CLAS Note 92-005

Choosing the “Correct” Combination of Sense, Field and Guard Wire Voltages

Mac D. Mestayer
March 6, 1992

Abstract:

Using the GARFIELD? program, I have studied the problem of how to divide the high
voltage among the sense, field, and guard wires in order to achieve equal gain in all layers
of the drift chamber superlayer, even in the presence of a grounded gas bag. A definite
relation among the three voltages is obtained which achieves equal gain. In addition, a
particular solution is discovered which reduces sensitivity to the distance between the gas
bag and the first wire plane.

Description of the Problem:

The CLAS drift chambers’ wires are arranged in six-layer superlayers with an hexag-
onal pattern (except for parts of Region 1). At the midplane, the pattern looks like the
following:
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The structure is seen to consist of equally spaced layers in the following pattern:
(G,F,F,S,FF,SFFSFFSFFSFFSFEFG)

where S, F, and G represent sense, field, and guard wire layers, respectively.




The principles which guide the high voltage division are the following:

1) all sense wires, regardless of layer, should have the same charge density per unit length,
and
2) that charge density should be the same as that for an infinite grid of such cells.

For a six-layer superlayer, the two principles are redundant, but so what, we’re not
mathematicians here. Before I present the results of specific GARFIELD calculations, let
me mention a few things. First, the choice of wire diameters is fixed; being 20,140 and
140um respectively for the sense, field and guard wires. The small sense wire diameter is
chosen to keep high voltages as low as possible and to keep wire tensions low, minimizing
forces on the endplates. The field wire diameters are chosen to keep the electric field at the
field wire surface below 20kV/cm in order to minimize the formation of cathode deposits
and the generation of dark current. The guard wires’ diameters are chosen to be large so
that there is no amplification and so that the wires are sufficiently robust as to precisely
define the boundaries of the superlayer.

Second, the position of the guard wires is chosen to be precisely at the place where
the sense wires in the next layer would be. If the guard wires were at a different location,
it is doubtful that any guard wire voltage could achieve the desired condition of equal gain
for every plane of sense wires.

GARFIELD Calculations:

The basic cell type studied was a 1 cm hexagonal cell; that is, the distance from sense
to neighboring field wire is 1 cm. I studied six kinds of configurations of these cells: (1) an
infinite grid of these cells, (2) a one cell configuration; that is, one sense wire surrounded
by six field wires, (3) a six-layer superlayer without guard wires, (4) a six-layer superlayer
with guard wires, (5) a six-layer superlayer with guard wires and with a ground plane
located 2 cm away from the guard wires, and (6) a six-layer superlayer with guard wires
and with a ground plane located 1 cm away from the guard wires.

The procedure was the following: I would define the type of superlayer structure
and the values of the voltages which I wanted with an input data file. I would then
run GARFIELD, go into the FIELD section and use the CHECK WIRE command. The
CHECK WIRE command prints out the linear charge density on each of the wires. I would
record the charge density for the sense wire in layers 1, 2 and 3. I didn’t record the charge
densities for layers 4, 5 and 6 because by symmetry (which I verified) they are equal to
those for layers 3, 2 and 1. If the charges were equal to a part in 10,000 I considered that I
had found the optimum combination; otherwise, I would vary the voltages until I achieved
the optimum. My job was made easier by the fact that the optimum charge value was
known (it was the value for the infinite grid), and extrapolations to the correct values were
very linear. The data are shown on the next page.




Analysis of Data:

Note that in all cases, I have kept V(S)-V(F) = 2400 V. This insures that the interior
layers, layer 3 in this case has the correct charge density when the guard wire is adjusted
properly. Therefore, V(F) is redundant; it equals V(S) - 2400. So, I have plotted V(S)
versus V(G) for those cases marked “OK” in the table; that is, cases numbered 4, 7, 8, 13,
15, 16, 20, and 23 (15 and 16 are almost the same point). See the enclosed figure. Notice
that the points lie on three straight lines: for no gas bag, for a gas bag 1 cm away, and for
a gas bag 2 cm away. This means that for these conditions, one can choose the sense, field
and guard voltages according to the following simple prescription.
all cases: V(S) - V(F) = 2400, and
no bag: V(G) = V(S) - 1060
bag lcm away: V(G) = 1.95 * V(S) - 2584
bag 2 cm away: V(G) = 1.47 * V(S) -1800.

Note that the curves cross each other at a common point. GRAND UNIFICATION!!!
Seriously, this is interesting and important. It means that for this combination of voltages,
the charges on the wires do not change if the bag is moved. If the charges don’t change,
then no work is done. If no work is done, there’s NO FORCE ON THE BAG at this
point. Another way to think about it is that there is no net electric flux which penetrates
a Gaussian surface which is slightly interior to the bag surface. This means that there is
NO NET CHARGE on the sense, field and guard wires combined. Physics is fun.

Another point to notice: say that we chose operating point number 8 where the
voltages are 2400, 0 and 1725 for sense, field and guard wires respectively. This point is
appropriate for a gas bag which is 2 cm from the guard wire plane. Now say that the gas
bag is (accidentally) pressed in by 1 cm. We then have the configuration of point number
24. The charge density on the first layer would change from the nominal 281.22 units to
984.54 units. I estimate that this would cause a gain change of about 19%.

