CLAS-NOTE 92-001

CLAS Raw Event Format

L. C. Dennis
Department of Physics
Florida State University
Tallahassee, Florida, 32306

January 8, 1992

Abstract

This document provides specifics of the CLAS raw event format. This format is
used for events entering the data analysis stream from tape or from the online event
stream after removing zero’s and reordering the data. As the first version of the
raw event format, it is expected to change with later versions. The form of event
files are also described. The structure of the event data, the run header, trailers and
checkpoints all adhere to CEBAF common event format but do not make extensive
use of the structured format possible within that scheme. The output of these events
to physical devices is also described.

1. Introduction

This document outlines all of the details needed to produce a “run” file in the
standard CEBAF and CLAS format. In includes all the items which make up a
run and all of the details which are needed for detector and component numbering
schemes. The items are described in the order in which they occur on the run file.
That order normally consists of a run header, followed by events, followed by run
checkpoints and finally followed by a run trailer. For details on the definition method
see CLASNOTE-91-010!. Briefly, the structure of the run is described using =’s
to equate data entities, +'s to concatenate data entities, { }’s to denote iterated
data entilies and ()’s to denote optional data entities. In this way complex data
entities may be broken down into their component parts, and the parts broken down
further until only simple entities remain. Data entities used in any one definition
which are simple entities are described in the text following the definition. In this
way the entities within the run are combined and then defined to provide a complete
description of the run file. Tables summarizing these definitions are given at the end
of the text. These tables show the order of data words within a run file and the
structure of the banks in which they are imbedded. :

Also described in this document is a program which interprets runs, allows the
user to perform a detailed examination of the event data in them and can be used to
convert event data into an ASCII format.

The run format used in this version conforms to the CEBAF common event format.
In all cases the desired event data is packed into a single “bank” which contains the
CEBAF standard event header, followed by the data. Since these events are to be used
at the start of the event analysis stream, they events assume that zero suppression of
ADC’s and TDC’s has already occured and that the event data is grouped by sector,
package, subpackage and component. This version of the run files is intended to be
the first version. One major difference between this version and the expected final
version, is that this version does not take advantage of the expected range of the data
values to reduce the event size and contains some redundant information. The size
and structure of the events will be optimized in later versions. The banks for the run
header, run checkpoints, run trailer and events are then packed into logical records,
with no gaps between. The bank for any one of these entities may cross a logical
record boundary at any point in the bank.

Unless otherwise stated, the values contained in the file are INTEGER*4 variables.
Any real numbers are REAL*4. For character strings there are some standard size
conventions. All filenames are 80 characters long. All names are 32 characters long
and all other character string lengths are given with their definitions. but in all cases
are multiples of 4 bytes. Because of these conventions the event files are relatively
long.

In the version 1 scheme all variables atre converted to integers before output. These
integer buffers are then output using unfomatted writes. The standard size
for the buffer is 32788 integer*4 words. The method by which these conversions are

done is included at the end of the run file summaries. This method has only been
tested on VAXstations and DECstations.

II. Event File Definition and Structure

The CLAS event files are expected to hold events and basic information about
the run. As such they contain four distinct entities. These are the events, the run
header, the run checkpoints and the run trailers. The latter three entities contain
similar types of information about the situation under which the event data was
produced and scaler information. Each of these four types of data blocks is imbedded
in a unique data bank. The generalized bank format is described in the CEBAF
Online Data Acquisition Manual?®.

The following provides the shorthand definition of an event file. Fach of the
entities within the definition is a complex data object which will be described in
detail later. Note that the event file definition allows for a run without any run
trailer or checkpoints. In general such a run would not be usable, but it has been
included here for completeness.

Event File Run Header
{ Event }
({ Run Checkpoint

({ Event })}
Run Trailer)

+ + 4+

II.LA. Run Header

The run header provides all the information needed to begin the processing of a
run, plus some general information which is useful for tracking down problems which
occurred during a run. The first part of the Run Header, Run Checkpoint and the
Run Trailer are the same. The main purpose of the checkpoints and trailers are to
serve as “scaler events”. They provide the information needed to reconstruct what
happened during a run.

