6 September 1991 Version 5.3 of ALEPE Note 90-96
Modified version of CLAS-NOTE 90-009

Modified version of DP Note # 728

EDFOR Version 5.3

User Guide and Reference Manual

?Un bon ouvrier a de bons outils...”

Olivier Callot

Laboratoire de 1’Accélérateur Linéaire

91405 ORSAY-CEDEX (France)

With contributions from A.Belk (CERN), Ph.Charpentier (CERN), A.Engelhardt (Copenhagen),
J.Featherly (BNL), E.Harvey (LBL), W.Love (BNL), A.Mortsell (Uppsala),
F.E.Paige (BNL) C.Steward (FNAL) and S.D.Protopopescu (BNL)

This is the reference manual for EDFOR, the text editor for Vax/VMS used in Aleph, Delphi, L3, and
D@ (under the name EVEDT) and other places. This editor is written in VAXTPU, a VAX language for
text processing, with elements from EVE (standard DEC editor), EVEPlus (DECUS improvements to
EVE), and from home-written procedures. You can use this editor with any terminal supported by DEC,
i.e. VT100, VT200, VT300, and VAXstations.

This document is organised as follows : News (i.e. changes from last release), General description
of the editor, list and description of commands grouped by functions, keypad descriptions, style-dependent
information and user parameters.

Part of this work was done with the support of the State University of New-York at -Stony-Brook'- (UsA),
and part with the support of CERN, Geneva (Switzerland).

1

NEWS

1) EDFOR 5.3, September 6, 1991

This is-a maintenance release, to fix several bugs reported in the recent months:
1. General

- The user definition file can be defined by the logical name MY_EDITOR TPU, The default when this name
is not defined is SYS$LOGIN: MY EDITOR ., TPU.

- The initialization file is now working. See HELP EVE.INTTIALIZATION inside EDFOR for more
details on how to use this feature

- The message 'Journaling started for buffer xxx’ has been removed.

- Gold-Y saves the PASTE buifer without an extra blank line at the end.

- New command SET DIRECTORY IXX to change the default directory.

- The word separators can now be defined independently for each style.

- The KP7 command (find next form-feed) now display the found form feed on the top line of the
serolling region on the screen, so that the new page is visible. Notice also that the form-feed character
is not remembered as next string to search.

- The HELP command now works like the VMS help, with navigation up and down in the subtopic tree.
Next_Screen and Previous_Screen allow to navigate up/down in the help buffer. A subtopic can be
specified at any time; Return when no more to show goes up one level in the tree.

2. Spelling

- The SPELL BUFFER command accepts qualifiers for the spawned Speller.
- SPELL works only for certain styles. This means that if you go from a buffer with spelling enabled to
a FORTRAN buffer, the spelling of your FORTRAN statements will not be checked any more.

3. Fortran

- Faster error positioning after compilation, and it now process correctly also files with ASCII TAB.

- The entry peint list file is now defined by the logical name EXTRY_POINT_LIST. It is easy to create or
update such a list with the command file EDFOR$DIR:BUILD _RETRY POINT.LIST.CON,

- FORTRAN header generation can be suppressed if you put edf$default header := 0; in your
MY_EDITOR_TPU file.

- ALIGN process correctly inline comments (the ’!’ is aligned for consecutive comments) and continuation
lines : they have to be indented with respect to the first line, and all by the same amount.

- Handling of Fortran inline comment has been improved : They are no more generated by a TAB at End
of Line, but by Enter-! in Vax Fortran style. The *!’ is aligned to the previous inline comment.

- New Enter command : Enter plus ’.” generates an IF(first) THEN / first = .FALSE. / ENDIF structure
_at the current position, with the correct declaration of first with the other declaration statements

4. Other styles

- When Replying or Forwarding in MAIL, you are asked if you want to include the original message in
the buffer, default is NO.

- ASCII TAB are generated and supported in DCL, if you set the variable 'edf$DCL_ASCIL. TAB :=
true;’.

- A new style for Vax Macro (extension .MAR.) and for RCP files (extension .RCP) in D@.

2

2) EDFOR 5.2, January 7, 1991

This is a maintenance release, to fix several bugs reported. in the recent months: The check at column
72 for fortran files was not performed in the commands RELEASE BUFFERS and when using Gold-S. The
DRAW.LINE was not setting the Oversirike mode, creating some unexpected effect. Spelling an empty buffer
created an endless loop after typing two spaces. Some commands inserted in the DOCUMENT style header
where invalid. Two changes : When using Captive EDFOR, you are not prompted for a new file when
attaching back to EDFOR. The Help command now allows fast access to VMS utilities (routines names
xxx$yyy, ¢.g. LIBSxxx or SYS$xx) by just typing HELP xxx$yyy.

Minor changes in various styles. When used with REPLY/EXTRACT in MAIL, the original message
is displayed in the bottom window while the text of the reply is edited in the top window.

One new commands is implemented, INDENT number to indent a selected range or the whole buffer by
the givent amount, negative to de-indent, processing only the fortran source lines,

In order to be compatible with the VMS 5.4 version of EVE, the Rectangular commands are renamed
to BOX, and new functionality is added, like the BOX COPY and the poesibility to work in insert mode. The
toggle between normal and 'BOX’ mode is still done by set [nolrectangular.

Two new facilities are provided for style design: The FORTRAN style is renamed to FORTRAN.T7.
This allows to force files to be FORTRAN_77 or VAX_FORTRAN, and to let the system decide (depending
on file name and of ed2$dezanlt _vax fortran) for FORTRAN default style. The TAB key can also just
insert an ASCII TAB, without indentation and so on, by defining edf8ascii tab := true; in the question
2 of the style procedure (see chapter EXPANDING EDFOR).

3) EDFOR 5.1, October 5, 1990

This is a maintenance relcase, with a few bug fixes: Tabulation in C language, line split in DCL after a
$!, TAB in Fortran on a line where the first 6 characters where deleted. The Help was corrected for inversion
of lines in the PF2 display, information was added for SPELL and corrected for the wildeard search. The
SPELLER now ignores words containing a ’.’ or a '$’, and words starting with an accentued capital, or
with a '<’ as used by Vax Document. The content of the dictionary has been updated with a few missing
technical words, and can be increased again on request. The '<’ character is also removed from the list of
word separators.

Two new styles are available, for Vax Document (file type .SDML) and for LATeX (file type .LATEX
). An optional procedure allows to automatically include a logo in the Vax Document header page. To avoid
ambiguous style names, the old ‘Document’ style is now named *Text’ style, and the style for Vax Document
is named 'Document’. The files NEW_RELEASE.NOTES are now correctly processed with style RELEASE
NOTE, the file types .SFO (Fortran) and .SC (C language) are accepted for SQL users.

The SHOW BUFFER can now write the selected buffer, using the Insert Here key. A new variable
edf$scrollmargin is used to define the fraction of the screen where the cursor can not go because the
screen will scroll. Another new variable edf$c_tab_size allows to control the display of ASCII tabs in the
C style.

4) EDFOR 5.0, June 30, 1990

1. Major restructuration

This version has been restructured to allow an easy expansion for new styles and new experiments.
See the corresponding chapter for instructions on how to expand EDFOR. This restructuration implies

3

{

that the section file contains only one experiment flavour (the one selected by the user who created the
section file), and only the styless NEUTRAL, FORTRAN and VAX FORTRAN. If you use another style,
the corresponding file in the EDFOR$SRC area will be loaded and used. The same apply if using a different
experiment. The net result is a smaller file, and a somewhat faster start-up. But as loading a new style
uses some CPU, it may be faster to.compile the most commonly used styles. You just need to create a
file ENFOR$SRC :COMPILED STYLES, LIST with one style name per line. These styles are then compiled when
building EDFOR. If you change this file; just type at DCL level: '
QEDFOH$DIR:BUILD. EDFOR.

2. Bug fixes

This version fixes also some small problems: the VEAT LINE was not giving the correct colamn; In the
C style, with ASCII Tabs, the tab stops where not set correctly; In the BUFFER command, the ambiguous
case was not handled correctly; A buglet in the CLEAN command for VAX_FORTRAN style is fixed, A bad
behaviour of Fill Paxmgraph ir a shifted window has been fixed. Grave and acute accents where inverted
in SGML style. :

This version fixes also 2 problems specific to- VMS 5.3 systems, namely the ambiguous file name on
the command line, and the /RECOVER option. Notice that VMS 5.8 systems use the 'buffer journaling’
mechanism, and that individual buffer are-recovered using the command RECOVER BUFFER xxx or RECOVER
BUFFER ALL, see HELP EVE RECOVER. ‘

3. New or improved commands

The command ALL allows 2 new choice: *Find’ the next line in the list of selected lines with the wanted
string, and ’Select’ all the line in the list which contain the wanted string. You can compile your buffer in
the ’C’ style using Enter-V. The indentation in the 'C’ style was redesigned. When quiting, the list of buffers
is displayed before prompting for quiting, if some modified buffer exist.

4. New user variables

Two new user variables are provided to control the action of the command CLEAN on VAX_FORTRAN
source file: edf$vax kxeyword case describes the case of fortran keywords, can be "UPPER”, "LOWER?,
"CAPITAL” for uppercase, lawercase, and capitalised words, and edf$vax variable._case describes the
case of the rest of the source, with possible values of "UPPER” and "LOWER”. The default values are
respectively "UPPER” and "LOWER”.

Two new user variables are provided to control the default style: standard extension{".XXx"} :=
"style"; defines the requested style for all files with extension .XXX (with the dot and in uppercase); The
possible values of style’ are the various style names, 'NEUTRAL’, 'FORTRAN?, 'VAX FORTRAN’ or any
"ZZZ’ with a corresponding file EDFOR$SRC:STYLE_ZZZ.TPU. And the variable standard file{"XXXX.YYY"}
:= "style"; defines the requested style for the given file name.

K you have problems, send MAIL to VXCERN::CALLOT with all relevant information. You may
also send suggestions, remarks, complaints, new procedures, and so on. Any feed back will be gratefully
appreciated.

GENERAL DESCRIPTION

This editor is a FULL SCREEN editor. This means text you type is inserted directly at the current
cursor potition. You can enter “line command mode” using a special key. But this is only a ONE line
command, and you are back to SCREEN cditing after completion of the command. This is somewhat
different from EDT, where-you can stay in line mode.

This editor can work with many BUFFERS: (a text you are editing. In general, it is the content of a
file. You can then edit as many files as you want), and with many WINDOWS (a portion of the screen
where part of a buffer is visible). Standard lay-out is a big text window (all the screen minus two lines)
plus a one line window for commands, plus a one line window for messages. You can easily have two or more
text windows instead of one, showing the same or different buffers. These (one or two) text window(s) have
a STATUS LINE, showing the buffer name, the editing style, the mode (INSERT / OVEBRSTRIKE) and
the direction (FORWARD / REVERSE).

This editor can work with various STYLES, depending on the kind of file you are editing. Current styles
are FORTRAN, VAX_ FORTRAN, Historian, PATCHY, PASCAL, C, ASM, RTF, TPU, Vax Macro, DCL,
MMS, RUNOFF, TeX, LATeX, Text, SCRIPT, SGML, Document, MAIL, Compack, ZEB, RCP, Structure
Charts and Release Notes. There is also a neutral style, without any special flavor. The current style is
displayed on the status line. More details on each style will be given in the corresponding section.

Another feature is the RECTANGULAR mode. This is related to the way you can define a part of a
file: In normal mode, you can define a block of text which is all characters between two characters in the
text. In RECTANGULAR mode, this block is a rectangle whose opposite corners are defined by two points.
This is used for Select, Remove, Insert, Copy Text commands, see later. Rectangular mode is displayed as
‘[1’ on the status line.

Another choice is the experiment flavor (see user variables), you can see its value in the startup
message, or with the VERSION command. This defines the Fortran / VAX Fortran headers and extensions.
We now support ALEPH, AMY, D0, DELPHI, L3, LBL, OPAL and a "no” experiment, giving a somewhat
neuntral Fortran flavor. See the chapter 'Expanding EDFOR’ to know how to create a new experiment flavor.

1) Usage

1. Standard EDFOR

This editor is called from DCL level by a statement like $ EDF file.name or $ EVE file.name (DO)
You can add any command qualifier allowed for EDIT/TPU, e.g. /RECOVER to restore an aborted session.

The first time you use this editor on a VAX/VMS system, you are prompted for your name, and your
experiment. Your answer are written in the file SYS$LOGIN:MY_EDITOR.TPU, or in the file pointed at by the
logical MY_EDITUR TPU if defined, and this file is read each time you call this editor. This allows the system
to insert your name when needed, mainly as & comment when creating procedures, subroutines, etc. You can
of course edit this file to change your name. You can also add to this file some private VAXTPU procedures
in front of what exists. You can also add some commands to select various options in EDFOR, see the last
chapter in this document. New information is also added to this file when you use the MAIL style for the
first time. The use of the logical name MY_EDITOR TPU allows you to switch settings if you are working on
two different experiments.

