CLAS - NOTE : 95 - 018
August 17, 1995

A ‘C’ Program that Formats and Translates Binary Data Files
Logged from the CLAS Toroidal Magnet

Authors: Kelly Alvord, Peter Bonneau, Meenatchi Jagasivamani

Abstract: The program Taclesv.C is designed to read a binary input file which consists of
signals from the CLAS toroidal magnet. The program converts the binary values to decimal
values and prints the results either to the screen or to a user-specified output file. Modifications

to the program make it user-friendly and allow for specifically formatted data to be printed.
These modifications are presented in this paper.

Introduction

Torodial Magnet

The CLAS toroidal magnet consists of six current carrying coils. The
magnet is cooled with liquid helium, in order to make it superconductive. The
pressure and temperature of the liquid helium before and after input, the
temperature of the six coils, the pressure in the vacuum tank surrounding the
helium, are crucial variables for the magnet and must be monitored constantly.
To accomplish this, signals are read by a computer every 5 minutes and stored
in a binary file format. Directories are created for each signal source. For
example, a directory called P|1028 has been created for the files holding
pressure signal of a tank. For any given variable, a new file is created each day,
to be stored in its respective directory. A computer program, Taclesv.C, has
been designed to read the binary files and provide specific values of variable

which are of interest to the user.

Taclcsv.c Program

The C program ‘Taclcsv’ is designed to extract data from the toroidal
magnet’s databases. It allows the user to choose only the pieces of data s/he is
interested in analyzing. The data is logged to a file created at the beginning of
each day, that contains only that day’s readings. The file name is the date on
which the data was taken. All the readings are written to this file in a 32-bit
binary format, which is later read by Taclcsv.c and translated and output for the
user in the desired format. The user may choose to output all the readings to an
output source, such as another file or the screen. It is possible to output the
data taken after a given time from the start of the file. Debugging information is

also an option. The time period that is desired must be input as a subtraction

amount from the current day. For example, it is possible to get all the
information from -19 days ago. The program lists the time at which all the
readings were taken on that day and the corresponding data (values) of the
instruments.

This program is useful in its present state, however, some additional

options are added to make it easier and more efficient. The add-ons include:

1) allowing the user to receive the average of the data, and the recorded
minimum and maximum value during the given period of time.
2) calculating the differential during a period of time, that is the amount
of change from the highest reading to the lowest reading.
3) allowing only the specific data choice to be printed to the screen, thus
not including the default list of all data.
4) allowing the requested time period to be inputed by calendar dates.
5) allowing the time period to be either
a) past date to current date (inputing only one date),
b) only one past date (inputing only one date),
c) between two dates in the past. (Inputting two dates).
6) outputting the data in columns for better readability and also so that
the data can be transferred into the spreadsheet based program
EXCEL.

Program Structure

The program is started with the name of the program (Taclcsv.c) and an
option chosen for a specific format. Current options include skip lines with same
data as previous line, print debug information, makes up an output file name,
time in minutes from the start of file, time of day in hhimm:ss. There are other
operations that are performed if the user requires help or if an incorrect option is

entered. After an appropriate option is chosen, the user-specified input and

output (if any) files are opened. The value and its respective time are read in
binary from the input file. Binary is converted to decimal and printed out in the
user-specified format. A flowchart outlining the program structure has been

included. Also the program and a line-by-line commentary are included.

User
Input

|

y h 4
skips lines fmakes up an| time in prints debug | time of help prints out
with same| | output file |minutes fom| | information | - dayin ||command| | "unknown
data as name | the start of (1 ‘ hhmmss || :prints | option" and
previous the file | out quits
line i usage
T (and quits

opens user-specified

input file

l

opens user-specified

|

output file

reads time and
value in binary
from the input file

converts binary

t0 decimal

l prints out result
‘to output file with,

’ user-specified

format

Flowchart of program Taclcsv.c

Taclcsv.C

A: Initializing/ Declaration ~

A1./* Taclesv.c: for formatting log files into comma separated variables. */
A2./* Format of 32-bit FP numbers:

A3. top bit (31)= sign

A4. Dbit 30- don’t know what this does

A5. its 29-23= signed exponent (powers of 2)

A6. its 22 to 0= 24 bit number, with bit 23 understood to be 1
A7

A8.#include <stdio.h>

A9.#include <time.h>

A10.char buffer[64], dummy[16];

A11.main (ac,av)

A12.int ac;

A13.char *av[];

A14{

A15. FILE *Fpi, *Fpo;

A16. intm,n, tmp, mday, bit, shft;

A17. int flgskp, flgdbg, flgmin, figdat, flgnam. flgtim, flgshft, step;
A18. long tim, timt, 1std=-9999999L, dat, tstart:

. A19, float f1,f2; .
A20. char byte[8], tnam[32], inam[16], onam[16], tbuf[16, *dptr, *sptr, *tptr;
A21. struct tm *tmptr;

A22. time_t timet;

A23. figskp=flgdbg=flgmin=flgdat=fignam=figtim= 0;
A24, mday=0;

A25. Fpo=stdout;

A26. timet=(time_t)timt;

A27. time(&timet);

A28. tmptr=localtime(&timet);

A29. timt=1000L * tmptr->tm_year +tmptr->tm_yday +1;

Taclcsv.C

B: Interpret Command Line ~

B1. /*Interpret command line: */

B2. if (ac==1) error (“taclcsv -h for help”),

B3. for (step=1; *av[step] == ‘-'; ++step);

B4. { if (*(sptr=(av[step]+1))=="s’) flgskp =1;

BS. else if (*(av[step]+1)=='d") flgdbg=1;

B6. else if (*(av[step]+1)=="0") figham=1;

B7. else if (*(avistep]+1)=="m’) flgmin=1;

BS. else if (*(av[step]+1)=="1) figtim=1;

B9. else if (*sptr=="h’)

B10. { fprintf (stderr,

B11. “\t Usage: taclcsvv [-s] [-m] [-0] [-d] [-t] var [/lyyddd] [outfile]; options:

\n);
B12. fprintf(stderr,”-s, skip lines with same data as previous line
\n%);

B13. fprintf(stderr,”-o0, make up an output file name \n");
B14. fprintf(stderr,”-m, time in minutes from start of file \n");
B15. fprintf(stderr,”-t, time of day in hh:mm:ss\n”);

B16. fprintf(stderr,”(-m -t gives hh:mm from start of file)\n”);
"B17. fprintf(stderr,”-N,N=number of days ago\nz);

B18. fprintf(stderr,”-d, print debug info\n”);

B19. fprintf(stderr,"Today is day %5Id\n”, timt);

B20. exit(0);

B21. }

B22. else

B23. { if (sscanf(sptr,”%d, &tmp)!=1)

B24. fprintf(stderr,”unknown option: %c¢\n:, *sptr);
B25. else mday=tmp;

B26. }

B27. }

B28. if (flgdbg) fprintf (stderr,”options %d%d%d%d, step=%d\n" figskp,

flgdbg,flgnam, flgmin,step);

Taclcsv.C

C: Open Input/Output File =

C1./* Open input file: */
C2. for (sptr = av[step]; *sptr 1= "\0'; ++sptr)
C3. if (("sptr =="1") || (*sptr =="\\"))

c4. |
CS.
Cs.
c7.)

C8. else sprintf(inam, "%s/%5Id", av[step], timt - mday)

sprintf(inam, "%s", av[step]);
break;

1

C9. if ((Fpi = fopen(inam, "rb")) == NULL) error(inam);
C10./* Open output file: */

C11. if (fignam != Q) /* make an output file name var.ddd */

C12. {

C13. sprintf(tnam, "%s", av[step]);

C14. for (tptr = tnam; *tptr I= \0"; ++tptr) ;

C15. dptr = tptr - 3; * point at day */

C16. for (tptr -= 3; tptr > tnam; —tptr) if (*tptr =="/') break:

C17. /* back to end of directory */

C18. for (*tptr = "\O'; tptr >= tnam; —tptr) if (*tptr == /") break; I*to

' start of directory */

C19. ++tptr; /* point at variable name */

C20. if ((int)(dptr - tptr) > 11)

C21. tptr = dptr - 11; /* else too long for DOS ¥/

Cc22. sprintf(onam, "%s.%s", tptr, dptr);

C23. if (flgdbg !=0) fprintf(stderr, "%s, %s, making %s\n", tptr, dptr,
onam);

C24, if ((Fpo = fopen(onam, "wt")) == NULL) error(onam);

C25. }

C26. else if (ac> step+1)
C27. if (Fpo=fopen(av[step+1], “wt”))=="wt"))==NULL) error (av[step+1]);

Taclcsv.C

D: Read Data in 8 byte blocks -

D1./*Read data in 8 byte blocks, to end of file.*/

D2.for (n=0;;++n)

D3.{ if (tmp=getc(Fpi))==EOF) break;
D4.byte[0]=(char)tmp; _
D&.for (m =1 ; m < 8; ++m) byte[m] = getc(Fpi); /* 8 bytes */
D6.tim = Oxff & (long)byte[0];

D7.tim = (tim << 8) + (Oxff & (long)byte[1]);

D8.tim = (tim << 8) + (Oxff & (long)byte[2]);

D9.tim = (tim << 8) + (Oxff & (long)byte[3]);

D10.timet = (time_t)tim;

D11.if (figmin)

D12{ if (n ==0)

D13. { tstart = tim; /*first line: time in seconds from 1970 */
D14. (void)fprintf(Fpo, "V'%s", ctime(&timet));