Run Header Header Flag

Header Length

Event Count

Date

Time

Run Version Number
Processing Status Flag
Run Description Block
Event File Locator List
Run Setup Block

Scaler/Parameter Setup Block

o+t

+ 4+

Header Flag = A single word used to identify this as a Run Header. The standard
header flag value is —1111. This information is redundant and will be dropped from
future versions.

Header Length = Length (in 4 byte words) of this event header block. This value
counts all words in the header.

Event Count = The number of events in the run prior to this point. If this run
does not span multiple tapes, the event count in the run header should be zero.

Date (CHARACTER®*8) = Current Date in DDMMMYY format followed by 1
fill blank.

Time (CHARACTER*8) = Current Time in HHMMSS format using standard
miltary time followed by 2 fill blanks.

Run Version = A software version flag for this run. The current version (described
in this document is 1).

Processing Status Flag = A software flag which indicates the state of processing
for this run. Since this document describes only unpacked events this flag should
always have the value 1.

Scaler/Parameter Setup Block

Number of Groups

{ Group Name
Number of Scalers
Number of Parameters
{ Scaler Name }
{ Parameter Name } }

Scaler/Parameter Setup Block

+ 4+ 4

Number of Groups = Number of scaler/parameter groups defined by this block.
When this value is zero, no groups follow.

Group Name (CHARACTER®*32) = A character string used to assign a name
to this scaler/parameter group.

Number of Scalers = Number of scalers defined by for this group. When this value
is zero, no scaler names follow.

Number of Parameters = Number of parameters defined for this group. When
this value is zero, no parameter names follow.

Scaler Name (CHARACTER®*32) = A character string used to name this scaler.

Parameter Name (CHARACTER™*32) = A character string used to name this
parameter.

Run Description Block

Run Description Block Experiment Name
Run ID Number
Beam Type

Beam Energy
Target Type

Run Purpose
Number on Shift

{ Person on Shift }

R R

Experiment Name (CHARACTER™*32) = Identifying name of an experiment.

Run ID Number = Number which defines this run in the sequence of runs for this
experiment.

Beam Type = Type of beam used for this run (electron, photon, polarized, etc.) (0
- photon beam, 1-electron beam and 2 - polarized electron beam).

Beam Energy (REAL*4) = Energy (in GeV) of beam used for this run.

Target Type = Type of Target used in this run. Integer value = 1000*Z + A of the
targe nucleus.

Run Purpose (CHARACTER®*256) = Description of the goal of tkis run.
Number on Shift = Number of experimenters on shift for this run.

Person on Shift (CHARACTER™*32) = Name of an experimenter on shift.

Run Setup Block

This block points to all the data needed to analyze the run, including the de-
tails of the trigger and data acquisition software used. It also points to the CLAS
Configuration data based needed to reconstruct the event.

Run Setup Block Trigger Specification Locator
Data Acq. Specification Locator
CLAS Configuration Locator

User Configuration Locator

++ + i

Trigger Specification Locator (CHARACTER*80) = Generalized “filename”
where information on the setup of the trigger is stored. For the present we will
assuming we will adopt a file naming convention which makes it easier to uniquely
identify a file. The special name “ONTAPE” will be used to denote that the run is
on a tape. Similar names will be given to other offline storage media. The string
contains a description of the file in a compressed format as given below.

For a file on a computer:
machine name :: diskname :| directory | filename

This format will be used even if the file is on a unix machine. In all cases this
locator name is translated to the name actually needed.

For a file on a tape:
ONTAPE :: location :[medium type . tape name | filename

(Ex. TSL = FSULCD::USER:[LARRY.GAMMAP]EXP128.TSL or if it is on tape
then TSL = ONTAPE::CEBAF:[6250.TAPE001)EXP128.TSL).

Data Acquisition Specification Locator = Generalized filename where informa-
tion on the setup of the data acquisition system is stored. (See note above for the
format).

CLAS Configuration Locator = Generalized filename where information on the
setup of the CLAS configuration database (geometry, status and calibration informa-
tion) is kept. (See note above for the format).

User Configuration Locator = Generalized filename where information on the
user defined setup is kept. (See note above for the format).