2. In VMS utilities: MAIL, DEBUG, ...

In order to use EDFOR in various VMS utilities, you have to look at the corresponding Help file or
manual. In general, you will need that the logical name TPU$SECTION points to the editor section file
EDFOR$DIR :EDFOR . TPU$SECTION. Then, you have to do something:

5

MAIL You haveto define:
¥ DEFINE MAIL$EDIT CALLABLE.TPU or SET EDITOR TPU inside MAIL.
$ MAIL := MAIL/EDIT=(SEND,REPLY)
Then, each time you send or reply to Mail, you will be in EDFOR, with a special style (see the
corresponding chapter). If you EXIT, the file will be sent, if you QUIT, no mail will be sent. All
. editor commands to. include files, to spawn, ... are available, The Speller works only if the EDFOR
related logical names are system defined, due to the way callable images. (the speller) are activated
from privileged images (MAIL). If you encounter this problem, you can circumvent it by defining
MAIL$EDIT as a command file which executes EDFOR in a subprocess, see SYS$SYSTEM: MATLEDIT. CON.
AMSEED (ALEPE) You have to define the symbol ALEPEMATL$EDITOR. :== ’EDF, and that’s it.

DEBUG You have to have an initialisation file, and assign the logical name DBG$INIT to this file, In this
initialisation file, put the following line :

SET EDITOR/CALLABLE TPU : i

Thea, the Debugger command EDIT will call EDFOR for the source of the current module, if available.
iny FOLTRAN program You can edit a file with a statement like:

STATUS = TPUSEDIT(input file, output.file)

where the two arguments are character variables. On return, you can even check if you EXITed or QUIT
by the value of STATUS:

IF(IAND(STATUS, 'FFFFFFF'I) .EQ. #LOC(TPU$_EXITING)) THEN ! exit

ELSE ! quit:

ENDIF

No special link command has to be added, TPU$_EXITING has only to be declared EXTERNAL.

3. Captive EDFOR

You can use EDFOR in a ’captive subprocess’ to shorten the start-up time. Yon have to create a file
SYS$LOGIN:RUN_SUB.TPU which contains the following statement: edf§run_in_subprocess := 1;., Then,
cxecute the following command (you can define a symbol in your LOGIN file to be this command):

SPAWE/PROC=EDFOR_your.name/INPUT=SYS$COMMARD EDIT/TPU/COMMAND=SYS$LOGIN:RUN_SUB

Then, you are in EDFOR. The only difference is that when you QUIT or EXIT you are attached back
to the main process. The files are written before EXIT, and you are prompted (if any modified buffers exist)
before QUIT. Modified buffer are DELETED when quiting if not written before... To go back to the editor,
use ATTACH EDFOR_yonr.name and it starts very fast. You can even attach this command to a key on the
keypad, like DEFINE/KEY/TERNINATE/NOLOG PF1 “ATTACE EDFOR your.name" and just hit PF1 to call the
editor.

Of course, there is a price to pay for that speed increase :

o The subprocess knows the current default directory at the time he was spawned, and not the current
one. This can be changed by the command SET DIRECTORY xzx.

o The subprocess knows the symbols and logicals defined at the time he was spawned, and not any you
created afterwards.

o If something crashes, recovery will be very difficult : you have to restore to their previous state all
files modified by this editing session, and play again the full thing, including any commands performed
outside editing (but EDFOR doesn’t know these commands...)

o It doesn’t work well if you are in a subprocess and spawn this editor: you will exit and go to the parent
process, the one at the top of the process tree... _ .
That’s why this way of working has to be reserved for specific needs. It’s also a way to load your

computer, by adding processes which use memory even when they are not in use.

6

2) Documentation

This reference manual is npdated for every new release. You can obtain your own copy by processing
through TeX the file EDFOR$SRC : EDFOR_REFERENCE . TEX (some change in the first few lines may be needed,
to select fonts existing on your local printer):

The internal help file, EDPOR$DIR : EDFOR . HL.B can be looked at and printed (the source of the help file
is EDFOR$SRC:EDPOR.ELP').

3) Installation

EDFOR is installed on every D@ Vax by the standard distribution mechanism of the DOLIBRARY. To
install it on any other VAX, you need to '
0 Define the logical name EDPOR$DIR for the binary files.
o Define the logical name EDPOR$SRC for the source files (they can point to the same directory)
o Copy the command file VXCERN: : DISK$ALEPH : [CALLUT . EDFQR] EDFOR.. INPORT to this EDFOR$SREC direc-
tory on your local machine.
o Run this command file.

The command file copies the sources and processes them to create the binary file and the help file. You
need to process the .TEX file yourself, since TEXimplementation is site dependent. The command file also
sends a mail message to VXCERN::CALLOT to keep track of the nodes where this editor is installed, for
distribution of information on bugs and new releases.

In order to define the logical names and the symbol, you have only to run the command file QED-
FOR$DIR:SETUP.EDFOR if it is not already done in your system or group login. See inside this file for the
value of the logical names.

4) Terminal setting

Your terminal has to be an ASCII terminal. And the terminal type (VT100, VT200, VT300) has to
be correctly known by VMS (DCL command. SHOW.TERMINAL) in order to have the best results. A VT100
treated as a VT200 by VMS will see strange characters...

When working with & VAXstation, you will sec that scrolling is relatively alow, slower than re-drawing
the screen. This is very clear when using large windows, i.e. with 40 or 50 lines. You can use the DCL
command SET TERMINAL/NODEC.CRT to instruct the screen manager to redraw the whale screen instead of
scrolling. This is faster by an order of magnitude. However, this is not a perfect solution, as the screen
will be completely redrawn even if you have to scroll for one line, and as it is erased and redrawn, it’s not
comfortable, .

LIST OF COMMANDS

We will describe all the commands. Commands can be either keypad commands. (you have to type
one or two keys to execute the command) , or line commands (you have to type the ‘DO’ key (- either
PF1 followed by KP7 or the ‘Do’ key on the VT200 keypad) and then the name of the command, which
may be abbreviated as long as it is unambignous on a word by word basis) . In the following deseription,
line commands will be typed in UPPER CASE, and keypad commands in lower case (if they
are mainly used as keypad commands or are not available as line command) followed by the key name
between brackets []. The key names are defined for the numeric keypad: KP0 to KP9, PF1 to PF4, ‘minus’,
‘comma’, ‘dot’ and ‘enter’. On the VT200, there exist also pre-labelled keys, and the upper row is labelled
from F6 to F20. ‘

A new meaning can be associated to any keyif you hit first PF1, which is called the ‘GOLD’ key. This
appears in the following description like ‘[Gold-KP4]’, this is : Hit PF1, then KP4, You have also key
names like ‘[Ctr1~K]?, this means : Hold down Ctr key and press 'K’ key. There are finally special keys,
like TAB, Backspace, line-feed and ESC, which are labelled on your keypad.

If a command needs an argument (number, string), it is indicated as ‘nn’ or ‘xxx’ in the description.
If you omit an argument (or for keypad commands), you will be prompted for it.

1) GENERAL COMMANDS

EXIT [Ctzrl-Z], [F10] saves the current buffer if it has been modified, then asks for every modified buffer
whether you want to save it, and then exits. If a buffer has Fortran style, a check is performed to veto
the exit if any line is longer than 72 characters (except for comments). If this occurs, you are prompted
and ask if you want to continue exiting or to abort. In the later case, you are positioned on the (first)
faulty line.

QUIT [Gold-Ql, [F9] doesn't save any buffer. If any buffer has heen modified, the list of user buffer will
be displayed, and you will be prompted for confirmation before losing all your work.

[Ctxrl-T] is fatal. You interrupt the editor. Two ways of recovering : Immediately after the interrupt, try
the DCL command $: CONTINUE to restore your editing session. Or later (or after a system crash),
call this editor with § EDF/RECOVER file.name (up to VMS 5.2, use EDF file.name and then the
command RECOVER BUFFER file name with VMS 5.3 systems) with the same terminal. You will see a
replay of a major part of your editing session, the last few actions are not always saved. See the DCL
help on EDIT/TPU for more information and restrictions on the recovery procedure.

[ctr1-C], [F8] cancels execution of a command. Mainly if VAXTPU is hanging in an endless loop. You
can abort the loop. WARNING, the Cirl-C is not ‘journaled’, i.e. recovery will'not be possible later
on. So after Ctrl-C, it’s a good idea to Exit.

[Ctzl-W] repaints the screen completely. Useful in some rare circumstances where some trouble occurred (
messages with bell or communication problems).

[Ctz1-B] recalls the previous line.command (when editing the text). It also works when waiting for a
command (i.e. at the Command: prompt), but then you can use the up/down arrows. You have to use
the arrows for Find , at the Forward Find: prompt, to retrieve the previous searched strings.

REPEAT nn [Gold-(0123456788)] allows you to repeat the next character, keypad or line command ’nn’
times. The Gold-numeric is the fastest way to repeat a command: to move 5 characters right, type
[pPF1], [B], [right arrowl and that’s all. Yon can also repeat learn sequences.

8

2) DISPLACEMENTS

This is one major feature of a full screen editor. There are a lot of possible ways to move the cursor,
depending on what you want.,

1. Geographical displacements

Cursor displacements can be performed by the LEFT, RIGHT, UP and DOWN arrows on the keypad.
The effect is evident, with the following explanations: When in INSERT mode, the cursor is bound to text.
You caz not go beyond end-of-line, the next character to the right of the end of line is the first of the next
line. When you move vertically, the cursor tries to keep the same offset on every line. But if a line is shorter,
the cursor seems to move left. When moving to & long line, the cursor will be again on the old column.
When in OVERSTRIKE mode, the cursor is just free on the screen. You can g0 beyond the last character of
the line, and when moving vertically, the cursor offset is unchanged. In both cases, we keep the cursor away
from the first and last lines, except when at beginning or end of the buffer, There is a guard sone where the
cursor can not be: This is 15% of the screem sise on the main window (3 lines on a 24 line screen), 5% of
the total screen sise for the smaller windows (1 line on 24 linc sereen).

v

2. Amount displacement

The cursor can also be moved by a ‘logical’ amount in the current direction: you can

Move by word [KP1] , thisis go to the beginning of the next (or preceding ifin REVERSE direction) word.
Default words separators are defined by the user variable edf$vord soparators, see the last chapter
for default value. They can be redefined for each style, see the chapter on expanding EDFOR.

Move to previcus word [KP3] moves to the beginning of the previous word (or next word if in REVERSE
direction).

Move by end-of-line [KP2] , thisis go to the right of the last character of the current line. If already at
end of line, go to the next (previous if in REVERSE direction) end of line.

Move by begimning-of-line [KPO0] , this is go to the first character of the line. If already at beginning of
line, go to the next (previous if in REVERSE direction) beginning of line.

Move by line ([Fi2] is move by end-of-line if current direction is Forward, and move by beginning-of-line
if current direction is Reverse.

Move by sczeen [KPE] , this is go to the next (previous if in REVERSE direction) page of the buffer,
the page size being the window size minus two lines. The cursor stays at the same screen position (if
possible, this means if there is some text at this point, and if we don’t reach the beginning or end of
the buffer). The two next keys have the same behaviour :

[Prev Screen] Move by one screen (window size minus 2 lines) in the Reverse direction.
[Hext Scresn] Move by one screen (window sise minus.2 lines) in the Forward direction.
3. Positioning
You can go to a specific position, like:

Go to Start of line [Backspace],[CTEL-H] , not the same as ‘move-by-beginning-of-line’, because here
you will stay on the same line, with a warning if you are already at start of line.

Go to End of line [CTRL-E] is the equivalent of the previous command, but in the other direction. You
will receive a warning if you are already at the end of the line.

Top [Gold-KPE] is go to beginning of the buffer. You will have a warning if you are already there...
Bottom [Gold-KP4] is go to end of buffer. You will have a warning if you are already there...

LINE mn allows you to go to line nn of the buffer. This line may not be the one indicated by some error
messages (e.g. from FORTRAN) due to include files.

9

ROUTINE xxx nn for a Fortran file: position to the line number ‘nn’ (default 1, you will. be prompted if
needed) in the routine 'xxx’ (default to the current one, you are prompted for) in the current buffer.
The line number is-the FORTRAN LINE NUMBER, i.e. the line number given by the compiler error
report or by a traceback. This count the line in all the include files and not only in the present source
file.

G0 TO xxx positions you on a MARK defined earlier by the command MARK xxx .
[Gola-J] positions you on the position marked previously by [Gold-X], in fact a GO TO EDFOR MARK mark.
4. Text search

This is one very nice feature of this editor. You can define the text you waat to find in different ways.

FIND xxx [Gold~PF3], [Findl : You are prompted for astring, if it is not included in the line command,
and then this string is sought in the current direction. Unlike EDT, the string is terminated by a
return. If the string is not found in the current direction but in the other direction, you-are prompted
for accepting a change in the current direction. This search is CASE SENSITIVE if the string you
typed contains any UPPER CASE letter, and case insensitive if you gave only lower case letters. You
can force case sensitivity with the next command. .