D15. } [* first line header: 'time */

D16. tim -= tstart; /* time in seconds from start of data */

D17. tim /= 60;

D18.}

D19.else if (n == 0)/*first line header: 'time */
D20.(void)fprintf(Fpo, "V'%s", ctime(&timet)):
D21.if (figtim)

D22.{ if (flgmin) sprintf(tbuf, "%2d:%2d", tim/60, tim%60);

D23. else

D24. {) timet = (time_t)tim;

D25. (void)sprintf(buffer, "%s", ctime(&timet)):

D26. sscanf(buffer, "%s%s%s%s", dummy, dummy;,
dummy, tbuf);

D27. }

D28.}

D29.else sprintf(tbuf, "%ld", tim);
D30.dat = Oxff & (long)byte[4];
D31.dat = (dat << 8) + (Oxff & (long)byte[5]);
D32.dat = (dat << 8) + (Oxff & (long)byte[6]):
dat = (dat << 8) + (Oxff & (long)byte[7]);

Taclcsv.C
E: Translate Binary Data ~

E1./* Translate 32-bit FP: */

E2.bit = (Oxff & (int)byte[4]) >> 6; /* top 2 bits */

E3.shft = (int)((0x3f800000L & dat) >> 23); [* next 7 bits = exponent */
E4.if ((shft & 0x40) == 0x40) shft |= Oxffffff80; /* extend sign */

E5.if (dat == OL) f1 = 0.0; /* special case, | think */

E6.cise f1 = (float)(Ox800000L | (Ox7fffffL & dat)); /* add top bit */
E7.if ((2 & bit) == 2) f1 = -1; /* sign bit */

E8.f2 = 4194304.0; [* = (2**22) */
E9.figshft = 0;
E10.if (shft < 0)
E11.{ if (shft < -15) figshft = 1;
E12. else f2 *= (float)(1 << (-shft));
E13.}
E14.else
E15.{ if (shft > 15) flgshft = 1;
E16. else f2 /= (float)(1 << shft);
E17.}

- E18.if ((figskp != 0) && (dat == Istd)) continue; .
E19.Istd = dat;

E20.if (f2 ==0.0) f2=11;
E21.else f2 = f1/f2;
E22.if (flgdbg != 0)
E23{ (void)fprintf(stderr, "%4d:%5Id, %8Ix; ", n, tbuf, dat);
E24. (void)fprintf(stderr, "bits=%1x%1x, shft=%3d, numM=0x%Ix=%.0f,
%An" bit>>1, 1&bit, shft, (long)f1, f1, (f2 == 0.0) ? f1 : f1/2);
}

10

Taclcsv.C

F: Print Result -

F1./* print result: */
F2. if (flgshft)

F3. {
F4. (void)fprintf(Fpo, "%s, ???\n", tbuf);
F5. (void)fprintf(stderr, "shft = %d, dat = %8Ix\n", shft, dat);
F6. }
F7. else
F8. { if (f2 > 0.9999)
F9. {
F10. if (f2 > 99.9)
F11. (void)fprintf(Fpo, "%s, %.3f\n", tbuf, f2);
F12. else if (f2 > 9.99)
F13. (void)fprintf(Fpo, "%s, %.4f\n", tbuf, f2);
F14. else (void)fprintf(Fpo, "%s, %.5\n", tbuf, f2);
F15. }
F16. else if (f2 < -0.9999)
F17. {
F18. if (f2 < -99.9)

~F19. (void)fprintf(Fpo, "%s, %.3f\n", tbuf, f2);
F20. else if (f2 < -9.99) -
F21. (void)fprintf(Fpo, "%s, %.4f\n", tbuf, f2);
F22. else (void)fprintf(Fpo, "%s, %.5f\n", tbuf, 2);
F23. }
F24, else (void)fprintf(Fpo, "%s, %.6A\n", tbuf, f2);
F25. }
F26.}

F27.timet = (time_t)tim;

F28.if (figskp) (void)fprintf(Fpo, "\'%s", ctime(&timet));
F29.}

F30.error(s)

F31.char *s;

F32.{

F33.perror(s);

F34.exit(1);

F35.}

F36./* end taclcsv.c */

Taclcsv.C Commentary

A: Initializing / Declaration Page

Al Comment line. Tells reader the name of program and purpose

A2-7 Comment line. Tells the reader about the structure of the data that is
worked with in this program.

--32 bit Floating point number

--bit #31 is designated sign (+/-) of number

--bit #30

--bit #29-23 signed exponent (powers of two)

--bits #22-0 24 bit number with bit #23 understood to be 1

A8 #include<stdio.h> Command that accesses the library stdio.h. this library file contains
all normal and standard functions. Is commonly a part of every ¢ program.

