INCLUDE FORTRAN Compiler Directive Translation

CLAS-NOTE 90-012

Donald Joyce, CEBAF

Oct 1, 1990

Abstract

A set of utility programs have been written to translate the FORTRAN compiler directive
“INCLUDE?” statements. This translation is available for both the machine specific directive
and the following file path. The programs are easily modified for other translations.

Introduction

Until recently, almost all code being developed for the CLAS collaboration was being written
on DEC VMS based machines in FORTRAN. Most of this code takes good advantage of the
“INCLUDE?” directive for the FORTRAN compiler. CLAS NOTE 90-008 specified that such
include directives make use of VMS DCL logical definitions for include file paths.

At present, members of the CLAS collaboration are either starting to use, or considering
the use of computers other than VAX VMS machines. Although, such machines come with
FORTRAN compilers which support the “INCLUDE” directive, this directive can take a form
different from that on VMS machines. For example, the VMS FORTRAN compiler supports
the statement:

INCLUDE path : filename

whereas, the ULTRIX FORTRAN compiler supports the statement:

$INCLUDE path/ filename

Although, the above illustrated difference appears trivial, machine dependent changes to code
should be automated to avoid introduction of unintended error. To port CLAS code to various
machines the programs UPDAT_TBL and INC_.TRAN were written. UPDAT_TBL maintains
machine specific translation tables, whereas INC.TRAN modifies “INCLUDE” statements in
FORTRAN code to be compatible with target compilers. Both programs are intended to be
used with a “MAKE?” utility.

Both utility programs are written in ANSI C hopefully making them easy to port to all
intended computer platforms.

UPDAT_TBL

The C program UPDAT_TBL is utilitized to maintain a machine specific translation table. UP-
DAT_TBI can be used with either a standard CLAS-standard translation table or a combination
of standard and personal translation tables. If a personal translation table is used, personal en-
tries supercede duplicate CLAS-standard translations. Use of personal translation tables is

intended for code development work, whereas CLAS-standard tables are utilized primarily for
code porting. UPDAT_TBL can also be utilized to generate ascending order translation tables
from raw translation tables.

UPDAT_TBL requires at least two arguments or parameters, and a maximum of three. The
first argument is the path and name of the CLAS-standard translation table, and the second
is the path and name for the output of UPDAT TBL. The third, and optional argument is the
path and name of the personal translation table. For example on a VMS system one may use:

UPDAT_TBL CLAS_TBL:CLAS_TRAN.TXT MY_ROOT:CLAS_TRAN.TXT MY_ROOT:TEMP_TRAN.TXT

In this example, the standard translation is read from CLAS_TBL:CLAS_TRAX¥.TXT and is added
to and or superceded by the table contained in MY_ROOT:TEMP_TRAN.TXT . The result of using
UPDAT.TBLI is then written to MY_ROOT:CLAS_TRAN.TIT . The file KY_ROOT:CLAS_TRAN.TXT
would then be used by the utility INC_TRAN to insert machine specific “INCLUDE” STATE-
MENTS in the FORTRAN code being ported.

Table Format

Translation tables require a specific form for the programs UPDAT_TBL and INC_.TRAN to
work properly. Translation tables are in the form of ASCII text files wherein each line contains
both a search item and a substitution item. For example, the line:

‘celeg$cmn:common,.cmn’ ’*groups:[clas.new.src.celeg.cmn] common.cmn’

In this example celeg$cmn:common.cmn is the search item, while the latter term,

groups: [clas.new.src.celeg.cmn] common.cmn is the substitution item. Each standard file
must also contain a search item for the INCLUDE directive, and a compiler specific substitu-
tion. For example, if one were to port code to HP UNIX machines, one would include the line:

INCLUDE #INCLUDE

Given this line, each occurrence of a translatable include statement results in the substitution
of #INCLUDE at the appropriate location. A short sample of a translation table is included in

appendix A.

INC_.TRAN

The C program INC_TRAN is used to modify FORTRAN source code such that the code
contains INCLUDE compiler directives appropriate for compiler and target operating system.
In operation, INC.TRAN reads a code file, line by line and searches for lines containing the
word include . Upon finding this, INC_.TRAN searches the remainder of the line for a match
with a search entry in the translation table. If a match is found, the existing line is commented
out, and the appropriate line is substituted, with the proper compiler directive. If a match is
not found the existing line remains unchanged and a comment is inserted in the code, stating
that a match was not found.

INC_TRAN requires three arguments for parameters. The first argument is the path and
name of the translation table. The second argument is the path and name of the FORTRAN
file which is to be modified, while the third argument is the path and name of the result. For
example:

INC_TRAN MY ROOT:TEMP_TRAN.TXT CELEG$EVENT GEN:INIT.FOR INIT.F

Here MY_ROOT:TEMP_TRAKN.TXT is the translation file, CELEG$EVEET_GEN:IEIT.FOR is the file
needing modification, and INIT.FOR is the output file.