SET CASE. (NO)EXACT Allows you to change from EVE standard choice for case sensitivity (NOEXACT,
see description on previous command) to-full case sensitivity (EXACT, useful for ﬁndmg/replu:mg
special characters with ASCII code over 128). This works for FIND and REPLACE commands.

WILDCARD FIND xxx [Gold-Find] allows you to search text with wildcards, i.e. define only part of what
you want. You givea text to search for, but some chatacters have special meaning (notice that WILDCARD
FIND is identical to FIND if you do not use wildcards). But the search becomes CASE SENSITIVE if
you use one of the following wildcard (use the EDFOR command SBEOW WILDCARD to list all possibilities
):

* multi character wildcard on the current line
% single character wildcard
\ € Dbeginning of line
\> end of line
#* Multi character, multi line wildeard.-.
\ Quote next character

SHOW WILDCARD Shows the various wildcard characters and their fanction.

Find Next [PF3] searches for the next occurrence of a previously defined item (either FIND or WILDCARD
FIND). You have the same mechanism for change of search direction as described for FIND.

Page, [KP7] is a search for an ASCII Form-feed. This character can be inserted by the command [Ctrl- -
F], or may exist in your file, if it is the output of some processor. If found in the current direction, the -
line with this character is displayed on the topmost line of the scrolling area.

Fortran page, [Gold-P] is a search for a ‘1’ in first colamn.

Next input place [Gold-KP3] is a search to the next two consecutive spaces on the current line. This is
used to go to the next place where amw input is expected after a Enter-xx extension. You can not repeat
this search thru the Gold-Numeric mechanism.

ALL stri op str2 displays all lines where some (combination of) string(s) occurs. You can cither give
one string (between quotes if it contains spaces), or two strings with an operator: you can request
the AND (op = &’), i.e. both strings on the same line in any order, the OR (op = ’vertical bar’),
i.e. either of the two strings selects the line, or the NOT (op = *-’), i.e. the first string but not the
second one occurs in the line.. If any match occurs, you will see a list of the matching lines, with the line
number in front. You have to select one of the lines (with up/down arrows or next / previous screen, or

~with the Find key to select the next line containing the string youn are prompted for), and type return.
Then you will be positioned to this line in the original buffer.Or you can restrict the list of line using
the Select’ key and retain only the line containing the string you are prompted for.

Match Bracket [Gold-)],[Gold~(] : When the cursor is on & ([{ (resp.)1} , search for the corre-
sponding closing (resp. opening) character at the same nesting level in the forward (resp. reverse)
direction. Message if not on a bracket character.

10

3) ADDING TEXT

1. Typing characters

The standarq characters are those on the majin keyboard. When You are in INSERT mode, the
is inserted before the ‘ursor, and the text to the right i shifted right by ope column, In OVERST -
mode, the charac -replaces the current character, 4 Mhp%d for every character to see if it
is inside the marging, If not, an action is taken, as described below for the space bar. Some keyw on the
keyboard have specia] effects :

(Space bar] g used to add a Space in the text, Byt if you are on too long a line (the current Position jg
after the right margin of after colump 72 for a Fortran souree line), the line i split to keep the line

length ingide the margin, The split: ocoyrs after the Inst word included ip the marging specifications,
The new line can be. indented (if left margin is pot 1) and, depending on the style, some specific

com ,
is FORTRAN, The way this Pattern is computed depends on the buffer’s style, and ig described for each

[Tab] The behaviouy of this key is very style dependent. - This key generally inserts 5 certain number of
SPaces in the text. The actual number of spaces inserted ig computed as follows: We compute from
the current ang Previous line the Position where the first valid character shoulq be : This is column 4
in most styles, bat is Jike Previous Fortran lie in Fortran (see later for more details). If the actual
Position iy before this first character Potition, we adq the numbey of spaces needed to 80 to this position,
If after, we 80 to the pext TAB,ie. multiple of 8 columnsg, if not changed by sgr- TAB RVERY pp, This
means that we go-to the VMS standard TAB stop. A TAB in column 1 generates more complex patterpg
in DCJ, (a8andg3 spaces), ZEB and Some other styles, See exact description in the corresponding

[Gold~tan] inserts an ASCIT tah character. This editor doesn’s like the ASCTT TAB, becanse he can not
handle the indentations with TABs. So, in general, don’t yge this key, and Use commands CLEsy or
ELIMINATE Tapg to replace TA B, by the correct amount of spaces.

Quote [Ctri-v] g used to introduce Special characters in the text, characters you can not type on the
keyboard, This is mainly for control characters not trapped by VMs (this excludes Ctrl-Y, Ctrl-0,
Ctrl-Q and Ctrl-S, Ctrl-c). After typing Ctrl-V, you type the character yoq want to insert, like 3
Return or E§C or Line-feed,

[Ctr1-F Adds a Form-Feed at the current Position, This i T1-V1+[Ctx1-L],

sirange characters, then use
ter yon want to
keys of the main

2. Saved sentences

‘Restore Line [Gold-PF4] is used to introduce before the cursor position the most recently crased text (
through erase-line, erase-start-of-line and erase-to-end-of-line). You can insert as many times as you
‘want. This is extremely useful for duplicating one line of text.

‘Restore vord [Gold-mimsl is used to introdnce before the cursor position the most recently erased word
(through erase-word. or erase-previcus=word.). - S

Restore Character [Geld-conmal. will be used: to restoze: the most recently erased character.

Insert Hore [Gold-KPe], [Insert Hezrel copies the content of the Insert Here buffer before the cursor.
This Insert Here buffer is filled by Remove and Append commands, and is used mainly for large pieces
of text. ‘ ‘

g, External inputs

Style Extensions [Enter] This is a hook to define frequently used pieces of text which are style depen-

dent, like the SUBROUTINE header in Fortran. You have to type Enter followed by a letter, the result

is style dependent. For each: style, you can type [Enter] followed by [PF2] to obtain a list of valid

~ extensions.

DE4V BOX [Gold~|] draws a box whose corners are the Selected point and the current cursor. Works only
in Overstriké mode. _ ' §

 DRAV LINE [Gold- -] draws a line asing the 4 arrows to give the direction of the motion, until you type
any other character. Works only in Overstrike mode.

INCLUDE FILE xxx [Gola-I] is used to copy & disk file before the current line. You will be prompted for
the file name. Wildcards are allowed, but if there is more than one file, the list will be displayed on the
screen, and you will be asked to select one of these files.

4) ERASING THINGS

You can erase (i.e. remove from the text) various elements:
1. Character, word, line

Delate [< X|1 [delete] erases the character to the left of the cursot. If the cursor is at beginning of &
line, the line separator is removed, and the line is appended to the end of the previous one.

Erase Character [comma] crases the character where the cursor is. If the cursor is at end of a line, the
next line is appended to the cuxrent one. In: these two: commands, the remaindet of the line is shifted
left one position after character removal. ‘

Erase Word [mimus], [F13], crases the word where the cursor is, & word being delimited by any of the
character given in edf$word separators. Thiscrases. also the space(s) after the word, and the cursor is
put at. beginning of next word. If the cursor is on a string of many spaces, this is reduced to one space.
If the cursor is on the only space.betwm-wordl. the next word is. erased.

Erase Previous Word [ctz1-11, [line-fesdl is identical to the previous one, except for the behavious
when the cursor is.between words, where the previous word.is erased (no processing of a string of spaces
).

Erase Line [PFal, this crases the whole current line, including line terminator. The carsor is left at the
beginning of the next line. ' S

Erase Start Of Line fcsxi-01, [ctrl-Xl, [Gold-Deletel, this erases from start of line to the cursot
position. :

graze. To End 0f Line. [Gold-KP2], erases. from. the cursor position to end. of line, but not the linc ter-
minator. .

12

You can restore the erased text using the (previously described) commands Restore Lm. Restore
Word, Restore Character depending on the object you just erased.

2. BDlocks of text

You can also delete a bigger piece of text, by a mechanism we will use many times: The Select mechanism.

Select [dot], [Gold~dot], [Select] puts a marker at the current cursor position (you can cancel this
marker by typing Select another time). You then move the cursor to the other end of the text you want
to act on, and then type

Bemove [KPG],[Remove]l. The ‘selected’ text is removed from the current buffer (and saved in the IN-
SERT_HERE buffer).

Store Text [Gold-Remove] is used to copy the selected range to the INSERT . HERE buffer, but without
medifying the current buffer.

Append [KP9] has the same effect as Remove on the current buffer, but the removed text is put at the
end of the ‘insert here’ buffer. This can be used for example to pick up all FORMAT statements of a
subroutine, and put them at the end of the rontine.

3. Handling boxes: the rectangular mode.

When you are in RECTANGULAR mode, the part of text you select is a rectangle (and not all the
text between the two points). The exact behaviour depends on the settings of the buffer, i.e. if the mode is
INSERT or OVERSTRIKE. When setting the rectangular mode by set rectangular, the buffer is also set
to overstrike. The following commands are then replacing the standard ones: BOX SELECT replaces. Select,
BOX CUT replaces Remove, BOX PASTE replaces Insert Here and BOX COPY replaces Store Text. The
key binding is valid only after a SBT RECTANGULAR, and is displayed on the statue line with a ’[]".

BOX COPY [Gold-Remove] copy the selected box to the INSERT HERE buffer. The current buffer is not
modified.

BOX CUT [Remove], [KP6] move the selected box to the INSERT HERE buffer. In overstrike mode, the
space is filled by spaces.

BOX CUT INSERT is identical to BOX CUT, but forces the 'insert’ behaviour.

BOX CUT OVERSTRIKE is identical to BOX CUT, but forces the 'overstrike’ behaviour, i.e. the removed text
is replaced by spaces.

BOX PASTE [Insert Here], [Gold-KP6] copy the content of the INSERT HERE buiffer as a box whose
upper left corner is the cursor position. The copied text overstrikes the existing text in overstrike mode,
or is inserted in insert mode.

BOX PASTE INSER?T is identical to BOX PASTE but forces the ’insert’ behaviouzr.
BOX PASTE OVERSTRIKRE is identical to BOX. PASTE but forces the ’overstrike’ behaviour.

BOX SELECT is identical to Selact, but the selected range is shown in bold instead of reverse video. Notice
that the full text range is highlighted, not only the box, due to VAXTPU limitations.

5) MODIFICATION

One way to modify the text is to delete and/or insert characters, but there are some powerful commands:
1. Replace

REPLACE xxr xrx [Gold-Enter],[Gold-KP9] will prompt for a string to be sought ('Like the Find com-
mand, case sensitive if some uppercase letters are in the string, or if you have turmed on the SET CASE
EXACT option), and for a string to replace the original one. A search is performed in the current di-
rection (and in the reverse direction if needed, see Find), you are positioned on the string occurrence
and asked for action:

13

Y means Replace and search for the next occurrence. The replacement is also case sensitive if needed,
i.e. the inserted string has the same case as the removed one (upper, lower, capitalized). This is
the defanlt action, i.e. the one performed if you type Return.

N means don’t change and search for the next.

L means replace and stop here.

Q. means don't replace and stop here,

A means replace all occurrences without prompt (be careful!). Yom will be prompted only for a
change in search direction. '

2. Change case

Change case [Gold-KP1] changes the case of the current character, if this is a letter, and advances one
character. If SELECT is active, the case of all letters in the selected range is changed.

UPPERCASE WORD [Gold-U1,[F20] changes the case of every letter in the current word (or of the whole
selected range if any) to UPPER, and the cursor is left at beginning of the next word.

LOVERCASE WORD [Gold-~L],[F19] changes the case of every letter in the current word (or of the whole
selected range if any) to lower, and the cursor is left at beginning of the next word.

CAPITALIZE WORD [F18] Change the case of the current word (or of all the words in the selected range if
any) such that the first letter is UPPER, and the rest lower. The cursor is left at beginning of the next
word. This doen’t work well in a selected range if the beginnig of the range is at the end of a line.

3. Cleaning

Center Line [Gold~C] centiers the current line between right and left mazgins.

FILL PARAGRAPE [Gold-F]1 aligns the text between the right and left margins for the current ‘paragraph’,
defined as the part of text containing the cursor and limited by empty lines. Or as the selected range if
one is active at this time. This is extremely dangerous in non-text files, like Fortran souree... So you are
asked for confirmation on any file other than MAIL and Text styles. A string of spaces is replaced by
only one space, then the paragraph is filled within the buffer margins unless the paragraph starts with a
non alphabetic character, in which case the left margin is defined by the position of the first alphabetic
character. Then we add extra spaces between words to right justify the text, and finally position the
cursor at the beginning of the next paragraph.

Fill Area [Geld-KP8] works only in the selected area, from the last SELECT character to the current
one. (This is another example of the use of the select mechanism). But Fill Area doesn’t right justify
nor indent the text. _

FIX CRLF is used to suppress the ASCII CR and LF characters, incleded in some output as line end marker
(e-g. RUNOFF output). This suppresses CR + LF if at end of line, and replaces them by a line split
if not at end of line. ‘ ‘

FILTER replaces spurious 8 bit ASCII by 7 bit (after confirmation) and non printable characters by some
string you give after a prompt.