Conclusion:

For a superlayer with an hexagonal cell layout including guard wires, I have shown
that there is a relationship between guard wire potential and sense wire potential which
will mimic an infinite array of hexagonal cells. This is true for any distance between the
guard wire plane and a grounded gas bag. If the sense, field and guard wires are set such
that their net charge is zero, then there is no force on the gas bag and no dependence of
the indivdual layer’s charge upon the distance to the gas bag.
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GARFIELD Results on High Voltage Division

No. Cell Type V(S) | V(F) | V(G) | QILYR 1) | Q(LYR 2) Q(LYR 3) | OK?
1 infinite grid 2400 0 - 281.19 - - yes
2 one cell 2400 0 - 322.75 - -

3 6-lyr, no guard 2400 0 - 295.10 283.08 281.48
4 6-lyr, guard 2400 0 1340 281.24 281.21 281.20 yes
5 " 2400 0 2400 267.56 279.36 280.92
6 7 2400 0 0 298.52 283.54 281.55
7 " 1060 |-1340 0 281.24 281.21 281.20 yes
8 | 6-lyr, grd, 2cm to bag | 2400 0 1725 281.22 281.20 281.19 yes
9 ” 675 |-1725 0 272.53 280.04 281.02
10 ” 1000 | -1400 325 274.17 280.26 281.05
11 7 1000 |-1400 { 700 270.27 279.73 280.97
12 ” 1000 -1.400 -300 280.67 281.14 281.19
13 7 1000 |-1400 | -350 281.19 281.21 281.20 yes
14 ? 1200 |-1200 0 280.63 281.13 281.18
15 7 1250 |-1150 0 281.41 281.23 281.20 yes
16 ? 1230 |-1170 0 281.10 281.19 281.19 yes
17 ? 0 -2400 |-1800 280.83 281.17 281.19
18 | 6-lyr, grd, lcm to bag | 1500 | -900 0 284.16 281.61 281.26
19 ? 1400 |-1000 0 282.45 281.38 281.22
20 7 1325 |-1075 0 281.16 281.20 281.20 yes
21 ” 2400 0 -1950 316.6 285.98 281.92
22 ? 2400 0 1930 282.57 281.38 281.22
23 ”? 2400 0 2100 281.26 281.20 281.19 yes
24 ? 2400 0 1725 284.54 281.64 281.26




T

Lo
Irv—
P .
.. N
N .
]
l:i!:' —»—.J—-
..
l
|
Ly
|
i
[
|
2¢qu

v
|
|
i.
T
N
¢, tcvn‘.qb.t Lfku 4.

LA
NS R
S DR T B
:I | co
N
I_
!
1
I
oo
Vig_S
= e

A
/
|
T 11, 1
RO bl
%oo R R
518 .
O !
|
/9
A o
)
SE'L;\

DY

|
1

-
1’

|

|

I

i

46 0782
|
l
[0 Tt
i Y54
N
.;Iiu\/.
|
|

/

G
]|lpoo
eq-ud
fm

i
|
|
i
sl

AR pn

‘é;i
gﬂ ~
Ql
lI

- -:;VG:‘

|
|
A : f
1. :,I;' [ Sl ‘ I b
; ' | ]I
RN o
oA |1
|
:
I
P2V SN (!

20,140

|
X ad
VAN -
)L
oo
|
1

Wr:u_]

¢

X 10 TO THE INCH e ¢ 3 00 [H1id 5
FEl. & ESS - Malil WS *

I
I
—{o,ccl.

e
Py
N@J:
k&
—%ACW
60D
1

l
|
|
|
o
b
|
//
|
..SF'C
)
= Y 4docN 3

U rEl

NS
Sl

QA
N
|

/5.

Ked

|
’ \

\
4?—l?lc
B
|Ffr?v-lt

|
e

ar
.._—_I‘

¢ = 19 R

|aAS| BAG |

;
Gf

|

|

l

I

ol

|

4

|

|

]
T

|

|

1

|
\
- GAS BAG 2 cM

-fCV@=L5ﬁ*




CLAS Note 92-005
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Abstract:

Using the GARFIELD? program, I have studied the problem of how to divide the high
voltage among the sense, field, and guard wires in order to achieve equal gain in all layers
of the drift chamber superlayer, even in the presence of a grounded gas bag. A definite
relation among the three voltages is obtained which achieves equal gain. In addition, a
particular solution is discovered which reduces sensitivity to the distance between the gas
bag and the first wire plane.

Description of the Problem:
The CLAS drift chambers’ wires are arranged in six-layer superlayers with an hexag-

onal pattern (except for parts of Region 1). At the midplane, the pattern looks like the
following:
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The structure is seen to consist of equally spaced layers in the following pattern:
(G,F,F,S,FF,S,FFSFFSFFSFFSFFG)
where S, F, and G represent sense, field, and guard wire layers, respectively.




