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Abstract

Particle track pattern recognition in inhomogeneous magnetic field is a dif-
ficult task in designing the CLAS software. And an efficient solution of this
problem is required for all experiments using this spectrometer. We found that
an algorithm based on the minimum spanning tree method can be especially
suitable for this task. First, a simple tree algorithm is used to find the clusters
of drift chamber hits, resolve the left-right ambiguity, and reconstruct track seg-
ments in each of the superlayers. Track segments from different regions of the
magnetic field are then linked to form complete particle tracks using a modified
minimum spanning tree algorithm, while track segments having uncorrelated di-
rections (O, ¢) can be quickly eliminated. The rigidity of the linked track can
then be estimated based on the deflection angle of the track segment in the outer
region of the detector. This algorithm has been tested using data from test run
of prototype drift chamber and from Monte Carlo simulation. It is found to be
efficient in finding tracks in the CLAS detector geometry.




1. Introduction

The CEBAF Large Acceptance Spectrometer (CLAS) consist of a toroidal
magnet with large volume of drift chambers situated in the inhomogeneous mag-
netic field (Fig. la). The presence of the inhomogeneous magnetic field is a
challenge to pattern recognition and track reconstruction with this detector.

By taking advantage of the CLAS detector design, where the drift chambers
are arranged in 6 narrow superlayers in 3 regions of the detector detector volume
(Fig. 1b), the reconstruction of track segments in each superlayer can be carried
out independent of the global non-uniformity of the magnetic field. Thereby
reducing the task of global particle track pattern recognition in the non-uniform
B field to the linking of track segments from the six superlayers.

The presence of the inhomogeneous B field results in complex particle tra-
jectories which are not easily described by simple quadratic functions. One tra-
ditional approach in recognizing this class of patterns is the Template Matching
Method[1]. By compiling a large dictionary of all the possible tracks patterns
(“templates”), candidates of possible tracks can be compared to the “templates”
in the dictionary, and a track pattern is “recognized” when a “matching tem-
plate” is found. This method has been used successfully in several high energy
experiments{2](3).

The speed of the search for a “matching template” depends critically on the
number of the templates in the dictionary, therefore, a suitable dictionary must
contain only the minimum number of templates needed to represent all the antic-
ipated track patterns. Due to the inhomogeneity of the magnetic field in CLAS,
coupled with the large dynamic range of particles it will accept, a very large num-
ber of templates (10° — 10%) will be needed. Hence the search for the matching
template will be very time consuming. And the large amount of storage required
further complicates the efficient implementation of this method

In this paper, a different approach to the CLAS track pattern recognition
based on the principle of the minimum spanning tree method is presented. It
does not require the large dictionary necessary in the Template Matching Method.
The decision making in general will be much faster. It is therefore particularly
suited for on-line data analysis.

2. The Application of Minimum Spanning Tree Algorithm in CLAS
2.1 Track Segment Reconstruction within Superlayers

Figure 2a shows a typical particle track traversing a superlayer, and a few




uncorrelated background hits in the area. The major tasks for the track segment
reconstruction within superlayers are:

1. Finding clusters of drift chamber hits cofré5ponding to track segments,
2. Resolving the left-right ambiguity of the hits,

3. Determining the angle dependent electron drift velocities for each hit and
performing x? fits

Resolving of left-right ambiguities is a common problem in operation of drift
chambers, and many algorithms has been developed for this task. Figure 2b shows
the pairs of mirror hits associated with each of the sense wire fired, and a few
examples of the different left-right combinations. For a drift chamber superlayer
consisting N layers of sense wires, there are 2 permutation of combinations.
Due to the relatively high momentum of the particles of interest, their trajec-
tories can be safely approximated by straight lines within the narrow span of a
superlayer. So, in the most simplistic approach, the track segment within the
superlayer can be found by fitting all 2¥ permutations to straight line in order
to find the combination having the smallest x®. But a much faster method us-
ing the minimum spanning tree approach can be used for resolving the left-right
ambiguity.