ELIMINATE TABS replaces the TAB characters in the current direction by the number of spaces needed to
have the same display if tabs were every 8 columns.

TRIM BUFFER is used to suppress all trailing spaces, i.e. those at end of line. This can reduce the size of a
file.

CUT mm is used to cut all columns over the given one (default is 73, for Fortran). It is followed by an
internal call to TRIM BUFFER.

INDENT numberx is used to imsert ‘number’ spaces, or delete -number’ spaces if 'number’ is negative, at the
beginning of every line in the selected range or in the whole buffer. With a negative number, only spaces
are deleted: if the line does not contain the requested number of spaces, only the existing spaces are
deleted. For FORTRAN files, the operation is performed only on the columns over 7, and the comment
statements are not touched.

14

ALIGE is-used (or Fortrar filés only) to indent the DO loops and IF blocks. It works either in the entire
buffer, or in the selected range if any is active at this time. Each FORTRAN statement is align on the
previous statement with indentation in DO loops and IF blocks, comments are untouched, continunation
of inline comments aze align, and continuation lines are indented at least as the previous statement plus
one step, and all consecutive continuation are aligned.

CLEAR: is:the most powerful. tool to clean a buffer; mainly a Fortran buffer. It replaces tabs by spaces, deletes
trailing spaces, and, for FORTRAN files, right adjusts the statement Iabels, indents the DO loops and
IF THEN/ELSE/ENDIF clauses through the ALIGN command, changes all’ statements (excluding
comments and stzings) to UPPER CASE in FORTRANY7, or independently the keywords and variable
if VAX Fortran, according to the values of edf$vax keyvord case and edf$vaz variable_case, and
then checks for lines longer than 72 characters.

6) MODE CONTROL

This section describe how you can change some modes of this editor.
INSERT MUDE sets the mode to insert for the current buffer,
OVERSTRIKE MODE sets the mode to overstrike for the current buffer.

Change mode [Ctrl/il, [Gold-Al, [F14] is used to change from INSERT to OVERSTRIKE, or vice-
versa,

Forward [KP4] sets the direction to forward for the current buiffer.

Reverse [KP6] sets the direction to reverse for the current buffer.

Change Direction [Fi11] changes the direction.

SET RECTANGULAR [Gold-[] Sets the mode to rectangular. This changes the behaviour of the Select,
Remove, Insert Here and Copy Text commands: the text is selected 2s a rectangle with Select point and
current point as two opposite cozners (and not as a contiguous string in between), the removed text is
replaced by spaces, and, when inserting, the previous text is overwritten. Sets also the OVERSTRIKE
mode.

SET NORECTANGULAR [Gold-]] return to the standard way. Sets also the INSERT mode.

STYLE xxx selects the editing style, you give the name, or an unambiguous abbreviation thereof, and your
style will change. See corresponding sections for details. If your buffer is empty, the empty_buffer action
will be performed.

Set Margins [Gold-M] asks for right and left margins and sets them in the current buffer.

SET LEFT MARGIN sets the leit margin to a new valune,

SET RIGHT MARGIN sets the right margin to a new value.

SET STEP sets the tab.step for this buffer, i.e. the value used when indenting a line. See the default value
for each style, and see also how to change this default for Fortran files in the last chapter.

SET TABS EVERY n sets the tab position every 'n’ columns,

MOUSE ON/OFF selects if the mouse keys can be used to edit. The function of the mouse keys is deseribed
when you use them, as it changes when you nse them.

7) BUFFERS, FILES AND WINDOWS

1. Buffers

A buffer is the name given to a text, and is generally the content of a file. VAXTPU uses system buffers
(like the message buffer and the command buffer) and user buffers, whose contents are the edited files. The
buffer related commands are:

15

BUFFER xzx [Gold-B] is used to go to a buffer. You are prompted for the name, and prompted agsin to
solve ambiguous names. If the name doesn’t correspond to any existing buffers, a.new buffer is created.
This buffer is not related to & file, haa the nentral style and the defsult: settings.

SHOV BUFFERS [Gold-?] lists the sortedilist of user buffers, with amsociated lengtlr and status. You can
then position (using the up or down arrows.) to:one name in this list, and. eitlrer go to- this buffer with
[Select] or [period], write this buffer with [Insert Here], or destray this buffer with [Remove] or [KP6].
You-can also use-any other command to go to another buffer:

SHOW SYSTEM BUFFERS does the same job for system buffers.. : '

Go To Defaunlt Buffer [Gold-D] puts you again in the defanlt buffer, i.c.-the buffer you edited first.

Return To Last Buffor [Gold-R], [F17] put youin the previous user buffer, i.e. the one before the last
buffer change.

RELEASE BUFFERS writes out all writable and modified buffers, to their standard output file. No questions...

DELETE BUFFER is used to desiroy the buffer and buffer content. (It is bound to [Remove] and [Gold-KP6]
after a SHOW BUFFERS). This is useful if you want to reread the same file you are editing, to restore
some error. This can not be done if the buffer with that file name has not been previously destroyed,
because EDFOR will detect that you are already editing the same file. May be useful also when you
have made an error in the directory of a file: this creates an empty buffer with the wanted file name.

If you now read the correct file, yon will need to provide a new buffer name. Destroying the buffer

beforehand avoids this problem. |
2. Files

When calling this editor, you can give a file name, which is the input file name of the first buffer, and
that buffer’s output file name. When editing, you can start working on another file.

GET FILE xxx [Gold-G] creates a new buffer with file name as name (you will be prompted for a new
name if this name is already used) and reads the file. Wildcards are allowed in the file specification,
and you will bave to choose if ambignous. You can not read a file you are already editing. The style is.
set according to file_type: This is useful if you want to create a new buffer with a certain style: issue
the get file command on a non: existent. file instead of the buffer command.

READ rxxx is.a GET FILE in read-only mode, i.e. you will not be allowed to modify the buffer.

Get mource containing a standard entry [Gold-E] prompts for the entry name, or reads it from the
current line if this is a FORTRAN line with a CALL . Then, if needed, we load the local software

1

index file DO$DOCS : ENTRY_POIRT.LIS for D@, EDFOR$DIR:ENTRY_POINT.LIS or the logical name EN- -

TRY_POINT LIST elsewhere, and search this file for the requested entry (full name only, no wildeard).
If only one source file contains this entry, we load this file and point to the entry point. If there is more
than one file, we display the list of such files, and wait for a choice. We then proceed as: befare,

ZEB FILE xxx prompts for the name of the .ZEB file to be read from the DO$ZEB area. It then loads this
file and puts it in & new window on the screen.

Show Include File [Gold-N] loads the file described on the current line by the Fortran INCLUDE state-
ment, and put it on the screen in a new window. Protected if the file doean’t exist..

INCLUDE FILE xxx [Gold~I] reads the file and puts it in the current buffer before the current line.

Save file [Gold-S] writes the current buffer to a file, you are prompted for the file name. The buffer
default ontput file is changed to the given name if you accept this choice at the prompt.

WRITE FILE writes the current buffer to his currently defined output file (in general the same as the input
file). You are prompted for a file name only if the output file is not defined. But you can always give
a file name, and this names becomes the new output file name if you accept. this choice at the prompt.

Write INSERT HERE tmffer [Gold-Y] prompts for a file name, and then writes on this file the contents of
the INSERT HERE buffer, alzo called the PASTE buffer.

Set Directory xxxxx changes the VMS default directory for reading or writing files. The previons default
is NOT restored when exiting from EDFOR. The change is propagated to the DCL subprocess if one is
active. _ .
Other file manipulation commands can be performed via DCL or SPAWN commands, see later.

16

3. Windows.

ONE WINDOW sets the standard screenm, i.e. one big window displaying the current buffer. Warning if only
one window on the sereen.

TWO WINDOWS splits the screen in two windows, each one with the current buffer.
Change Number Of Windows [Gold-T] is used to change from one to two windows and vice-versa.

SPLIT WINDOW [F7] splits the current window in two windows, with the same buffer content. You can split
a window as long as the new windows will be at least 2 lines high.

DELETE WINDOW [Gold~F7] deletes the current window. The cursor is put in the previous window.

HEIT WINDOW [Gold-0], [F8], (Gold-Next-Screem] goes from one window to the next one (Le. below,
or to the top one if in the bottom window) when there are many windows on the screen.

PREVIOUS WINDOW [Gold-Prev—Screen] goes from the current to the previous window (i.e. upper, or the
bottom one if in the top window).

SET VIDTE [Gold-W] sets the width of the window. Any character after the width is displayed as a diamond.
The default width is the "small window size”, defined as the WIDTH of your terminal before calling
EDFOR as long as it is less than 125 characters (Vaxstation limit for lazge’ characters), and 80
characters if not; but the width is updated according to the buffer right margin each time the status
line is updated, if you have not disabled the AUTOWIDTE feature. (The buffer right margin is set by
default to some style.dependent value, see later). If AUTOWIDTE is in effect. (the defaunit), it’s useless
to change the width with this command (the width will be recomputed from margin settings the next
time you update the status line). Use the [Gold-Left],[Gold-Bight] to force width and mazgins
simultaneously.

SET AUTOVIDTE enable automatic width selection ("small window size”, see previous commaad, or 132)
depending on right margin value for the buffer, this margin being computed when the buffer is first used
by looking at the longest line. This is the default.

SET FOAUTOVIDTE disables this feature, usefal if you run on a terminal without 132 column support. You
can meke this behaviour the default for all subsequent editing sessions by adding one line in your
MY_EDITOR TPV file, see the last chapter "USER VARIABLES™.

Set Width And Margins To Small Windew Size [Gold-Left arrow] is used to set simultaneously the
width and margin to the "small window size”, 80 columns on a standard terminal. The effective margin
is not changed for Fortran statements, where it is fixed to 72 for line splitting.

Set Width ind Margins To 132 [Gold-Right arrow] isused to set simultaneously the width and margin
to 132. Same remark as before for Fortran files.

SEIFT RIGHT nn shifts the window right nn columns. This allows you to look at the ends of lines on a
terminal with only 80 columns.

SHIFT LEFT zmn shifts the window left nn columns. You can not shift more than the previous right shift.

ENLARGE WINDOV [Gold-Up] increase the number of lines in the current window, when two windows share
the screen. You are prompted for the number of lines needed, and the current window is enlarged, the
other shrunk, if possible, by the requested amount.

SHRINK WINDOW [Gold-Down] decrease the number of lines of the current window, when two windows are
on the screen. You are prompted for the number of lines, and the current window is shrunk, the other
enlarged, if possible.

8) INFORMATION

Display Character [Gold-K] gives the current character’s value in ASCII, decimal; octal, hexadecimal
and control-code if needed.

17

Describe Key [Gold-H] displays a one line meaning for the next key you type, including Gold and Control
keys. ‘ _ _

WHAT [Gold-=] gives you a message with the actual column and line number (in the file),

BIG Put the cursor at the end of the biggest line of a buffer, with a message displaying its length.

SHOW displays a-page of information per user buffer, showing file name, sise, status, ...

VERSIOF displays the version of EDFOR. and the selected experiment flavor.

Keypad Help [PF2] displays on the screen the numeric keypad layout and the meaning of the control keys.

Keypad VT200 Help [Helpl displays the VT200 keypad definition. (whick includes the numerie keypad).

Keypad Gold Help [Gold~PF2]1 displays the definition of the Gold keys. For any of these 3 helps, you can
have help on any key by just typing it, as explained by the status line.

EELP This is the access to a general deseription of all line commands, and of the user variables, or if you
type HELP VMS xxx to the standard system help files, or if you type HELP TPU xxx access to VAXTPU
BUILT-IN help file, orif you type BELP EVE xxx access to the standard DEC EVE help file. A short way
to access the description of system services and othe system utilities in VMS is to type HELP xxx#yyy.
This works for the VMS-Help topics. 'Lexical’, 'RT]’ and ’system’. This is as similar as possible to the
VMS HELP command syntax, but you can use Next Screen and Previous Sereen to scroll through the

~ help information. : -

NEWS. Gives you the changes since the last released version of the editor. This is identical to HELP RE-
LEASE_NOTES. ' '

MESSAGE puts on top of the current window the last part of the message buffer, with Carriage-Return and
Line-Feed suppressed. The screen is restored after you answer the prompt.

9) SPELLING

You can. check the correct spelling of your files in two ways: Either using your system speller (DCL
command SPELL file name) or the in-flight spell checker. The latter can be automatically activated for
TeX, Runoff, Mail, Text and Documerit styles if you set the variable edf$spell. defanlt to 1 in your
initialization file. You can enable or disable the spelling at any time, thru the command [Geld-]. The
basis of this spell checker is a program using hash functions and & lookup table which comes from Maki
Sekigushi at Fermilab. Some logical names have to be defined, see the INSTALLATION paragraph in the
chapter GENERAL DESCRIPTION. This works: when called from CALLABLE TPU if the logical names
are system defined.

