shower particles com-
bined in the ECs for the momentum range of 1-2 (GeV/c). These showers
were initiated by the particles specified in the plot.
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Figure 20: The following plots depict the width of all shower particles com-
bined in the ECs for the momentum range of 2-3 (GeV/c). These showers
were initiated by the particles specified in the plot.
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Figure 21: The following plots depict the width of all shower particles com-
bined in the LACs for the momentum range of 0-1 (GeV/c). These showers
were initiated by the particles specified in the plot.
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Figure 22: The following plots depict the width of all shower particles com-
bined in the LACs for the momentum range of 1-2 (GeV/c). These showers
were initiated by the particles specified in the plot.
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It is evident that +-rays produced showers with much smaller FWHM av-
erage shower widths in comparison to neutrons, protons, and pions. This
result is important because it means that the shower particle width is an
effective means to distinguish between v initiated showers in comparison to
neutron showers in the ECs and LACs. The ECs are composed of 1 ¢cm
thick BC412 scintillators that have a projective width of 10 cm [AMARO1].
While the LACs consist of 1.5 cm thick NE100A plastic scintillators with a
projective width of 10 cm [MECKO03]. From Table (3) it is evident that an
average y-ray shower would fit on one scintillator paddle, although the same
~-ray shower could be spread between two scintillator paddles in smaller
proportions if the shower occurred near the edge of the paddle. This find-
ing applies to y-ray showers in both the ECs and LACs. It represents a
promising result for n-v discrimination since the average neutron shower
must occur on at least two if not three scintillator paddles for both the ECs
and LACs according to the results of Table (3). The same result for neutrons
also holds true for pions and protons. Therefore, shower width provides an
effective means to discriminate between hadronic and EM showers in both

the ECs and LACs of CLAS.

9 Analysis of shower particle scatter angle

A shower scattering angle was defined as the angle between the initial shower
particle momentum at the end of its track and the momenta of all shower
particles. An example of this angle is shown in the flow diagram of Fig. 23.
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Figure 23: This diagram shows the scattering angle of a shower particle.
This quantity is defined as the angle between the 3-momentum of the ini-
tial particle causing an interaction vertex at the end of a track and the
3-momentum of the shower particle when it is detected as a hit. This allows
the examination of the angular range of a shower that is independent of the
width of the shower but dependent on momentum of the shower.
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This shower particle scattering angle constitutes another excellent variable
for discriminating between v-ray and neutron initiated showers. The mo-
mentum of the shower initiating particle can be plotted against the shower
scattering angle of the cascading particles as in Fig. 24 and 25 for the EC
and LAC respectively. Then one can make shower angle projections for
“low” (0-1 GeV/c), “medium” (1-2 GeV/c), and “high” (2-3 GeV/c) mo-
mentum bins as seen in Fig. 26 - 28 for the ECs and Fig. 29 - 30 for the
LACs. The averages and RMS values of these projections are displayed in
Table (4).
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Figure 24: The showers in this diagram are initiated by the products of
reaction (2) and (3) in the EC. A range of shower scattering angles are
plotted against a reaction product particle momentum range of (0-3) GeV/c.
The reaction product particles causing the showers are n, 7%, p, and ¥
particles in the top left, top right, bottom left, and bottom right respectively.
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The showers in this diagram are initiated by the products of

reaction (2) and (3) in the LAC. A range of shower scattering angles are
plotted against a reaction product particle momentum range of (0-2) GeV/c.
The reaction product particles causing the showers are n, 7%, p, and ¥

particles in the top left, top right, bottom left, and bottom right respectively.
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Figure 26: The following plots depict the shower angle of all shower particles
combined in the ECs from 0-1 (GeV/c). These showers were initiated by
the products from reactions (2) - (4).
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Figure 27: The following plots depict the shower angle of all shower particles
combined in the ECs from 1-2 (GeV/c). These showers were initiated by
the products from reactions (2) - (4).
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Figure 28: The following plots depict the shower angle of all shower particles
combined in the ECs from 2-3 (GeV/c). These showers were initiated by
the products from reactions (2) - (4).
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Figure 29: The following plots depict the shower angle of all shower particles
combined in the LACs from 0-1 (GeV/c). These showers were initiated by
the products from reactions (2) - (4).
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Figure 30: The following plots depict the shower angle of all shower particles
combined in the LACs from 1-2 (GeV/c). These showers were initiated by
the products from reactions (2) - (4).
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Shower Angle (Deg.)
ECs LACs

Reaction | Particle | Statistic | Low | Med | High | Low | Med
2 0 AVG 32.8 | 30.8 | 25.1 | 35.5 | 35.3
RMS 22.0 | 21.9 | 21.5 | 32.7 | 329

2 p AVG 79.6 | 68.4 | 61.6 | 82.1 | 81.8
RMS 38.8 | 36.1 | 33.7 | 40.2 | 41.3

3 n AVG 76.6 | 66.1 | 57.3 | 83.7 | 83.9
RMS 37.7 | 354 | 33.0 | 40.3 | 414

3 ot AVG 76.1 | 63.7 | 57.4 | 82.7 | 77.2
RMS 38.2 | 349 | 334 | 40.6 | 41.2

4 p AVG 78.3 | 67.7 | 61.7 | 81.7 | 80.3
RMS 38.7 | 35.3 | 33.0 | 40.2 | 40.7

4 ot AVG 73.5 | 65.0 | 56.8 | 83.6 | 82.1
RMS 37.6 | 35.2 | 31.1 | 40.6 | 39.9

4 T AVG 72.3 | 59.6 | 53.0 | 84.9 | 83.8
RMS 38.6 | 36.4 | 34.9 | 40.9 | 39.6

Table 4: The shower angle (Deg.) of particles in the ECs and LACs caused
by the products of reactions (2), (3), and (4) respectively.

From the projections in Fig. 26 - 30 and the statistics in table (4), it
is evident that the scattering angle of the showering particles is a good
characteristic for distinguishing between an EM and a hadronic shower in
the ECs and LACs. The v-rays were shown to produce showers with average
scattering angles roughly two times less than neutrons in the ECs and LACs.
This provides another variable to distinguish between ~-ray and neutron
initiated showers in CLAS. This result also agrees with the fact that v-ray
initiated shower particles were shown to have significantly smaller shower
widths than neutrons, protons, and pions.

10 Summary and outlook

The shower topology appears to be a worthy choice for studying the EC
and LAC detectors. It presents a promising method for distinguishing be-
tween a hadronic shower and an EM shower and could be complementary
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when combined with time-of-flight data. The absence of hadrons in EM
~-ray initiated showers is likely the primary cause of this unique topology.
With further improvements to the analysis program, energy loss statistics
could also be an area of future investigation. This topology analysis which
focuses on shower width and scattering angle is particularly successful in
distinguishing between neutrons and gamma rays. The average y-ray initi-
ated shower was shown to fit on one to two paddles and the average neutron
initiated shower was shown to fit on two to three paddles in the ECs and
LACs. As well, a v-ray initiated shower is shown to produce a shower with
scattering angles that are roughly half that of a neutron shower. From the
analysis, it is evident that EM showers have much smaller average shower
widths in comparison to hadronic showers. Thus, the preceding method
could also be used to support e~ and pion separation. This extension would
be comprehensive in addition to identification by the Cerenkov Counters.
The main structure of the program has been created, which makes future de-
velopments relatively straightforward and will be included in the upcoming
single pion analysis [JUENO03].
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