This approach was first used in the TASSO detector at PETRA[4]. The
method was modified and expanded for use with a CLAS geometry prototype
drift chamber. As shown in the example in figure 2b, each of the two mirror
hits in a sense wire is linked to other hits in the neighboring layers by straight
branches. The branch weight associated with branch iis defined as the angle of
the branch, §;. The periodical nature of the CLAS drift chamber cell arrangement
enables a very fast calculation of the branch weight: 6; = (s + (=1)%d; +
(=1)*'d;y1). A combination of branches forming a path traversing the height of
the superlayer is called a full tree. There are 2V full trees, corresponding to the
2¥ permutations of left-right combinations. It is apparent from Fig. 2b that a
straight line track segment corresponds to a combination of connecting branches
forming a nearly straight line (a minimum spanning tree). Therefore, trees
consisting of branches having the smallest differences in their branch weights will
be accepted, while combinations of branches having widely varying branch weights
can be eliminated.

We also found that a simplified application of this algorithm can be well suited
for the task of eliminating background hits from the clusters of hits produced by
track segments. In the first pass, drift times of the hits are not considered. Only
the sense wire positions are linked to form trees and to calculate branch weights
(6i = £). As illustrated in Fig. 2a, uncorrelated background hits can then be
easily rejected due to their anomalous branch weights. Correlated background
hits, however, will be more efficiently identified and eliminated during the later
fitting stage by their large x?s.




This algorithm has been used on the data from a test run carried out at
Brookhaven National Laboratory using the prototype drift chamber operating in
B field of up to 1.5 Tesla. The algorithm is found to be successful in resolving
the left-right ambiguity for over 85% of the hits, while hits very close (less than
lmm) to the sense wire are found to be better resolved by x? fitting.

In addition, the average branch weight of a tree (@a,.) can be used as a
good estimate of the track segment angle ©,,; (Fig. 3). This angle is especially
important in determining the accurate electron drift velocity in the high magnetic
field, due to the strong angular dependency of eletron drift velocity in B field(5].
Therefore, to reconstruct the track segment, only a small fraction (~ 15%) of the
2N permutations need to be fitted to a straight line by least square fits. This is
found to be significantly faster than the naive method which fits all of the 2%
permutations, and without any loss in track resolution. In our prototype chamber
operating in magnetic a field of up to 1.5 Telsa, resolutions of better than 200um
were achieved.

2.2 Global Track Finding in Inhomogeneous Magnetic Field

One important charateristic of a toroidal magnet, its ¢ preserving property,
can be incorporated to greatly ease the problem of global track pattern recog-
nition. Since only track segments having similar polar angles ¢ can be possible
candidates of a complete particle track. Selection of candidates based on their ¢
angle drastically reduces the track segment density.

After track segments in all superlayers are reconstructed, principle of the
minimum spanning tree method can be extended to the global track finding.
Figure 4 is an example of multiple tracks traversing one sector of the detector.
Fig. 4a shows the track segments detected in the drift chamber, including some
background track segments, and Fig. 4b shows some examples of the full trees
formed by the linking of arbitrary combinations of track segments from each
superlayers. In this global picture, both the track segments (solid lines) and
their connecting links (dashes) are considered branches, and a branch weight
is the deflection (§©; = ©; - ©;_;) each branch suffered due to the magnetic field
(Fig. 4b).

As one example of the role of the branch weight §©, we observe that all branch
weights 6@ of an (undecayed) particle track in zero magnetic field are zero! It is
also apparent from figure 5a that since the cumulative effect of the magnetic field
is to deflect the particle further and further away from the radial direction as
the particle travels toward the outer regions of the detector, trees having dranch
weights 6© of alternating signs can be rejected.