1. Method of operation

When activated, the speller is called for each word you end with a TAB, space or Return. The word is
first filtered, to eliminate Runoff, TeX and Vax Document keywords, and to eliminate file or logical names (
presence of & period or a dollar sign). If it survives, then the word is sent to the callable speller, a program
written in C which checks the word against a dictionary:

It is claimed that it contains 25000 words in its dictionary. The hart of this spelling checker is the hash-
search method. The hash method uses eleven different functions, each of which maps a word (ASCII values)
to a certain bit location in a 400000 bit table. For a given word, it checks all 11 bits whose addresses are
calculated from those functions; a word corresponds to a certain bit-pattern. If all the eleven bits are on, the
word is declared to be there. In this way the 400000 bit table acts as a 25000 word dictionary. This method
requires only small CPU time and a very little disk space for the program image and dictionary. The 25000
word dictionary is just 99 blocks. This is why it can perform the interactive checking in the editor, where
the minimum overhead and CPU time are required. In addition, the program uses very efficient handling
for both prefixes and suffixes, by which it can reduce the number of words in the dictionary. This dictionary
recognise British AND American spelling.

18

Any kind of combination of correct-spelled prefixes + right word is valid such as: superparticle; super-
superparticle, prequark, preprequark, superprequatk, clectroweak, electromagnetic, superinteraction, psen-
doelectroweak. The followings are the valid prefixes: "anti”, ”bio”, *dis”, electro”, "en®, *fore”, “hyper”,
”intra”, "inter”, "isa”, "kilo”, "magneto”, meta”, "micro”, “milli”, ”mis”®, mono”, "multi?, "non”, “out”?,
"over”, "photo”, "poly”, "pre”, "pseudo”, "re”, "semi”, "stereo”, "sub”, "super”, "thermo”, Yultra”, "un-
der”, "un”,

The case of the word is relevant: A word entered in lowercase like ’test’ in the dictionary (general or
personal) is right spelled as ’test’, *Test’, and "TEST®. A word entered as "Test” is right spelled as *Test’ and
"TEST", a word entered as 'teSt’ is right spelled as 'teSt’ and *TeSt’, and if entered as *TEST?, this is the
only spelling. -

If & word contains non-alphabetic characters between words, they act as separators, and each individual
component is tested. The word is recognised as correctly spelled only if all elements are correct. Single
alphabetic letters are by definition correctly spelled.

Youn may have a personal dictionary, which is created the first time you use the speller. This is the file
SPELLS$PERSON.DICT which is usnally MY_DICTIONARY.DICT in your login area. You can enter new words in
this dictionary either by the command SPELL INSERT, or just by editing the file. If you find missing words
of general interest, please send them to VXCERN: :CALLOT, for inclusion in the next release of the dictionary.

2. Commands

SPELL OF [Gold~’] turns spelling on. It requires a few seconds to load the dictionary. After that each time
you hit Space, Tab or Return, the previous word is checked against the dictionary. Any unknown word
is tagged in reverse video, and a message appears in the message window.

SPELL OFF [Gold-'] turns spelling off. Turning it on again later is faster than the first time.

SPELL ACCEPT word Add a word to the dictionary temporarily (i.e. during the editing session). You are
prompted for the word.

SPELL, TRSERT word Add a word in the personal dictionary. You will then have this word each time yon
use spelling check.

SPELL IT to spell the current buffer from the current position to the end of the buffer. It stops after the
first misspelled word.

SPELL BUFFER Saves the buffer, and call the system SPELL command for the file. This of course requires
that a DCL command SPELL is available on your system... Because the speller can change the file, the
new version of the file is read into the buffer at the end of the command.

10) VMS SERVICES

DCL [Ctrl/D] followed by any valid DCL command : This command is executed in a subprocess, and the
output is put in the DCL buffer. This buffer is mapped as follows: If you had only one window, the
screen is split and the DCL buffer is mapped onto the lower window, the cursor stays in the current
buffer. If there were already two windows, the DCL buffer is mapped in the other window, i.e. the
one where you are not, and the cursor is not moved. This command can not be used for interactive
commands, i.e. yon can not answer any question. You have to use one of the following commands for
the most frequent cases, or SPAWN,

MAIL allows you to read/send mail as from DCL level. When exiting from MAIL, you will return to your
editing session.

PHONE runs PHONE in a subprocess. Youn can optionally give an argumpent, as from DCI, like ANSWER
for answering an incoming call.

CMS zxx calls CMS in a subproecess and (if xxx exists) executes this command and exits. If xxx is not
given, you stay in CMS until you explicitly exit.

19

DIRECTORY. file specs to putin the DCL buffer the resalt of the command $ DIR. file.specs.
PURGE. filewspecs to Puzge the requested. files. Any output (if you defined PURGE witk /10G) is shown in
_ the DCL baifer. oo

SPAVE, [Gold-Z] suspends temporaszily your editing session, and puts you in & subprocess. You can do
anything: yow want, and you will return: to-your editing work upon LOGOUT.

ATTACH lets you go back to your parent process when you called this-editor from a subprocess.

COMPILE (Fortran style only) saves the carrent buffer and. then compiles:it. You can give options to-the
compiles, like /D_LINES, if you want, but separated by at least a space: from. the. command itself. You
can review the errors (if any) by [Ctz1-F] (mext error) and [Ctr1-P] (previous error). The errors
are stored in the DCL buffer, where you canlook at them at once if yowprefer. Positioning at the error
works with the following resttictions: If you have include files that call other include files; we will not
point inside this second level nor look for a third level of include files. Any error related to something
after an END statement (labelled generally as Program MAINSPROGRAM by the compiler) will not
be found correctly, because we rely on the module name to point to the correct routine. If you dor’t
understand the error message, ot didn’t find the source of the error, you can exit the editor and use the
FORTRAN/LIST command to find the problem.

SCRIPT process (at CERN) the carrent SCRIPT or SGML buffer to obtain a formatted output.

11) OTHERS

1. Key definitions

DEFINE. KEY [Ctzl~K]l allows you to (re)define the fanction of one key: type the line command you want
to perform, and then the key you want to type to perform this command.
LEARE [Ctrl-L] starts the definition of a sequence of operations you want to remember. When the se-
quence is complete, type Remenber [Ctx1-R], and then the key you want to type to execute again this
_ sequence. You can speed-up any repetitive editing task by this mechanism. Be careful in the use of
string search in such a sequence: The sequence will continue even if the string was not found. Try to
put the search at the end, and you can then decide to continue or not.

2. VAXTPU

TPU xxx [Gold-Do] allows you to execute any single line VAXTPU statement, like a call to non-EVE
procedures. Please read the VAX/VMS Text Processing Utility VAXTPU reference manual...

RXTEND TPU xzx searches for a VAXTPU procedure pamed ‘xxx’ (*is a valid wildcard), and compiles it.
You are supposed to be editing 2 buffer containing VAXTPU procedures.

SAVE EXTENDED TPU xxx saves the complete actual editor contents (the normal EDFOR plus all your key
definitions and learn sequences) in the file xxx (Full file name specification, please), for later use as a
section file in the DCL command EDIT/TPU/SECTION=xxx . Be carefal, this file is very big (around
1500 blocks). If you want to keep some changes, you can put them in your MY_EDITOR TPU. But you
have to write them in VAXTPU... , i

3. Others...

SORT BUFFER xxx sorts the lines of a given buffer in alphabetic order. The defanlt is to sort the current
buffer, after confirmation. . —

20

KEYPAD DESCRIPTION

1. Numeric Keypad

[PF1] : This is the Gold key to generate a. second function for other h:y!.
[PP2]: : Displays Help o the numeric keypad lay-ont.

[PF3] : Finds the next oecurrence of a previously searched string.

[PF4] : Deletes the line from cursor to end of line, appending the next line

[kP7] : Finds an ASCII form-~feed.

(XP8] : moves to the next or previous-screen, depending on current dlmctlon..
(XP9] : Appends the selected range to the INSERT-HERE buifer.

[XP-] : Deletes the current word, or the space to the next word if between words.

[KP4] : Sets the direction to FORWARD.

[XPE] : Seis the direction to REVERSE.

[KP6] : Removes the selected range, and puts it in the INSERT-HERE buffer.
[XP,] : Deletes the current character.

[KP1] : Moves to the beginning of next (previous if REVERSE) word.
[XP2] : Goes to the next (previous if REVERSE) end of line.

[XP3] : Moves to the beginning of the previous word.

[Bnter] : Generates some Style dependent extensions. See next chapter.

[XP0] : Goes to the next (previous if REVERSE) beginning of line.
[XP.] : Begin a Selected range, or cancels it if one is active.

2. Gold numeric keypad

[Gold-PF2]
[Gold-PF3]
[Gold-PF4]

[Gold-KP7]
[Gola-Krs]
[Gola-KPo]
[Gold-KP-]

[Gold-KP4]
[Gold~KP5]
(Gold-KPs]
[Gola-KP,]

[Gold~-KP1]
[Gold-KP2]
[Gola-KP3]

: Helps on the Gold-alphabetic extensions.
: Finds a string.
: Undeletes the previously erased line.

: Enters the line command mode.

: Fills the selected range

: Replace, prompts for Old and New strings.
: Undeletes the previously erased word.

: Goes to the bottom (end) of the buffer.

: Goes to the top (beginning) of the buffer.

: Inserts here the content of the INSERT-HERE buffer.
: Undeletes the most recently erased character.

: Changes the case of the current character or Selected ra.nge if any.
: Deletes to the end of the line, without appending the next one.
¢ Go to the next place_holder on the current line But after a Gold-number sequence, Inserts

the character whose ASCII decimal value was given,

[Gold-Enter]

[Gola-Kpo]
[Gola-KP.]

: Replace, prompts for Old and New strings.

: Opens a new line at the cursor position.
: Cancels the current selection.

21

3. Control keys

[ctrl/A] : Changes the Mode INSERT <==> OVERSTRIKE.

[Ctzl/B} : Recalls previons command(s).

[Ctrl/C] : Aborts a VAXTPU procedure. To terminate endless loops...

[Ctz1/D] : Executes a DCL command.

[Ctr1l/E] : Goes to end of the current line.

[Ctzl/F] : Inserts a Form-~Feed.

[Ctrl/H, Backspace] : Goes to-start of the current line.

[Ctrl/I, TAB] : Inserts some string (generally spaces) a.tthebegmmngof&hne. If typed in the middle
of a line, goes to the next tab stop (every 8 columns).

[Ctzl/J, Line—feed] : Erases the previous word.

[Ctxl/K] : Defines a key: Associate a line_command to a key.

[Ctzrl/L] : Starts a Leatn sequence, end by Ctrl/R.

[ctzl/M, Return] : Splits the line at the cursor position. Indents if the cursor was after the right margin.

[Ctr1/H] : Positions on the next Fortran error after compilation.

[Ctz1/P] : Positions on the previous Fortran error afier compilation.

[Ctzl/R] : Terminates a Learn sequence.

[Ctr1/T] : Gives your process status.

[Ctr1/U,Ctrl/I]) : Erases from curser to start of line

[Ctr1l/V] : Quotes a character, insert the next key typed without processing.

[Ctr1/W] : Refreshes the screen.

[Ctz1/T] : Interrupts. Type CONTINUE to recover the aborted session.

[Ctr1l/2] : Exits, writing modified Buffers to their outputs.

4. Gold-typing keys

[Gold~4] : Changes mode: INSERT <==> OVERSTRIKE

[Gold-B] : Goes to the Buffer whose name you are prompted for.

[Gola~C] : Centers the current line. _

[Gold-D] : Goes to the Default buffer, the one you edited first.

[Gold~E] : Loads the source of the given Entry point.

[Gold-F] : Fills the current paragraph, with left and right alignment.
[Gold-C] : Gets a file whose name you are prompted for. Wildecard allowed.
[Gold-H] : Helps on the next typed keys

[Gold-I] : Inseris the file you are prompted for.

[Go1d-J] : Jumps to the position marked by the previous [Gold-X].

[Gold-K] : Displays the current character codes (Decimal, Octal, ASCII)
[Geld-L] : Lowercases the current word.

[Gold-M] : Sets Margins, you are prompted for left and right values.
[Gold-N] : Gets in a new window the file in the current INCLUDE statement.
[Gola-0] : Goes to the other window, if there are two windows on the screen.
[Gold-P] : Searches for the next Fortran page, 8 "1” in column 1,

[Gold-Q] : Quits, without saving the buffer. Prompts if there are modified buffers.
[Gold-R] : Returns to the previous buffer.

[Gold~5] : Saves the buffer in the file you are prompted for.

[Gold-T] : Toggle two windows <==>> one window,

[Gold-T] : Uppercases the carrent word.

[Gold-W] : Sets Width to the value you will give.