Event File Locator List

Event File Locator List = Event File Locator Count
+ { Event File Locator }

Event File Locator Count = Is the number of event file locators contained in this
list

Event File Locator = The generalized filename of a file containing event data for
this run. The generalized file name includes information on the computer and type
of device used. (See note on preceeding page).

Event Format

In general events can be input or output at different stages of the event analysis
process. The status of the analysis is indicated by the Processing Status Flag
in the Run Header. The event format described here is only for unpacked events.
However, this format is compatable with all of the other event types. It is expected
that events will be extracted from the event buffer before being used and that the
event buffer itself will not be equivalenced.

The structure of events follows that of the detector from event level data, to sector
level data, to detector package level data, to detector subpackage level and finally to
detector component level data. For some detector packages or some applications it is
more convenient to ignore the subpackage representation of the data. This fact will
not be represented in the event format but will be dealt with automatically in the
event database routines.

Event Event Header Flag
Event Length
Event Type

Event Sector Count
Event ID

{ Sector }

Event Description Data

+ 4+ 4+

Event Header Flag = An integer flag which indicates that this is an event. The
standard value for this flag is —4444.

Event Length = The length of this event in words.

Event Type = This is meant to be an integer value coming from the trigger system.
Thus it would normally be between 1 and 8. Since the meaning of these values will
vary from run to run there is no standard value for this number.

Event Sector Count = The number of sectors in this event.

Event ID = This number (actually implemented as two numbers) provides an ID
number for the event. This number can be used as a reference to the event.

Event Description Data = This block is not used by unpacked data. so it should
be empty. It would normally be used for data which comes from information from
more than one sector.

Sector

This section of the event data contains all the information pertaining to one sector
of the detector.

Sector ID

Sector Length

Sector Package Count
{ Package }

Sector Description Data

Sector

+ 4+ +

Sector ID = An integer flag which indicates the ID number of this sector. These
numbers run from 1 to 6 for the CLAS sectors, the photon tagger has been assigned
sector id number 7.

Sector Length = The length of this sector in words.
Sector Package Count = The number of packages in this sector.

Sector Description Data = This block is not used by unpacked data, so it should
be empty. It would normally be used for data which comes from information from
more than one package within this sector.

Package

This section of the event data contains all the information pertaining to one de-
lector package in one sector of the detector.

Package 1D

Package Length
Subpackage Count
Unpacked Component Size
Calibrated Component Size
{ Subpackage }

Package Description Data

Package

+ 4+ + A+

Package ID = An integer flag which indicates the ID number of this package. The
same package ID’s are used in all sectors. These numbers must be combined with the
sector ID to produce a unique value.

1 Reg. 1 Axial Superlayer 2 Reg. 1 Stereo Superlayer

3 Reg. 2 Axial Superlayer 4 Reg. 2 Stereo Superlayer

5 Reg. 3 Axial Superlayer 6 Reg. 3 Stereo Superlayer

7 Scintillation Counters 8 Cerenkov Counters

9 Front of Forward Calorimeter 10 Rear of Forward Calorimeter
11 Front of Backward Calorimeter 12 Rear of Backward Calorimeter
13 Trigger System 14 Tagger Energy Scintillators

15 Tagger Timing Scintillators 16 --- Others as needed

Package Length = The length of this package in words.

Subpackage Count = The number of subpackages in this detector packages. There
are several dectector systems which contain subpackages. Each drift chamber super-
layer (1 superlayer = detector package) contains 6 subpackages (1 subpackage =
1 layer). Each Electron Calorimeter (1 package = 1 calorimeter) contains 6 sub-
packages, (1 subpackage = 1 plane). They are u-front plane, v-front plane, w-front
plane, u-rear plane, v-rear plane and w-rear plane. Each cerenkov package contains
two subpackages (high-¢ detectors and low-¢ detectors). The number schemes for
these subpackages are from inside to outside and then from low-¢ to high-¢.

Unpacked Component Size = The number of parameters included in the un-
packed for this component.

Calibrated Component Size = The number of parameters included in the un-
packed for this component.