A9 #include<time.h> Command that accesses the library containing all the time functions.

A10 Declarations of the arrays BUFFER to contain 64 fields of information, and DUMMY to
contain 16 fields.

A11 main(ac,av). This is the signal to the computer that this is the beginning of the main
program. It must be in every program. Ac, and av represent the information
being sent into the program. It is not necessary to send the program anything.
Ac represents the number of arguments inputted by the uger at the prornpt,
including the program name. Av represents each argument in an array form, not
including the program name. Ex. Av[2]="-0'

A12 Declaration for the variable ac, that is sent into the main program. ac=integer

A13 Declaration for the variable av, that is sent into the main program. av=pointer to an array
with variable number of fields.

A14 { Open bracket representing the inside of the main program. Encompasses the entire
main program.

A15 FILE File is a type statement that functions as telling the computer how to store the data.
* represents a pointer. Pointers are used to point to information and move
through a variable field without changing values.

A16 Declaration for integer variables. Instructs computer to reserve 8 bits for an integer
value.

A17 Declaration for integer variables.

A18 Declaration for long integer variables. Long is a type statement, which differs from
integer only in the number of bits reserved for the number.

12

A19

A20

A21

A22

A23

A24

A25

A26

A27

A28

A29

Declaration for floating variables. Float is a type statement that is used for numbers
including a decimal point.

Declaration for character arrays, and character pointers. *=pointer: [n] represents the
number of fields reserved in the array. T

Declaration statement for a user defined type. This type is now called tm(which is
standard for time functions) and contains a pointer. Struct is the command for
declaring user defined variables.

Declaration for time variable. time_t is a type statement, like int and char.

Beginning of initialization portion of program. Initializes all variables to be zero (false).

Initializes variable to zero.

Assigns Fpo(file pointer) to the predefined file STDOUT (standard output =screen)

This statement will change the variable timt into a time_t type and place it in the variable
timet.

time is a function that returns the current standard time. This statement will assign the
current time to the address of the variable timet.

Localtime is a function that produces the local time (including daylight savings time) and
returns that into the address of timet. This value will then be pointed to by the
pointer tmptr.

This statement puts the time into the desired format. The current years, given as a
number of years after 1900 year (timptr->tm_year) is multiplied by 1000 and
added to the number of the day past January 1st (tmptr->tm_yday). 1 is then
added to account for the current day. For example if the date was Dec 15, 1995,
(on a non leap year) this statement would first multiply 1000 by 95= 95000.
Then 349 would be added to this =95349. Finally the current day would be
added resulting in 95350. this value would be stored in timt.

13

Taclcsv.C Commentary

B: Interpret command line

B1

B2

B3
B4

B5S

B6

B7

B8

B9
B10

B11
B12
B13
B14
B15
B16
B17
B18
B19

Comment line that signals the beginning of the section that interprets input from the
user.

If statement that checks to see if the user has entered only one argument, and gives an
error if necessary. Ac is the variable sent that represents the number of
arguments inputted.

Beginning of for loop that is reading the characters in the input line.

{ open bracket enclosing for loop. If statement that checks if the character pointer after
the -'is an ‘s’. If true, then it assigns variable figskp to be 1.

else if statement that checks to see if the pointer is a ‘d' (debugging info) and assigns
flgdbg to be 1 if true.

else if statement that checks to see if the pointer is a ‘o’ (output file name) and assigns
flgnam to be 1 if true.

else if statement that checks to see if the pointer is a ‘m’ (time in minutes) and assigns
flgmin to be 1 if true,

else if statement that checks to see if the pointeris a ‘' (time of day) and assigns flgtim
to be 1 if true. .

else if the character is ‘h’

{open bracket for else if statement for ‘help’ print to stream stderr (which is screen) the
line that shows possible commands. Note: fprintf is used when a specific stream
is desired, and allows the user to choose where it will be printed.

print staternent that gives the function of the ‘s’ character

print statement that gives the function of the ‘o’ character

print statement that gives the function of the ‘m’ character

print statement that gives the function of the ‘t' character

print statement that gives the function of both ‘m’ and 't' together

print statement that gives the function of the ‘N’ character

print statement that gives the function of the ‘d’ character

print statement that prints out the current date for the user

exit(0) the exit command will stop the program. The 0 means that the computer has

stopped without an error. 1 means that an error has occurred that caused the

program to stop.

14

B20
B21
B22
B23
B24
B25
B26
B27
B28

} closed bracket of else if help loop.

else from help if loop. (means if the command entered is not one of the given choices)
{ open bracket-eise

if statement that checks to see if a integer number read from stderris I= 1.

if true then print to stderr a message stating unknown option

if false then assign temp to mday.

} closed bracket-else

}closed bracket-for loop (B3)

if statement that prints all the values of the variables to stderr for debugging purposes

figdbg is true.