In a uniform magnetic field, it can easily be shown that for tracks of high
energy particles (where multiple scattering effects can be neglected), the branch
weights of a track segment i obey the following relationship: §@; = §©;_;. Exten-




sive simulation of trajectories in the CLAS toroidal B field found this relationship
remains a good approximation despite the inhomogeneity of the B field. Fig. 5
shows the distribution of §@; — §0©;_; for various ©1 > 30° and particles with
momentum p > 0.5GeV. Very low momentum particles and particles at extreme
forward angles, have a slightly broader distribution. By accepting only branches
whose branch weights §O falls within £10° of this relationship (“weighted?”
minimum spanning trees), we are able to correctly identify track segments
from trajectories of particles having momentum greater than 0.5 Ge V/c and O,
beyond 30°. Since the track segment density expected in any given ¢ range is typ-
ically fairly low, the application of the tree algorithm is found to be very efficient
in rejecting uncorrelated track segments. As an example, the track segments in
Fig. 4a were successfully linked into 4 complete tracks as shown in Fig. 5b, while
background track segments can be safely eliminated.

Furthermore, for track segments in the outer regions of the drift chamber,
their angle of deflection from the radial direction (0; — @) (Fig. 5a) is strongly
correlated to the rigidity of the trajectory (Fig. 7). These correlation rela-
tionships can be parametized as functions of momentum, © and ¢ etc. Rough
estimate of the track parameters (9,0, ¢...) can then be obtained using these
correlation functions.

3. Summary

We demonstrated an approach for fast track recognition in the CLAS inho-
mogeneous B field using the minimum spanning tree method.

1. When reconstructing track segments within superlayers, we found that:

(a) Using only hit wire positions, the Minimum Spanning Trees formed
can be used to identify clusters of hits.

(b) By including drift times in calculating branch weights, the left-right
ambiguity can be resolved by the selection of the Minimum Spanning
Trees for more than 85% of the hits.

(c) The average branch weight O,,. can serve as estimate of ©,.,. This
allows a more accurate determination of the angle dependent electron
drift velocity. Final x? fits provides for a resolution of the remaining
left-right ambiguities and a rapid elimination of correlated backgrounds.

2. For global pattern recognition of complete tracks, we can:

(a) Take advantage of the ¢ preserving property of the CLAS toroidal B
field to seperate track segments into different ¢ ranges. Within each ¢
region, only trees whose branch weights §@ have the same sign will be
accepted.




(b) Select the “Weighted” Minimum Spanning Trees to link candidate
track segments together to form complete tracks. Background track
segments having uncorrelated branch weights can be rejected.

(c) Obtain an estimate of the rigidity of the completed track from the de-
flection angles of track segments in the outer regions of the detector.

The minimum spanning tree algorithm is very efficient in background rejec-
tion and fast pattern recognition for the anticipated track density of the CLAS
detector. Certain elements of this approach have been incorporated into the 2nd
level (hardware) triggering algorithm. The algorithm is also quite suitable for a
high-level software trigger. For on-line or off-line data analysis, it can be com-
bined with other sophisticated fitting or interpolation algorithms to achieve the
desired accuracy in the reconstruction of complete particle tracks in the CLAS
detector(5][6].
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Figure Captions

Fig. 1 a) CLAS toroidal magnetic spectrometer. b) Mid-plane view of CLAS.

Fig. 2 a) Typical track segment in a superlayer in region 2 of the drift chamber.
The distance between sense wires of the same layer is s = 1.732cm, the
spacing between layer is b = 1.5cm. b) Example of some random left-right
combinations. Also the definition of braches and branch weights. Note
the solid line is 2 minimum spanning tree.
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Fig. 4 a) (Top) Example of multiple track segments in one section of the de-

Fig.

Fig.

tector. b) (Bottom) Some randomly formed trees. In the global picture,
both track segments (solid) and their connecting links (dash) are considered
branches. Note examples of their branch weights.

5 a) (Top) Typical deflection of tracks in magnetic field. b) (Bottom)
Complete tracks reconstructed from the track segments in figure 4a.

. 6 Distribution of §0; — §0;_, for trajectories of 0.5 < p < 4 and 30 < O, <«

140.

7 Deflection angle of track segments in a) region 2, b) region 3 of drift
chamber as a function of momentum at different ©, for a 1GeV/c eletron.



CLAS Magnet and Support Structure
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Track segments in superlayers
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