10

Package Description Data = This block can be used by unpacked data. So it
should contain a parameter count followed by the given number of integer data values.
In particular the Electron Calorimeter produces a shower sum signal which will be
the stored here. The order of this data is: Number of Data Values (=3), Front Shower
Sum, Rear Shower Sum and Combined Shower Sum.)

11

Subpackage

This section of the event data contains all the information pertaining to one of
the subpackages.

Subpackage ID

Subpackage Length
Subpackage Component Count
{ Component }

Subpackage

+ 4+

Subpackage ID = An integer flag which indicates the ID number of this subpackage.
These number are unique within a detector type but are repeated for different sectors.
(for example: Drift chamber layers have id’s running from 1 to 36).

Subpackage Length = The length of this subpackage in words.

Subpackage Component Package Count = The number of detector components
in this subpackage. For drift chambers components are single wires. For the scintil-
lators each scintillator is a component. For the cerenkov counters each phototube is
a component. For the electron calorimeter each phototube is a component.

12

Component

Components consist only of a component ID and any parameters read from the elec-
tronics for these components. The order for the parameters is show below.

Component Type

Param.
Count

Parameter Order

Drift Chamber Wire
Scintillator

Cerenkov Phototube
EC Phototube
Tagger Timing PT
Tagger Energy PT

3
)

W W w W

ID, ADC, TDC

ID, low-¢ ADC, low-¢ TDC,
high-¢ ADC, high-¢ TDC
ID, ADC, TDC

ID, ADC, TDC

ID, ADC, TDC

ID, ADC, TDC

The numbering scheme for all components starts at 1 for the innermost, most forward
angle. The component ID increases as one moves outward and is reset for each
subpackage. The table below summaries the maximum number of components in

each subpackage at this time.

Name Count
DC layers 1 - 12 128
DC layers 13 - 36 192
Scintillators 48
Cerenkov low-¢ 36
Cerenkow high-¢ 36
U-Front 66
V-Front 66
W-Front 66
U-Rear 66
V.Rear 66
W-.Rear 66

13

Run Header Format Summary

This summary contains references to large blocks of data which are described
immediately following the Run Header Format Summary Table.

| Pointer I Description]
Run Header Start — | Run Header Flag (= —1111)
Header Length

Event Count (= 0)

Date,

Datez

Time,

Time,

Run Version Number (= 1)
Processing Status Flag (=1)
User Expansion Space,

User Expansion Spaces

RDB Start — Experiment Name,

+++ (Run Description Block)
RDB End — Experimenter Namey, s
EFLL Start — Event File Count = Ngp

«++ (see Event File Locator List)
EFLL End — Event File Name Nar8
RSB Start —— Trigger Spec. Locator;

-+ (see Run Setup Block)
RSB End —» CLAS Config. Locators
SPSB Start — Number of Groups = N,

- (see Scaler/Param. Setup Block)

SPSB End — Parameter Namey_ v, s

14

Run Description Block

l Pointers [

Description ‘I

RDB Start —

RDB Block Length

Experiment Name,

Experiment Nameg

Run ID

Beam Type

Beam Energy

Target Type

Run Purpose,

Run Purposesy

Number on Shift = Ng

Experimenter; ;

Experimentery, s

RDB User Expansion Space,

RDB End —

RDB User Expansion Space,q

Event

File Locator List

| Pointers

] Description I

EFLL Start — | Event File Count = Ngg

Event Filel'l

EFLL End —

Event Filey,,.s

15

Run Setup Block

l Pointers

| Description

RSB Start — | Trigger Spec. Locator,

Trigger Spec. Locatorsg

Data Acq. Spec. Locator,

Data Acq. Spec. Locatorsg

CLAS Config. . Locator,

CLAS Config. Locatorzq

User Config. Locator,

RSB End — | User Config. Locatory

16

Scaler, Parameter Setup Block

| Pointers l Description

SPSB Start — | Number of Groups = N,

Group Name 4,

Group Name 44

Number of Scalers; = N,

Number of Parameters; = N,

Scaler Namel‘lvl

Scaler Name; 1 ¢

Scaler Name ;3

Scaler Name 1 v, ¢

Parameter Name, ;