Taclcsv.C Commentary

Open input and output files

c1.
c2.

C3.

C4.
C5.
C6.
C7.
Cs.

Co.

Cc10.
C11.

C12.
C13.
C14.

C15.

Comment line which marks the function of the section. Open input file.

For loop which sets standard pointer to parameter of input filename, initially. The loop
will go on only if the condition is met, that is until the pointer has not met the
end of string. While this condition is true, the pointer will move to the next
character.

If statement which runts its statements if the conditions are true, which is that there is a
forward slash or a backward slash (/ \\) before the file name (for opening file)

{ Open bracket for if statement

Prints a stream (the filename parameter av[step]) to an array inam.

Statement that quits if loop;

} closed bracket -if

else statement which gets executed if the condition of the if statement (C3) is false. The
filename (av[step]) and the formatted date (A29) will be written to the array
inam.

tries to open the input file, using the fopen command. It assigns the file to Fpi and sets
the mode to read binary. if the file is empty, it gives an error message by
executing the subroutine “error”.

comment line - labels next section “open input file™.

if staternent with condition that must be true to get executed. The condition is that the

variable fignam must not be true to get executed. This will only be true if the option “o”

is chosen which makes an output file name var.ddd as the following comment line

states.

{ Open bracket for if statement

prints the parameter which will hold the output file name to the array tnam.

for loop with initiai statement that sets the character pointer tptr to the first character of
the array tnam. While pointer has not reached the end of the array, the pointer
will move to the next character. The for loop ends in the same line without any
statements to be executed. The goal of the for loop must for setting the pointer
tptr to the last character of the array tham, where the loop stops.

statement which sets the pointer dptr 3 spaces before tptr, i.e., 3 spaces before the end
of array which will be make dptr point to the first letter of the day. The comment

16

C16.

c17.
Cc18.

c19.

C20.

c21.

c22.

c23.

C24.

C25.
C26.

c27.

line states that dptr will “point at day”. The day is the extension part(.ddd) in the
filename.

for loop with initial statement setting tptr 3 spaces before its current location which will
point it to first character of the day in the formatted date file name. While the
condition that tptr be greater than the value of tham is true, the pointer moves
one place to the left. Thereisa if statement inside the for loop, which checks to
see if a backslash is there. A backslash will mean that the file is in a directory.
If a backslash is there, then the for loop will end.

comment line that states that the pointer is pointing to the end of directory.

for loop with initial statement setting tptr to point at the end of the array tnam. The
condition is that tptr be greater than or equal to tnam and while this is true the
pointer gets moved 1 space to the left. The if statement in the for loop checks
for a backslash-which refers to a directory- in the array. |f a backslash is found,
the if statement will quit.

statement which increments pointer one space to the right so that the pointer is pointing
at the variable name, as the comment block states.

if loop with condition that checks if the difference in the spacing between tptr and dptr is
greater than 11.

staternent of if statement that cuts extra characters out of the variable name because its
too long for DOS. The comment line states that DOS can only accept filenames
that are less than 11 characters.

prints the filename with the name and extension to the array onam.

if statement that executes if the variable flgdbg is not equal to zero (option “d"). When
executed, it prints out a line stating that the filename is being created.

if statement that checks to see if the output file exists by opening it. If it doesn't exist,
then an error message is printed out.

close bracket - if

else if statement which will only get executed if the main if statement’s condition was
found to be false, that is if fignam was equal to zero(if an option other than “o”
was choosen), and if the else if statement's condition is found to be true, which is
that if there is one more parameter.

if statement inside else if statement with condition that tries to opens the parameter,
assuming that the parameter is file. If the file does not exist, an ervor message
is printed to the screen and the program is exited.

17

Taclcsv.C Commentary

D: Reading data

D1. comment line states function - “read data in 8 byte blocks, to end of file™

D2. for statement with initial condition setting the integer variable n to be zero (for counting
purposes. There is no condition in the for statement, so it will increment by one
each time it repeats.

D3. open bracket - for statement. if statement with condition of getc(Fpi), which reads a
character from the opened file, Fpi, and checks to see if it is EOF(end of file
character). If itis, then the for statement quits. This is the only way out of the
for loop since it doesn't have any conditions for the for. The character acquired
is assigned to variable tmp.

D4. The variable byte is an array of characters which can hold 8 bits. Since the first 8 bits have
already been read in the if statement (D3), and has been assigned to tmp,
byte[0] is assigned to tmp and any extra hits are truncated using (chantmp
command.

D5. for statement that goes from 1 to 7 with increment of 1 with each repetition. Each time it
loops, byte{1] thru byte[7] are assigned binary data of 8 bits each.

D6. assigns byte[0] to tim (long -- 32 bits). The command Oxff & byte[0] intializes byte[0].