[Gold-X] : Marks the current position, use [Gold-J] to come back here.
[Gold~Y] : Writes the INSERT HERE buffer to a given file.

[Gold-Z] : Spawns a subprocess. Returns upon Logout.

22

5. Gold special keys

[Gold-DEL] : Deletes to the beginning of line.

[Gold-TAB] : Inserts an ASCII tab.

[Gold-number] : Executes the next command (number) times.

[Gold-Up] : Increases the size of the current window by the requested amount of lines.

[Gold-Down] : Decreases the sige of the current window.by the requested amount of lines.

[Gold~Left] : Sets width and margin to the "small window-sise”, 80 on a VT100/200 terminal.

[Gold~Right] : Sets width and margin to 132.

[Geld-Return] : Opens a newline with indentation.

(Gold~[] : Sets RECTANGULAR mode, changes the Insert/Remove behnv:or

[Gold-]] : Sets the normal (NORECTANGULAR) mode.

[Gold-(] : Matches the corresponding closing/opening bracket.

[Gold~)] : Matches the corresponding closing/opening bracket.

[Gold-?] : Shows all the user buffers.

[Gold-=] : Gives the current column and line.

[Gold—] : Draws a line. The direction is given by typing on the arrows, and typing any other key ends
this line drawing mode.

[Gola~[] : Draws a box in rectangular mode, from selected point to current cursor position.

(Gold='] : Sets the in-flight speller ON (or OFF if it was ON before). :

8. VT200 keypad

(¥e] : Interrupts, back to DCL level. Type CONTINUE to recover.

(F7] : Splits the current window in two windows (works only from one to two in this version).
[Gola-F7] : Deletes the current window (decrease the number of windows on the screen)
[F8] : Goes to the other window.

[F] : Quits, without saving buffers,

[F10] : Exits, saving all modified buffers.

[F11] : Changes the current direction, FORWARD <==> REVERSE.

(P12] : Moves by line, by end-of-line in FORWARD, by Beginning-of-line in REVERSE,
[F13] : Erases the current word.

[F14] : Changes the mode, INSERT <==>> OVERSTRIKE,

[Help] : Draws the VT200 keypad, allows help on any key.

[De] : Prompts for a line command, and executes it.

[Gold~Do] : Executes a VAXTPU command.

(F17] : Returns to the previous buffer.

[F18] : Capitalizes the current word.

[F19] : Lowercases the current word

[r20] : UPPERCASES the current word,

[Find] : Finds the string you will give to the prompt.

[Gold~Find] : Wildcard search of a string or an expression.

[Insert Here] : Inserts at the current position the content of the INSERT-HERE buffer.
[Remove] : Removes the selected range, if one exists.

(Gold-Remove] : Stores the selected text (without removing it) in the INSERT-HERE buffer.
[Select] : Starts a selected range, or cancels one if one exists.

[Gold-Selact] : Resets the selection.

[Prev Screen] : Moves the cursor one screen backwards.

[Gold-Prev Screen] : Goes to the previous window (up on the screen)

[Next Screen] : Moves the cursor one screen forwards. _

[Gold-Next Screem] : Goes to the next window (down on the screen)

23

STYLES

A style defines the behaviour of this editor in. the following circumstances : TAB, Indentation whew a
line is split, Defanlt seitings, action on empty buffers, and commands related to-the [Enter] kew. It also
defines a string to be put on the status line. This string is used as a match string for the command SET
STYLE xxx, used to force a style. By default, the style is.determined from the file type of the output file,
and the correspondance will be deseribed for each style.

1) NEUTRAL

This style has NO name on the status line, and NO file type. In fact, NEUTRAL is the default style for
all buffers where no other style is defined. This includes system ‘buffers, and new buffers if they don’t have
an output file. By default, the TAB stops are set every 8 columns. Width is automatic. There is no action
on empty file and there are no [Enter] extensions.

1. TAB

The first TAB position is in column 5 and the other every 8 columns, starting in column 9, like the
standard DEC setting. The first position can be changed by the command SET STEP nn, default is 4, and
the other positions can be changed by the command SET TAB EVERY mn.

2. Indentation

When the line is split, we indent the ‘continuation’ line by the same number of spaces a3 the previous
line. This allows you to have indented paragraphs automatically. If the current line is the beginning ofa
paragraph (i.e. the previous line is empty), we decrease the indentation by the step (default 4), unless the
paragraph starts with a non alphabetic character. In the latter case, we align the text on the first alphabetic
character of the first line in the paragraph.

2) Text

This is NEUTRAL style, but with optional automatic starting of the speller (if edf$spell defamlt
is equal to 1), and without asking for validation in the FILL PARAGRAPE [Gold-F] command. It is the
default for files with extension .TXT and .DOC.

3) FORTRAN

Style name is FORTRAN and is chosen for file types .FOR or .INC, but we have to select between
FORTRAN and VAX FORTRAN: For DELPHL, all Fortran. files are VAX_FORTRAN style. If you have
defined edf$defanlt_vaz. fortran to be ’1’, then every fortran is VAX_FORTRAN. If you have defined it to
be -1’, then every fortran file is FORTRAN. If you have the defaalt value of '0’, then the style is FORTRAN
only when the file name is at most 6 characters and doesn’t contain an underscore. QOtherwise the style is
VAX. FORTRAN.

* 24

I. Default

The margin is set to 79, and the TAB step to 2 (variable edf$defanltistep fortran . The first tab
position is in column 7 by default (i.e. for the first line).. TAB stops are every 8 columns. If the file isempty,
we generate a frame: You choose PROGRAM (in this case you can have the experiment’s logo),FUECTION,
SUBRQUTINE, COMMON, with name taken from the file name, or nene. If you select FUNCTION, you are
prompted for the type of fimction (INTEGER, REAL, LOGICAL, CHARACTER:).

2. TAB

We {ry to determine the correct indentation: We look for the previoua Foriran line that is neithera
comment (C ! or * in column 1) nor a continuation line (non space in column 6). If no previous line
is found, the first tab is in column 7, otherwise, we keep the same indentation for the new line, and look
to see if we want more indentation for the new line: This occurs after an IF(...) THEN statement, after
abDd .. = .. , .. statement, after an ELSE, ELSEIF statement, and after STRUCTURE, MAP and USION
statements, where the indentation is incremented by the tab step.

If the TAB is typed in any column before the first TAB position , except for column 1, we look to see
if the beginning of the line is a statement label. If so, we right align the label in column 5, and a normal
indentation is performed, as described in the previous paragraph.

3. Indentation

When a Fortran line goes over column 72 (or the right margin value for a comment line), we split the line
at the end of the last complete word We avoid splitting inside a string, i.e. if there is an unbalanced number
of quotation marks in the line, then we go back to the last opening quote (quotes in an inline comment, and
the possible quote used in a read/write statement to access a file by records are not misinterpreted). The
temaining text is put on a new line, with some prefixed text which depends on the type of the current line.

- If the current line contains an inline comment character !, then the new line will be a comment line
with the ! comment character at the same offset.

- If the current line is a comment (€ or * in column 1), the new line will be a comment with up to 40
leading characters copied from the previous line, as long as these characters are spaces or = + — * .,
This is done to keep the indentation of the comment lines.

- If the current line is a continuation (i.e. has any non blank character in column 6), then we keep the
same beginning of line up to the first non blank character after column 6.

- For the remaining normal fortran lines, we generate a continunation line indented by tab_steps to match
the current line.

All this technical description seems very complicated but in fact, it works well, and you usually don’t
need to know all these things. Just in case of problems ...

4. ENTER extensions

There are a lot of these. After typing [Enter], you are prompted for another character, whose value
determines the action. It can be :

[A] For D®: This saves the current buffer, then calls the DOFLAVOR/CHECK code checker to validate
your programming style. This is mandatory before submitting code to the D@ librarians...

For others, this generates the DIMENSION declaration.

[(B] Generates a. BYTE declaration, but. not for D@.

[C] Inserts a.CHARACTER* declaration statement.

[D] Generates a DO loop-after the current line. We try to choose a- LABEL, usually 10 mote than the
previous label (or, if there is no previous label, the next one). If the new label already exists, we
try every value starting from the previous label plus one, by steps of one. We propose this value, but
you are always free to give another one. But in any case, we check that the label is not already used.
The statements D0 mzm = , and mmn CONTINUE are then generated with the current indentation. The
cursor is positioned before the = sign so you can insert the index variable name, then go to the comma
by the [Gold-KP3] key to fill the mandatory strings. '

[B] Generates the EQUIVALENCE declaration.

25

[F] Generates the FUECTION header, with comments, RETURN, and END statements. Your name and the
date are used to generate a comment line in the header. You are prompted for the type of function (
INTEGER, REAL, LOGICAL, CHARACTER).

[E]' Help on the current word, supposed to be a Fortran keyword.

[I] Generates an IF (...) THEN / ELSE / ENDIF structure with the current indentation. You're
positioned inside the parentheses to-describe the condition. If yow were at the end of an ELSE statement,
that statement is changed to an ELSEIF(...) THER and another ELSE is generated.

[J] Introduces the INTEGER declaration statement.
(K] Generates a comment block:
[L] Introduces the LOGICAL declaration statement.

[¥] Introduces the INCLUDE ’...IEC' statement, and you fill in the file name. It is prefixed by DOSINC:
for D@, and followed by /LIST for DELPHL.

[P] Introduces the PARAMETER (... =) statement.
[B] Introduces the REAL declaration statement.
[S]1 Generates a SUBROUTINE header and frame, like FUNCTION (see [F]).

[U] Adds a line in the current routine header, with Update date and author name, after the previous create
(and update) line, If we can’t find such a line, we insert the Update stamp at the current position.

[v] Saves the buffer (checking whether any line extends over column 72), any other fortran buffer after
& prompt, and compiles it. If compilation errors-occur, you can go to the seurce line a.t fault by using
[Ctr1l-¥] to find the next one and [Ctrl~P] to go back to the previous one:

[x]. Generates a Main Program structure.

[Z] D@ only: Introduces the INCLUDE ’DOSLINKS:...LIEK’ statement, and you fill in the file name.

[=] gives you the current routine name.

[.1 createsand IF(first) THEN / first = .FALSE. / ENDIF structure at the current location, and declares
first as logical, SAVE and preset as true after the previous declarations in the same routine.

[PF2] Displays a list of these commands.

4) VAX_ FORTRAN

The style name VAX_FORTRAN is chosen for file types .FOR or .INC if the file.name contains ander-
scores, or is bigger than 6 characters, or if you put edf$detanlt. vax fortran := 1; in your MY_EDITOR_TPU
file, or if your experiment is DELPHI. The main differences from siyle FORTRAN are in the Enter extensions,
and the way CLEARN uppercases the file:

1. Default

The margin is set to 79, and the TAB step to 2 (variable edf$defanlt _step_vax fortran) . The first
tab position is in column 7 by default. TAB stops are every 8 columna. If the file is empty, we generate a
frame: You choose whether you want a PROGRAM (in this case you can have the experiment’slogo),FUNCTION,
SUBRQUTINE, COMMOE, with a name taken from the file name, or none. If you select FUNCTION, you are
prompted for the type of function (INTEGER, REAL, LOGICAL, CHARACTER).

2. TAB _
This is exactly the same as in FORTRAN style.
3. Indentation '

This is exactly the same as in FORTRAN style.

26

4. ENTER extensions
There are again a lot of these. After typing [Entex], you are prompted for another character, whose
value determines the action. It can be :
(BT Introduces the BYTR declaration statement.
(¢] Introduces the CHARACTER®» declaration statement.
(D] Generates a DO loop after the current line, terminated with an ENDDO statement.
[E] Generates an EQUIVALENCE statement.

[F]1 Generates the FUNCTIOR header, with comments, IMPLICIT NXOBE, RETURN, ESD statements. It uses
your name and the date to generate a comment line in the header. You are prompted for the type of
function (INTEGER, REAL, LOGICAL, CHARACTER).

(¢] for DELPHI, declares a Global Parameter. You will be positioned at the correct place. Gold-J will put
you back where you were,

(5] Help on the current word, supposed to be a Fortran keyword.

[I] Generates an IF (...) THEN / ELSE / EEDIF structure with the current indemtation. You're
positioned inside the parentheses to describe the condition... If you were at the end of an ELSE statement,
that statement becomes an ELSEIF(...) THEN aund another ELSE is generated.

(3] Introduces the INTEGER declaration statement.

(K1 Generates a comment line, with one empty comment before and after.

[L] Introduces the LOGICAL declaration statement, or (DELPHI) declares 2 Local variable (see [G)).
[M] Generates a MAP / END MAP structure. '

[¥] Introduces the IECLUDE ’...ING’ statement, and you fill in the file name. For D@, the name is prefixed
by DOSINC: ’ .

[0] Generates the RECORD / / declaration statement.)

el [In;r)oduc the PARAMETER (... =) statement, or (DELPHI) declares a formal Parameter (see
G]).

[Q] Generates the UNION / END UNION structure, with a first MAP / END MAP structure inside.

[R] Introduces the REAL declaration statement.