Parameter Name, ;4

Parameter Name , 3,

Parameter Name Np,8

Group Name ;,

Group Name N,.8

Number of Scalersy = N,

Number of Parametersy, = NN,

SPSB End — | Parameter Name y, v, s

17

Raw (or Unpacked) Event Format Summary

| Pointer | Description
Event Start — | Event Header (= —4444)
Event Length
Event Type
Event Sector Count (= N,)
Event ID,
Event ID;
Event Expausion Space;
Event Expansion Space;
Sector Starty — | Sector ID
Sector Length (= L,,)
Sector Package Count (= N,)
Package Start, — | Package ID
Package Length (= L,)
Subpackage Count (= N,,)
Unpacked Component Size (= UN Pp)
_ Calibrated Component Size (= CALp = 0)
Subpackage Starty —— | Subpackage ID

Subpackage Length (= L,,,)

Component Count (= N,)

Component Start,

Component ID = (Parameter, ;)

Parameter, ;

Component End,

Parameter; ynp,

Component Start,

Component ID = (Parameter,;)

Subpackage End; — | Parametery, unp,
Subpackage Start; — | Subpackage ID
Subpackage Endy,, — | Parametery, unp,
Package Description Parameter Count = Nppp
Package Description Parameter;
Package End, — | Package Description Parametery,
Package Start, — | Package ID
Package Endy, — | Package Description Parametery, .
Sector Start, —> | Sector ID
Event End — | Package Description Parametery,,,

18

Events from the front end electronics, following reorganization by sector, package,
component, etc. have the structure given above. These events, if no other analysis is
done, are the events which get written to tape.

Event Bank Structure

The raw events are embedded in a single CEBAF event structure, so that the
order of the words in the event is a follows.

[Pointer | Word l Description
Bank Start — 1 Bank Length - 1
2 Bank Tag (= '"CEBA1001'X)
Event Header Start — 3 Event Header Length - 1 (=4)
4 Event Header Tag (= 'C0010100°X)
5 Event ID
6 Event Classification (= '000CEBAF’X)
Event Header End — 7 Event Status (0 for now)
| Event Data Start —o 8 Event Data Length - 1
9 Event Data Tag (= ’800B0100°X)
10 Event Data as described above
11 --- .
Event Data End —— | Bank Length | Event Data

II.C. Run Checkpoint

The run checkpoint is an optional complex data entity which serves as an interme-
diate output of run statistics, and scaler and parameter output. See the Run Header
for more details on some of these values.

Run Checkpoint Checkpoint Flag

+ Checkpoint Length
+ Event Count

+ Date

+ Time

_+.

Scaler/Parameter Value Block

Checkpoint Flag = A single word used to identifv this as a Run Header. The
standard Checkpoint Flag = —2222,

Checkpoint Length = Length (in words) of this Checkpoint block.

Event Count = The number of events in the event prior to this point.

Date = Current Date (see Run Header).

19

Time = Current Time (see Run Header).

Run Checkpoint Data Summary

rPointer l Description

Checkpoint Start — | Checkpoint Flag (= —2222)
Checkpoint Length

Event Count (= 0)

Date,

Date,

Time,

Time,

SPVB Start — Number of Groups = NN,

- -+ (see Scaler/Param. Value Block)
SPVB End — Param. Valuen, n,

Run Checkpoint Bank Structure

The run checkpoints are contained in a single bank structure. The additional
CEBAF event format data is defined below. Note the abbreviation of checkpoint as
CHKPT.

l Pointer | Word l Description
Bank Start — 1 Bank Length - 1
2 Bank Tag (= 'CEBC1001°X)
CHKPT Data Start — 3 CHKPT Length - 1 (= Bank Length - 3)

N

CHKPT Tag (= '800B01000°X)

CHKPT Data

=4

6 -

CHKPT Data End — | Bank Length | CHKPT Data End

Scaler/Parameter Value Block

Scaler/Parameter Value Block Number of Groups

{ Number of Scalers
Number of Parameters
{ Scaler Value }

{ Parameter Value } }

+ 4+ o+

20

Number of Groups = Number of groups defined in this block. This must match
the number and order of the groups in the Scaler/Parameter Setup Block.