D7. - D9. shifts tm 8 bits to the left (to allow for next 8 bits) and adds it with initialized byte.

D10. assigns value of tim(which is the binary value read from file representing the time) to timet
by converting it to the same type as time_t.

D11. if statement with condition being that figmin be any number other than zero

D12. begin bracket of if statement. Another if statement is inside the if statement with condition
that n has to be zero. This loop will get executed on the first time, to print time
on the first line.

D13. begin bracket of if statement. assigns tim to tstart, followed by comment block that says -
"first line: time in seconds from 1870%/

D14. void command tells the compiler that the following function is not going to return a value.
fprintf prints to a file, Fpo, a sting from ctime(&timet).

D15. close bracket - if statement. comment line states - *first line header: time”

D16. subracts start and tim, and assigns the difference to tim.

D17. divides tim by 60 and assigns the quotient to tim.

D18. close bracket - if statement.

18

D19.

D20.

D21.

D22.

D23.

D24.

D25.

D26.
D27.
D28.
D29.
D30.

else if statement that gets executed only if figmin was equal to zero (the if statement
didn't get executed), and if n is equal to zero, the first time. Comment line
following it says - “first line header: time™.

statement inside else if statement that doesn't return a value (void), and prints a string
time(&timet) to a file, Fpo.

if statement with condition that flgtim be any number that does not equal to zero.

open bracket - if statement. If statement with condition that flgmin be any number that
does not equal to zero. If condition is true, then tim divided by 60 and tim mod
60(remainder of tim/60), are printed to the array, tbuf.

else statement that gets executed if the if statement’s condition is false.

begin bracket - else statement. assigns tim to timet changing the format of tim, but the
value and type of tim is unchanged.

void states that no value is returned by the function sprintf, which prints the string
ctime(&timet)) to the array buffer.

reads 4 strings from the array buffer and assigns them to the variables dummy and tbuf.

close bracket - else statement

close bracket - if statement.

else statement that prints the long integer tim to the array tbuf.

- D33. follows same format as lines D6 - D9, replaced with dat and byte(4] thru byte[7]
instead of tim and byte [0] thru byte([3], respectively.

19

Taclcsv.C Commentary
E: Translate 32 bit

E1 Comment line—Section that translates the 32 bit floating point number.

E2 Open and reads the top two bits (sign of the number) by using the & function with the
hexadecimal (Oxff) which in binary is 1111 1111. This will take the binary code
in byte[4] and add it to the Oxff resulting in a 1 only if both numbers are 1 and a
0 when both are not. The number is then shifter & units to the right and assigned
to the variable bit.

E3 This opens and reads the next 7 bits that are used for the exponent. The value of
variable dat is added(&) to 0x3f800000, which in binary is 0011 1111 1000 0000
0000 0000 0000 0000. This in effect opens the 7 digit exponent. The resultis
shifted 23 spaces to the right and placed in the variable shft.

E4 This line extends the sign so that it will be effective in different types of machines. First
shft is &-ed to 0x40 and then compared to 0x40. If this is true then shft will
perform a bitwise | (or) with Ox{ffff80 and then be placed back into the variable
shft. If the sign of the number is set to 1 then this statement will also set the top
bit to be 1 so that the machine is sure to understand the sign of the exponent.

ES This is a special case when the dat is zero. If it is then f1 is set to be 0.0.

E6 else if dat is not zero then dat is &-ed (and) to OXT7ffff and the result is |-ed (bitwise or)
to 0x800000. This is then placed into the variable of f1. This connects both the
exponent and then top bit.

E7 if bit and 2 (01) are &-ed and the result is equal to 01 then the sign of f1 is reversed.

E3 Assigns the value of 41 94304.0 to f2. (2% This will be used for normalizing the
numbers at a later time.

E9 Assigns flgshft to be 0.

E10-13 If shft is less than 0 (negative number) then it checks to see if it is less than -15. Ifitis,
figshft is set to 1, else negative shft is shifted 1 space to the left (to knock of the
sign bit) and then multiplied to f2. The result is placed back into the variable f2.
This is the negative case of shft. '

E14-17 Else is shft is greater than 0 and greater than 15 then figshft is setto 1. Else shft is
shifted 1 space to the left and then is divided by f2 and the value is set back to
2. This is the positive case of shft.

E18 If statement that checks to see if flgskp is not equal to 0 anddat=Istd. &&isa logical

AND command which returns 0 if faise and 1 if true. If this statement returns

20

E19
E20
E21
E22

E23

E24

E25

true then the command continue caused execuion to jump immediately to the
beginning of the loop, skipping the remaining lines.

Assighment statement that transfers the value of dat to Istd.

If statement that checks the value of f2. If its 0.0 then f1 becomes f2.

else if f2 does not equal 0 then f1/f2

If flgdbh is not equal to 0. This statement checks tosee whether a debugging choice was
entered by the user.