(5] Gencrates a SUBROUTINE header and frame; like PUNCTION (sec [F|)-

[T]1 Generates the STRUCTURE / / EED STRUCTURE frame.

(U] Add aline in the current routine header, with Update date and author name, after the previous create
(and update) date.

[v] Saves the buffer (checking whether any line extends over column 72), and compiles it. If compilation
EIIOTS occur, you can go to the source line at fault by using [Ctz1-¥] to find the next one and [Ctx1-P]
to go back to the previous one.

(W] Generates the DO VHILE () / ENDDO construct for another kind of DO loop.

[X] Generates a Main Program structure.

(2] Only DO : Introduces the IFCLUDE 'DOSLINKS:...LINK’ statement, and you fill in the file name.
[=] gives you the current routine name.

[!1 declares an inline comment with the same indentation as previous ones (default at column 41)-

(.1 creates and IF(first) THEN / first = .FALSE. / ENDIF structure at the current location, and declares
first as logical, SAVE and preset as true after the previous declarations in the same rontine.

[PF2] Displays a list of these commands.

27

5) PATCHY

This style is used for .CRA files in D@, and is very close to FORTRAN, except in some minor aspects :
The SUBROUTINE frame contains a PATCHY +DECK card, and indentation is not propagated over PATCHY
control cards. It is also used for .CRA and .CAR files for DELPHI, with the offline subroutine frame. The
[G], [L] and [P] extensions are the DELPHI version as described for Vax Fortran.

6) HISTORIAN

The style name is HISTORIAN and is chosen for file types .CRA, .CORR, and .INPUT in ALEPH.
This is a modified version of the FORTRAN style, with small differences in the way the SUBROUTINE,...
frames are generated. They now include the HISTORIAN control cards. All else is.as in FORTRAN style,
except you can’t compile the buffer (no [V] extension) but you can call a comdeck ([N] extension) or
create one with a [Q] extension. Indentation is not propagated thru the Historian control records *I or *D.

7) PASCAL

The style name is "PASCAL” and is given to file type .PAS
1. Defaunit

The TAB step is set to 2, the margin is antomatic. If the file is empty, we generate the frame for a
PASCAL PROGRAM, FUNCTION or PROCEDURE as you choose, whose name is the actual output file
name..

2. TAB

We try to compute the correct indentation : From the previous line (starting with an alphabetic
character), we extract the first character position. If the previous line doesn’t contain any '}, we will
increment the TAB position by TAB_step. This works well until there is.some 'continuation’ line. The next
line will then not be correctly indented.

3. Indentation

We look to see if we are in a comment stream. If yes, we keep the same indentation as the previous line.
If no, we indent by TAB_step more than the previous line.

4. ENTER. extensions

[A] Declares an ARRAY [1 OF
[(B1 A BEGIX END; blockis created.
[€] A CASE block is created.
[D] AFOR xxx := 0 TO - DO block is created.
[E] Declares an external procedure. _
. [F] Creates a FUNCTION module, with header.
Creates an IF THEN ELSE EED; block.
Declares an INTEGER variable.
Starts a Comment.

28

[M] Generates a PROGRAM frame.

[§] Generates an INCLUDE statement.

[0] Generates a RECORD structure.

[P] Creates 8 PROCEDURE module, with header.

[R] Declares a REAL variable.

[T] Declares a TEXT variable.

[x] Calls the PASCAL compiler for the current buffer.
[PF2] Displays a list of these commands.

8) C_Language

The style name is C_Language and is given to .C and .H files. You can select to have real TAB (defaalt,
if edf$detanlt _stepc := 0;), or have the number of space given by this variable as indentation.

1. Indentation

When using the Return key, a new line is created and automatically indented, like if you used the TAB
key. Indentation is the same as the previous line, is incremented inside a block or if this is a continuation
line (previous line not ending with ’;’, ’/?, * ? or TAB), and aligns the beginning of the text in a comment
block.

2. Enter extensions

[B] Starts a new block ({} stracture).
[C] declares a CHAR., variable.

0] defines a DO loop.

[F] starts a FOR construct.

[I] starts a IF construct.

[I] declares an INT variable.

(X1 gencrates a comment.

[¥] adds an INCLUDE statement.

[P] generates a PROCEDURE frame.
[S] generates a SWITCH structure.

[v] Saves the file and calls the CC compiler.
[W] creates a WHILE structure

[PF2] Displays a list of these commands.

9) Vax Macro

‘This style is for Vax Macro langnage, and is chosen for file types .MAR .
1. Default

It uses ASCII TAB, every 8 columns. Margins are set to 80 columns. On empty file, we generaie a
standard frame.

29

2. Indentation
The comments are recognised, and their indentation kept.
3. ENTER extensions

Creates an ENTRY with subtitle.

Creates a comment,.

Includes system macro library SYSSLIBRARY:LIB.MLB.
Creates a standard frame.

(P1 Page break

[S] Defines a subtitle.

[v]l Compiles the buffer.

[PF2] Display a list of the commands.

EERE

10) 68000 Assembler

The style name is Assembler and is given to .ASM files. Its main purpose is to fill the frame. The only
extensions are [P] to generate a procedure frame, and [U] to update the modification records.

11) 68000 Real Time Fortran

The style name is RTF and is given to .FTN files. This is a Vax Fortran style, plus the facility (Enter
+) to switch to Assembler mode, and vice versa.

12) VAXTPU

The style name is TPU and is chosen for file type .TPU
1. Default

The margin is set antomatically and the TAB step is set to 3. If the file is empty, we generate a
PROCEDURE structure.

2. TAB

We try to determine the correct indentation, by reference to the previous normal VAXTPU line (start
with spaces (or not) then any alphabetic character, or contains ‘] :’ for the CASE statement). The
indentation will be the number of spaces up to the first alphabetic character, and will be incremented by
Tab._step if the previous line doesn’t contain a »;” (This indents the LOOP, IF THEN, ELSE lines, and also
continuation lines. But each new continuation line is more indented than the previous one... Nobody’s
perfect.). Notice that.the TAB can result in. nothing being put in the buffer if the previous line starts in
column 1. ‘

30

3. Indentation

First, check whether we are in a comment (a ! character in the line). If so, we generate a continuation

line with a ! at the same column, and with a space after. If not, we take the same indentation as that of
the previous line, plus tab_step.

4. ENTER. extensions

(C] Generates the CASE xx FROM 1 T / [1] : / ENDCASE; structure with current indentation.
(E] Extends TPU with all procedures in the buffer.

[I1 Generates the IF THEN / ELSE / EMDIF clause with cutrent indentation.
[X] Generates a comrment.

[L] Generates the LOOP / EXITIF / ENDLOOP structure with the current indentation.

[P] Generates the procedure header and body using your name and the current date.
[PF2] Displays a list of these commands.

13) DCL

The style name is DCL and is given to file type .COM and .LNK
1. Default

The margin is automatically computed, and the TAB step is 4. If the file is empty, we generate the
frame for DCL, i.e. comment plus O¥_ERROR statements.

2. TAB

This generates a $ as first character, followed by as many space as needed to keep indentation: Same as

the previous line beginning with a $, except after a THEN or ELSE. If you have defined ed2$DCL_ASCII TAB
:= 1; then one uses ASCII TAB instead of spaces.

3. Indentation

If the previous line contains the comment character !, we generate a continuation line with § !, the
two comment characters being vertically aligned. If there is no comment character, and if the previous line
is the first line of a statement (starts with a $), we indent by tab_step. If the previous line is already a
continuation, we keep the same indentation. And in both cases, we add a ”-” at the end of the previous line.

4. ENTER extensions

[G) Puts a GOTO command on next line.
[I] Inserts an IF ... / THEN / ELSE / ENDIF construct.

fK] Generates a comment Box.

[M] Generates a frame for DCL command files.
{U] Updates the creation date and author.

(W] Adds a WRITE SYS$OUTPUT statement.
[PF2] Displays a list of these commands.

31

14) RUNOFF

Thé style name is' Runoff and is given to file types starting with .RN as the first two chacacters.
1. Defanlt

The mugm is automatically set. If the file is empty, we generate a standard set of initial RUNOFF
commands. The TAB and Indentation are the same as in Nentral style:

2. ENTER extensions
You have to know the syntax of RUNOFF to use these extensions fully. Type [Entex] then a single
character in response to the prompt.
(4] Runeff command .APPENDIX, starts an appendix.
[B] Runoff command .BLANK nn, skips nn lines.
{¢] Runoff command .CHAPTER, starts a chapter.
[El Adds a new element in a list.
(F] Starts a Footnote.
[H] Generates the .HRADER LEVEL command, to start a new subdivision in the text.
(L] Starts a new list, use [Enter—E] to generate elements in the list.
(M] Generates the standard RUNOFF header and settings.
(¥] Starts a NOTE, this is a piece of text with restricted margins.
[P] Starts a new paragraph.
[l

Saves the buffer, and process it by RUNOFF in a subprocess. You will see the R.UNOFF €TTOr messages
(if any) in the lower window of the screen.

[PF2] Displays a list of these commands.

15) TeX

The style name is ?TeX” and is given to file type .TEX.
1. Defanlt

The TAB step is set to 4; the margin is automatic. If the file is empty, we generate the fra.me for a
simple TeX file. TAB behaviour and Indentation are the same as the neutral style.

2, ENTER extensions

(Bl Selects Boldface characters.

[C] Generates the command to center a line.

[E] fills the remainder of the page with spaces, then starts a new page.
[I] Selects Italic characters.

[M] Generates the frame for a new TeX file.

[P] Starts a new paragraph.

[R] Generates the command to right adjust a sentence.
[1] Selects TeleType characters.

[V] Generates a vertical skip of some space.

[x] Executes TeX on the current buffer, in a subprocess.
[PF2] Displays a list of these commands.

32

16) LaTeX

1. Defaunlt

This style is selected for file types.”.LATEX™. You can select it for:.TEX files if you place the following
line in your MY_EDITOR TPV file : standard extension{".TEX"} := "LATEX"; The TAB step is set to 4; the
margin is automatic. If the file is empty, we generate the frame for a LATeX file. The document style is
article and the sise of ovtput is set to A4. TAB behaviour and Indentation are the same as the neuntral
style,

2. ENTER extensions

[1] Creates a new (unnumbered) section.

[2] Creates a new (unnumbered) subsection.

[3] Creates a new (unnumbered) snbsubsection.

[B] Selects boldface characters.

[C] Center environment.

[E] Select emphasized characters.

(F]1 Formula (in-text).

(6] Formula (displayed).

[I] Itemize environment.

[M] Generates the frame for a new LATeX file.

[P] Creates a new paragraph title.

[Q] Quotes (7).

[B] Generates the command to right adjust a sentence.
[S] Subscript.

[T] Selects teletype characters.

[U]l Superscript.

[V] Insert figure.

(X] Executes LATeX on the current buffer, in a subprocess.
[PF2] Displays a list of these commands.

17) Vax Document

The style name is DOCUMENT and is given to .SDML files, which are then processed by Vax Document.
The automatic speller is activated by default if you have set edf$spell defanlt to 1in your MY_EDITOR TPU
file. The TAB is as for the neutral style, the antomatic indentation adds spaces at the beginning of the new
line if the current line starts with a Vax Document tag. If the file is empty, a standard header page is
generated afier confirmation. If the proccdure vax document_logoe is defined, this procedure is executed
when creating the header page, just at the beginning of the page. This procedure is intended to create the
SDML text to produce your favorite logo on the front page of your document.

33

[al
(1
Lcl

[l
[F]
m
I
-4
Ll
[x]
[Pl
ql
[b:A
[s]
[Tl
vl
[xi

1. ENTER extensions

Creates an Argument description, to be used when describing a routine.
Bolds a string.

Creates the deseription of a COMMAND., T]ns provides the standard options to describes the parame-
ters, the qualifiers, the restrictions, etc.

Creates a definition list. [.] adds.ap item in the definition list.

Creates a.fignure.

Creates a conditional section of text, to be processed only if the given keyword is defined.
Italicises a string.

Creates a comment.

Starts a new list. [E] adds an element in the list.

Creates a NOTE in the text, which will appearz in bold.

Staris a new paragraph.)

Creates a qualifier description, in the context of a command.

Reference a symbol, whose value will be output in the doenment.

Creates a SUBROUTINE description, with templates for argument, return value, etc.
Creates a table. [-] adds a row in the table.

Describes the return Value of a subroutine.

Creates an example,

[<] Tags a siring.

|
[1]
[2]
[3]

Quotes a string.

Creates a <HEADI1>> section
Creates a <HEAD2> section
Creates a <HEAD3> section

[PF2] Displays a list of these commands.

18) SCRIPT CERN paper

The style name is CERNpaper and is given to .SCRIPT files. It is mainly characterized by the generation

of a file header, you are prompted for various options as in docament style. TAB and indentation are as for
neutral style.

[a]
(8]
tcl
[E]
[}
[s1
[l
(2]

1. Enter extensions

Starts an Appendix.