Number of Scalers = Number of scalers defined for this group. If this number is
zero, no scaler values follow. However, if this number is non-zero, it must match the
number for the corresponding group in the Scaler/Parameter Setup Block and the
scaler values must be in the same order as defined in that block.

Number of Parameters = Number of parameters defined by this block. See note
above concerning the Number of Scalers.

Scaler Value = The numerical value of the scaler.

Parameter Value (REAL*4) = The numerical value of the parameter.

I Pointers

|

Description

SPVB Start —

Number of Groups = N,

Number of Scalers; = N,

Number of Parameters; = N,

Scaler Value,

Scaler Value, y,

Parameter Valuey,

Parameter Value,

Number of Scalers; = N,

Number of Parameters; = N,

Scaler Value, ,

SPVB End —

Parameter Valuey n,

II.D. Run Trailer

The run trailer is the last data for any complete run. Primarily, it contains run
statistics.

Run Trailer

+ 4+

Trailer Flag

Trailer Length

Event Count

Date

Time

Run Status

Event File Locator List
Scaler/Parameter Value Block

21

Trailer Flag = A single word used to identify this as a Run Trailer. The standard
Trailer Flag = —3333.

Trailer Length = Length (in words) of this event trailer block.
Event Count = The number of events in the event prior to this point.
Date — Current Date (see Run Header).

Time = Current Time (see Run Header).

Run Status = An integer value indicating the perceived status of the run. The
current standard is that 0 implies good data, 1 implies the data is suspect for some
reason and 2 implies the data-is definately not useable.

22

Run Trailer Format Summary

I Pointer l Description

Run Trailer Start — | Run Trailer Flag (= —3333)
Trailer Length

Event Count (= 0)

Date,

Date;

Timey

Time,

Run Status

EFLL Start — Event File Count = Ngp

- (see Event File Locator List)
EFLL End — Event File Name y,_ s

SPVB Start — Number of Groups = N,

- (see Scaler/Param. Value Block)
SPVB End — Param. Valuen, ,~,

Run Trailer Bank Structure

The run trailers are contained in a single bank structure. The additional CEBAF
event format data is defined below.

| Pointer | Word [Description |
Bank Start — 1 Bank Length - 1
2 Bank Tag (= '"CEBD1001’X)
Trailer Data Start — 3 Trailer Length - 1 (= Bank Length - 3)
4 Trailer Tag (= '800B01000’X)
5 Trailer Data
6 --- ...
Trailer Data End — | Bank Length | Trailer Data End

ILLE. Converting Real and Character Data to Integer Data

When real values are stored in the event buffer they are placed in the buffer by
equivalencing them to integers. For example:

23

program sample_convert

implicit none

real*4 real_value

integer*4 evgen_buffer(16384)

integer*4 swgen_r_to.

evgen bufler(1) = swgen_r_to_i(real_value)
stop

end

integer function swgen_r_to_i(real value)
integer 1

real x, real_value

equivalence (i,x)

x = real_value

swgen_r_tod =1

return

end

Coversion of characters to integers is done by converting them character by char-
acter to integer bytes and then packing the bytes into integers. The first character
goes into the first byte, the second character goes into the second byte and so on. If
the character string does not evenly fill an integer, the integer should be filled with
blanks which have been converted to integers. Any full integers which had been set
aside for a character string should be set to zero. This is not the recommended CE-
BAF standard form for character strings, which should be null terminated and as a
result wastes space. Again this will be corrected in the next version. For the present
time, the conversion to integers before output, though wasting space and time for
packing and unpacking, follows the standard form for integers.

IV. Summary and Future Directions

This document has presented all of the information necessary to write out CLAS
event data files. The format presented here is expected to be the first version in a series
of versions, all of which will conform to CEBAF’s standard event format. Several of
the items expected to be modified have been listed. Other items include those which
are redundant. In those the items within the bank headers will be kept while the
redundant items within the banks will be dropped. Those writing software should
keep this in mind and use the information contained in the bank header whenever
possible. Finally, the rest of the changes will optimize the event size by using smaller
word sizes for experimental quantities and using the bank structure to organize the
sectors, packages, subpackages and components.

24