Open { bracket-- fprintf statement that prints the value of n, tubuf, dat, to 4 decimal
places, 5 long decimai places, 8 long hexidecimal numbers respectively. The
(void) tells the compute that the functions will not return a value.

fprintf statement that prints to stderr, all the variable values including bit(shifted one
position), bit, shft, f1, f2. The phrase “(f2==0)?f1:f1/f2" is a conditional
statemnent that is read by the computer like an if/else statement. Itis
understood to be “If f2=0 then print f1 else print f1/f2"

closed bracket }

21

Taclcsv.C Commentary
F: Print results

F1. comment line - states function of next section “print resulit”.

F2. if statement that gets executed if figshft doesn’t equal to zero.

F3. begin bracket - if statement.

F4. function doesn't return a value but prints the tbuf and “??7?" to the file Fpo.

F5. function doesn't return a value but prints an error message with the values of shft and dat to
the screen.

F8. close bracket - if statement.

F7. else statement - gets executed if if statement’s condition was faise.

F8. open bracket - else statement. if statement with condition that f2 be greater than 0.9999.

F9. open bracket - if statement

F10.if statement with condition that f2 be greater than 99.9

F11.function doesn't return a value but prints tbuf and f2 to the file Fpo.

F12.else if statement with condition that f2 be greater than 9.99

F13.function doesn't return a value but prints tbuf and f2 to the file Fpo.

F14.else statement with a function that doesn't return a value but prints tbuf and f2 to the file
Fpo.

F15.close bracket - if statement

F16. else if statement with condition that f2 be lesser than -0.9999.

F17.open bracket - else if statement

F18.if statement with condition that f2 be lesser than -99.9

F19.function doesn’t return a value but prints tbuf and f2 to the file Fpo.

F20.else if statement with condition that f2 be lesser than -9.99

F21.function doesn’t return a value but prints tbuf and f2 to the file Fpo.

F22.else statement with a function that doesn't return a value but prints tbuf and f2 to the file
Fpo.

F23.close bracket - else if statement

F24.else statement with a function that doesn't return a value but prints the string ctime(&timet)
to the file Fpo.

F25.close bracket - else statement

F26.close bracket - for loop

F27.assigns value of tim to timet and changes the format of tim. The value and type of tim is

unchanged.

22

F28.if statement with condition that flgskp be not equal to zero. If executed, the fprintf function

doesn't return a value but it prints out the string ctime(&timet) to the file Fpo.

F29.close bracket for mainQ function.

F30.

F31.

Fa2.
F33.

F34.
F35.
F36.

beginning of subprogram. Initial declaration of program. (5) is the value that is to be
sent to and retured bythe subprogram.

declaration of the type of the variable s to be character. Also declares a pointer to the
value.

{ open bracket

Perror is a function that prints the strings *s onto stderr along with a colon and space f
followed by an error message.

exit function that stops the program due to an error

closed bracket } subprogram

Comment line stating the end of the taclicsv.c program.

Added Features

The following features have been added to program. A copy of the new version

is also included.

Page A. The variables flgmaxmin, figavg, sum, max, and min are declared and initialized
for later usage in the program. These are used to calculate the average,
minimum, and maximum of the values. Five variables, year, month, date,
yday, and leap have been declared and initialized. These variables are used
to calculate the date wanted and convert it into the file name. The variable
mday has been removed from declaration and initialization, because it
doesn’t have any more use. The variable, i, is added which is used for a for
statement.

Page B. The if statement has been changed to a switch statement, which achieves the
same goal, but is easier to read and understand. There is two choices
added which allow for calculating the max, min, average, and differential.
The two new choices are included in the debug statement, which shows the
options chosen. The option of entering the number of days ago has been
changed to make the program more practically applicable. The new option
asks for the year, month, and date. A section has been added in the else
statement that will calculate the day entered in terms of how many days
since January 1, and multiply by 1000 which will result in the file name for
that day. The operation, timt-mday, has been changed to timt, because it is
unnecessary (the variable mday has already been removed).

Page C. No changes.

Page D. No changes.

Page E. Four if statement has been added in the end of the translating section, that
calculates the sum of the values, finds the maximum and minimum value,

and stores the respective time values (tbuf) using a for statement. The

24

variables max and min are initialized, the first time, to the value of the data
(£2).

Page F. An if statement has been added to calculate the average from the sum, and print
the result. An else if statement follows to print the max and min, with their

corresponding tbuf values, and to calculate and print the differential. The

Page G.pre-existing if and else statements have been changed to else if statements
and are attached to the newly created if statement. This allows for printing
out the result only if requested, otherwise, the value would be printed even
if only averaging was requested. In order to print the data in a series of
two sets(four columns), and also to be able to import the program into the
spreadsheet based program, EXCEL, tabs have been inserted between each
value. An if statement has been appended that would shift the cursor to the

next line with every-other-loop. This allows for the printing of two sets of

data on one line.