Starts a bullet, close it with extension [E].

Starts a Chapter.

Ends a bullet,

Reserves some room for a Figure; you are prompted for the name and the size of the Figure.
Starts a new section.

Reserves some room for a Table; you give the name and the sise.

Starts a subsection.

[PF2] Displays a list of these commands.

34

19) SGML

The style name is SGML and is given to .SGML files. Like SCRIPT, its main purpose is to fill the
empty buffer.

1. ENTER. extensions
[C] Starts a chapter.
(F] Commence un texte en francais.
[accents,tilda,quote,..] create an accentued letter.

20) MAIL

This style name is "MAIL” and is given to file type .MAIL or to file with name starting by MAIL_,
because that’s the internal name of MAIL generated files. In ALEPH, this style is selected for the file
ALEPH$EDITOR.TMP, the AMSEND working file.

1. Default

The width is automatic. On an empty file, we generate the location and time stamp at top right, the
signature at the bottom, and you are positioned to start your message. Those two pieces of information

(your location and signature) are kept in your MY_EDITOR TPV file. See NEUTRAIL style for TAB and
Indentation.

2. ENTER. extensions

None.

21) STRUCTURE CHARTS

The style name is "Structure Charts” and is given to file types starting with .STR .
1. Default

The TAB step is set to 8, the margin to 132, the mode to OVERSTRIKE and to RECTANGULAR.
This allows you to draw and move boxes more easily. If the file is empty, we generate the frame for structure

charts, with file name, author name, notations, ..., and 60 empty lines. See NEUTRAL style for TAB and
Indentation..

2. ENTER extensions

[B] Draws a bax from a previously selected point to the current cursor position.

(L] Enters the ‘line drawing’ mode, i.e. when you move the cursor with the arrows keys, a line is drawn on
the screen. You exit from this mode by typing any key other than an arrow.

[R] Processes the file thru RUNOFF to produce the .STRUC result.

(+] Draws a small arrow from the current cursor position, with a star as first character. Type one arrow

key to give the arrow’s direction, any other key cancel the command. This is used to show CONTROL
information.

[e] Also draws a small arrow, but with this first character. This is used to show ZEBRA banks.
Lol Also draws a small arrow, but with this first character. This is used to show DATA information.
[PF2] Displays a list of these commands.

35

22) RCP files

This style is giver to. .RCP files: The TAB and margins are identical to the neutral style. A default
header is generated in case the buffer is empty. Notice that the DCL command RCPSIZE is run on each
RCP buffer upon exit.

1. ENTER. extensions
[A] Defines an array.
[C] Defines a character string.
[H] Creates the default header.
[XK] A comment.
(8] Run RCPSIZE on the buffer.
(U] Add update time and name.

23) ZEB files a

This style is given to .ZEB files, the documentation on ZEBRA banks.
1. Defaults

The behaviour is like the neutral style, with margins at 79. A standard frame is generated for empty
buffers.

2. TAB, Indentation

A TAB in column 1 copies the beginning of the previous line, as long as it contains only spaces, plus
and minus (and C in column 1). Indentation is as in FORTRAN style.

3. ENTER. extensions
(8] add a new item at the end of the baak, with the type B, i.e. bit string.
[F]1 add a new item at the end of the bank, with the type F, i.e. a floating point number.
(H] add a new item at the end of the bank, with the type H, i.e. a Hollerith string of 4 characters
[1] add a new item at the end of the bank, with the type I, i.e. an Integer variable. |
(L] add a new link before the existing one. You will have to define it as Structural or Reference yourself.
[M] Add at the beginning of the buffer the standard ZEB frame, to help clean up old ZEB files.

24) Release notes

This style is used only for the file YEW_RELEASE . XOTES. If the file is not empty, a separation line is put
at the end. We always add a line with date and author name, and position on the first paragraph to describe
the changes in this release. Other properties are the same as the Document style. :

36

EXPANDING EDFOR

1) Adding a new style

Adding a new style 'YYY” can be done in a simple way. You have to provide one procedure, called
odL$TTT settings(thebutfer, question.number), which is called for vazions values of the second ar-
gument, the first one being the buffer for which this style applies. This procedure (and any other procedure
you may call from this one) has to be put in a file named STYLE.YYY.TPU and placed in &ither yonr own
login area, or in the EDFOR$SRC: area. You are strongly encouraged to look at existing procedures before
writing your own. The expected answer for the various values of ’question_number’ are:

1: You return the string which will appear on the status line.

2: This is called at initialisation time. The return value is irrelevant, but you can put here actions like
margin, width and TAB position settings. You can define edf$ascii_tab := 1; to define the TAB
key as. 'insert.an ASCII TAB here’. In this case, antomatic indentation can also be performed.

3: You return an integer value, usually 0, but 1 means that this is a fortran file (for column 72 checks, ...
) and -1 means that the paragraph filling will be done without prompting for validation. The Speller
will be automatically started (if ed¢$spell_defanlt is non sero) and will only work if the value is less
than gero, so that you do not spell FORTRAN.

4: Thisis called when you crate an empty buffer. This is where you put the default content of your buffer.
Look at some existing files for idea and tools...

6: This is called when the TAB key is typed. You have to define the variable edf$tab atring as being
the string to insert at beginning of line, and return the length of the string. The NEUTRAL style ia
obtained by the statement : return(edf$defanlt.tab);.

6: This is called when a line is split, in order to perform indentation and continuation mark generation.
The current position is the beginning of the line to be split, and you are not allowed to change the
position without restoring it. You reiurn the text to be inserted at the beginning of the new line. The
NEUTRAL style is obtained by the statement : retaxn(sdf$auto_indent)i,

7: This is called when you press the Enter key. Look at existing files for a template if needed, the
NEUTRAL style is to output the message " No special extensions”.

8: This defines a new list of word separators, which overwrite the one given by edf$uord separators. If
this case is absent, or returns 0, the default value edf$vord separators is used.

In order to use this style for some file types, you have to add in your MY_EDITOR_TPT file a statement like
standazrd extension{".XXI"} := "YYY";, where XXX is the extension of the file in uppercase, and YYY
your new style name. Of course, if you think that this new style may be usefull for other users, please mail
the corresponding file to VXCERN::CALLOT, with some explanations. This file can then be distributed to
all other users.

2) Compiling styles

The method we use to access a style (read and compile the corresponding file at execution time) allows
user expansions. But as loading a new style uses some CPU, it may be faster to compile the most commonly
used styles. You just need to create a file ENFOR$SRC : COMPILED STYLES .LIST with one style name per line,
These styles are then compiled when building EDFOR. If you change this file, just type at DCL level:

OEDFOR$DIR : BUILD_EDFOR '

37

3) Adding a new experiment:

An ‘experiment’ is used to define the FORTRAN and VAX_FORTRAN styles, mainly the subroutine
lay-out and the Enter extensions. Adding a new experiment 'XXX" is relatively simple. You must provide
a file nammed EDPOR$SRC: EIPERIMERT XIX.TPU, with a few procedures. The procedures needed are :
for$programlogo to create the experiment logo in front of a FORTRAN main program. -
forfhoader to create the subroutine header for the FORTRAN style, Look at existing experiments files for

more details, i

vaxtorfheader to-create the subroutine header for VAX_PORTRAN style, it can be a call to the previous
routine...

for§comment to define the lay-out of a-comment obtained by Enter-K.

forfupdate to process the Enter-U key and add an update tag in the current fortran module.
for$action to process the Enter extensions in FORTRAN.

vazfor$acticn to process the Enter extensions in VAX FOBRTRAN.

You have better time to modify an existing experiment file than to-create one frome seratch. To use this

style, just edit your MY_EDITOR TPU file and change the variahle ed*$experiment. Send a copy of this file to
VXCERN::CALLOT to have this file distributed to other nodes.

38

USER VARIABLES

This section describes the various variables you can modify by adding a statement in your initialisation
file ¥Y_EDITOR TPV which is by default SYS$LOGIN : MY_EDITOR.TPU, Variables are defined by a statement like
variable.name := "“stzing"; or varisblename := 123466; depending on their type, string or integer.
For each of these, the default value is given here.

edf$erperiment := "no" is a mandatory variable. You are prompted for a value the first time you use
this editor. You have to choose a valid value ("ALEPH”, "AMY™, ®D0”, "DELPHI”, *"L3", "LBL",
"OPAL" or "no”, in fact all the files like EDFOR$SRC : EXPERINENT * . TPU), ot the behaviour may be
strange.

edf$author.name := "string® is a mandatory variable. If not defined or empty, then you are prompted
_ for your name and a new initialisation file is written. This variable is used to put your name in the
header of subroutines, procedures, ete.
edf$author signature := “string® for MAIL style only. Mandatory, you will be prompted if empty.
This is the signature to be put at the end of your MAIL. A suggested value is your first name.
edf$author location := “string" for MAIL style only. If not empty, this string followed by the date is
put in the top right corner of the file.

edf$automaticgidth := 1; Select if you want (1 = true) an automatic setting of width of the screen to
"small window sise” (the sise of your terminal when entcring EDFOR if less than 120 columns, 80 if
not) or 132 columus according to the value of the right margin each time the status line of the buffer
is updated. Default is yes. If the right margin is bigger than "small window size”, we set the width to
132. If the width is bigger than "small window size” and the right margin less, we set the width to the
”small window size”.

edf$vord separators := "',.:];) "; (TAB included) defines the list of characters used as word sepa-
rators. These character are part of the words (at the end of the word), and are not suppressed when
splitting lines. Only *whitespace’ characters (space and TAB) are removed when splitting a line. Notice
that this list can be overwritten for certain styles.

edf$spoll default := 0; should be 1 if you want the speller to be started for TEX, .RNO, MAIL, .DOC
and .TXT files.

edf$defanlt mouse on := Q; Determines if the mouse is by default on or off,

edf$run in subprocess := 0; to indicate that you run the editor in a subprocess. This changes the way
EXIT and QUIT works. If 1, then we ATTACH to the parent process after saving (EXIT) or deleting
(QUIT) the buffers, with the same logic as the standard EXIT and QUIT.

edf$scroll mergin := 15; defines the fraction (in percent) of the screen where the cursor can not go,
because the screen will seroll.

edf$default_vax fortran := 0; To choose between FORTRAN and VAX_.FORTRAN styles. If equal to
1, every Fortran file is VAX_FORTRAN. If equal to -1, every Fortran file is FORTRAN. If equal to 0,
then all Fortran77 conforming file names (6 characters, no underscores) are FORTRAN style, others
are VAX_FORTRAN. '

edf$default step fortran := 2; is the default indentation step for FORTRAN style.

39

edf$defanlt_step_var fortram := 2; is the default indentaiion step for VAX_FORTRAN style.

edf$ozrtran.compile := "FORTRAN"; defines the Fortran command line, i.e. your default qualifiers.

edf$fortran extended source := 0; defines the check of column 72. 0 means check and prompt if a bad
line is found. -1 means check and refuse to write the file. 41 means no check.

edf$fortran.continuation char := “&"; defines the continuation character to be put on column 6 when
a line is split. , : .

edtfvar keyword case := "UPPER"; defines how the fortran keywords are modified by the CLEAN com-
maad in the VAX_FORTRAN style. Possible values are "UPPER®, "LOWER” and *CAPITAL”, all in
uppercase: .

edf$var variablecase := “LOVER"; defines how the fortran source statements are modified (on request)
by the CLEAN command in the VAX_FORTRAN style. Possible values are *UPPER” and "LOWER®.

edf$default header := 1; defines if you want to be prompted for the type of header (subroutine, fanetion,
.) you want to create when your buffer is empty. If set to 0, no header is ever generated.

edf$defanlt stepc := 0; defines the way. we indent C code: 0 means using ASCII tab. Any positive
number means indent by this number of spaces.

edf$c_tab_size := 4; defines the size of an ASCII tab when used for indentation. Use the valne 8 to
display correctly code written with the standard VAX tab settings.

edf$DCLASCII TAB := 0; Defines if one wants real ASCII TAB for DCL files, the defanit being to use 4
spaces, \

odf$xscript := “XSCRIPT/EXP"; defines the command to run SCRIPT.

edf¥sgnl := "SGML/EXP"; defines the command to ran SGML.

edf$scr.dist := ""; defines the CERN distzibution code for SCRIPT outputs.

edf$zcr.dov := "*; defines the CERN device for SCRIPT ouiput.

edf§dov.name := ""; edffbat.name := "“; od2$i3812 := “TC38124"; are used to describe the output
destination for SCRIPT processing at CERN. :

standard extension{".IIX"} := "style"; defines the requested style for all files with extension .XXX (
with the dot and in uppercase); The possible valnes of ’style’ are the various style names: 'NEUTRAL’,
’FORTRAN’, 'VAX_ FORTRAN?’ or any 'ZZZ’ with a corresponding file EDFOR$SRC :STYLE_ZZZ.TPU.

standard £ile{"IXXX.YYY"} := "style“; defines the requesied style for the given file name.

40