Use of MAKE Utility

Both program are intended for use with the UNIX MAKE utility. Versions of this utility are also
available for VMS, VM, MVS, MSDOS, etc. Use of MAKE assures that translation tables are

current, and that new modifications are accounted for with all code being ported. The following
illustrates a typical “makefile” incorporating the programs UPDAT_TBL and INC_TRAN:

my._root:clas_tran.txt: clas_tbl:clas_tran,txt\
my_root:temp tran.txt
$ updat_tbl clas_tbl:clas_tran.txt my_root:clas_tran.txt my_root:temp_tran.txt

test_exam.f test_exam.for\
, my_root:clas_tran.txt
% inc_tran my_root:clas_tran.txt test_exam.for test_exam.?f

test_axam,obj: test_exam.f
$ for/object=test_exam.obj test_exam.f

test_exam.exe: test_exam.obj
$ link/exe=test_exam.exe test_exam.obj
$ delete test_exam.f
% delete test_exam.obj

This example is based on the VMS version of MAKE. In examining this file, the executable
test_exam.exe has the dependency test_exam.obj . This object file in turn has the depen-
dency test_exam.f . This FORTRAN file is the result of translating the file test_exam.for
. As illustrated in the makefile listing above, test_exam.f has two dependencies, namely
test_exam.for and my root:clas tran.txt . Therefore, prior to translating test_exam.for
the status of the translation file is checked by the MAKE utility. This translation file also has
two dependencies: clas_tbliclas_tran.txt and my root:temp tran.txt . These represent
the standard translation file and a personal translation file. To utilize the above illustrated
makefile and create the executable, one would enter on the system prompt

MAKE TEST_EXAM.EXE

In general use, each FORTRAN subroutine or function is compiled using MAKE with the
proper translation table dependencies specified. Very often, files included into FORTRAN codes,
themselves have include statements. A common example is to include parameter statements
into common block files. Therefore, one should remember to also code these dependencies into
the makefile.

Source Code Location

Source code for INC_.TRAN and UPDAT.TBL as well as the VMS makefile, are located in
the CLAS directories on the CEBAF VAXes. These directories are accessible for those persons
logging into these machines by entering the DCL command:

SETUP CLAS.NEW or SETUP CLAS.PRO

and then looking in the directory INC_TRAN$SRC . Those persons accessing the CEBAF VAX’es
via FTP or DECNET will find the files located in GROUPS: [CLAS.UTILITY.INC TRAK].

Appendix A

This appendix is attached to illustrate the effect of the programs UPDAT_TBI and INC_TRAN.
One begins with the sample FORTRAN program test_exam.for . This program is rather
simple:

PROGRAM test_oxam

L+
c_
C- Purpose and Methods : illustration only
c_
C- Libraries required : mnone
c- Inputs : none
c- Cutputs ! none
c- Contzrols ! mnone
c_
C~ Created 01-0CT-1990 Donald Joyce, CEBAF
c_
¢
IMPLICIT NOXNE
¢

INCLUDE ’LOST$DISK:UNKNOWN.PAR’
INCLUDE ’CELEG$CMN:COMMON .CMN?
INCLUDE ’MY_ROOT:TEST_EXAM.CMN®
CALL exit

END

This program contains three INCLUDE statements, which the program INC_TRAN rec-

ognizes, and will translate, if a translation exists.
Now one needs to examine the example translation tables. a portion of the CLAS-standard
translation table for VMS to ULTRIX is illustrated below:

include $include
'celeg$cmm:common.cmn’ ’usr/groups/clas/new/src/celeg/cmn/common.cmn’

4

A personal translation file might take the form:

include #include
'my_root:test_exam.cmn’ ’usr/vhatshisname/test/test_ezam.cm’

Here the personal translation file has an entry which supercedes one in the standard file,
namely the translation for the INCLUDE compiler directive. For Ultrix, both forms happen to

be acceptable.
Running the program UPDAT_TBL results in the following translation file:

'celegfcmn:common.cmm’ ’usr/groups/clas/new/src/celeg/cmm/common. cmm’
'my_root:test_exam.cmn’ 'usr/whatshisname/test/test_exam.cmn’
include #include

Finally, running the program INC_.TRAN with the use of this translation file results in the
following modified FORTRAN file:

PROGRAM test_exam

c
c_
c- Purpose and Methods : illustration only
C-
c- Libraries required : none
c- Inputs : none
C- Qutputs : none
C- Controls : mnone
c...
c- Created 01-0CT-1860 Donald Joyce, CEBAF
c..
c
IMPLICIT NONE
c

090 e o8 o 200 o 200 o 90 200 2 2 0 8 S o
C following include statoment without translation
Crrkkrrkrkkdkiik

INCLUDE ’LOST$DISK:UNKEOWN.PAR’
Ch¥rkkkrkkkripiekin
C**% line substitution by INC_TRAN
C——> INCLUDE ’CELEG$CMN:COMMON.CMN'’
Cok ook ko ke ook

#include ’usr/groups/clas/new/src/celeg/cmm/common.cun’
€ e ok o o o e o o ok o e o o o
C+#** line substitution by INC_TRAN

c--> IRCLUDE 'MY_ROQT:TEST_EXAM.CMN®
ey
#include ’usr/whatshisname/test/test_exam.cmm’
CALL exit
END

Here the include statements for 'CELEG$CMN:COMMON.CMN’ and *MY_ROOT:TEST_EXAM.CME’
are properly translated. However, no translation exists for *LOST$DISK:UNKNOWN.PAR’. There-
fore this compiler directive is flagged as being untranslated.