25

New Version

A1./* Kelly A. Alvord & Meenatchi Jagasivamani*/

A2./*Revised version of TACLCSV.C */

A3.J* Mentor : Amrit Yegneswaran 12/B125 7/

A4./* CEBAF PHYSICS DIVISION HALLB *

A5./*This program formates log files into comma separated variables™/
AB./*The data is read in from the files in a 32-bit floating point format */

A7.* bit 32 sign for mantissa
A8. bit 31 not used

A9. bit30 sign for exponent
A10. bit 29 -24 exponent

A11. bit23 -1 mantissa™/

A12#include <stdio.h>

A13.#include <time.h>

A14.char buffer[64], dummy(16];

A15.main (ac,av)

A16.int ac;

A17.char *av(];

A18.{

A19.FILE *Fpi, *Fpo;

A20.int m,n, i, tmp, bit, shft, year, month, date, yday; '

A21.int figskp, figdbg, flgmin, figdat, flgnam, figtim, flgmaxmin, flgavg, flgshft,
step;

A22.long tim, timt, |std=-9999999L, dat, tstart;

A23 float sum, max, min, f1,f2, leap;

A24.char byte[8], tnam([32], inam([16], onam[16], tbuf[16], tmax|16], tmin(16],

*dptr, *sptr, *tptr;

A25.struct tm *tmptr;

A26.time_t timet;

A27.ﬂgskp=ﬂgdbg=ﬂgmin=ﬂgdat=ﬂgnam=ﬂgavg=ﬂgtim= flgmaxmin=0;

A28.Fpo=stdout;

A29.time(&timet);

A30.tmptr=localtime(&timet);

A31 .year=month=date=yday=leap=0; -

A32.timt = 1000L * tmptr->tm_year + tmptr->tm_yday + 1L

26

Taclcsv.C B : Interpret Command Line

B1. /* Interpret command line: */
B2. if (ac==1) error (“taclcsv -h for help”);

B3. for (step=1; *av{step] == -} ++step);

B4, { switch(*(sptr=(av(step]+1))

Bb5. { case ‘st flgskp =1;

B6. case ‘d': flgdbg=1;

B7. case ‘0': fignam=1,

B8. case ‘m’: flgmin=1;

B9. case ‘t': figtim=1;

B10. case X: flgmaxmin=1;

B11. case ‘a’: flgavg=1,

B12. case ‘h"

B13. { forintf (stderr,“\t Usage: taclcsv [-s] [-m] [-o] [-d] [-t] [-X]
[-a] var [/yyddd] [outfile]; options: \n);

B14. forintf(stderr,”-s, skip lines with same data as
previous line \n’);

B15. _ fprintf(stderr,”-0, make up an output file name \n");

B16. fprintf(stderr,”-m, time in minutes from start of file \n”);

B17. forintf(stderr,”-x, prints minimum, maximum, and
differential value with its respective time\n™);

B18. fprintf(stderr,”-a", prints the average of values\’);

B19. fprintf(stderr,”-t, time of day in hh:mm:ss\n”);

B20. fprintf(stderr,”(-m -t gives hh:mm from start of file)\n");

B21. fprintf(stderr,”-year, month, date of day wanted\n”);

B22. fprintf(stderr,”-d, print debug info\n”);

B23. fprintf(stderr,"Today is day %5id\n”, timt);

B24. exit(0);

B25. }

B26. default:

B27. { if (sscanf(sptr,"%d, &tmp)!=1)

B28. fprintf(stderr,"unknown option: %c\n:,*sptr);

B29. else

B30.

B31. sscanf(sptr, "%d %d %d", &year, &month, &date);

B32. switch(month)

B33. {

case 1: yday=(((month-1)*30)+date);

case 2: yday=(((month~1)*30)+date) +1;

case 3: yday=(((month-1)*30)+date)-1;

case 4: yday=(((month-1)*30)+date);

case 5: yday=(((month-1)*30)+date);

case 6: yday=(((month-1)*30)+date)+1;
)

1

case 7:yday=(((month-1)*30)+date +1;

27

B41.
B42.
B43.
B44.
B45.
B46.
BA47.
B48.
BA49.
B50.
B51.
B52.
B53. }

}

case 8: yday=(((month-1 y*30)+date)+2;

case 9 yday=(((month—1)*30)+date)+3;

case 10: yday=(((month-1)*30)+date)+3;

case 11: yday=(((month-1 y*30)+date)+4,
case 12: yday=(((menth-1 Y*30)+date)+4;

}

leap=year%4;

if (leap==0) yday++;

timt = 1000L *year + yday;

B54. if (flgdbg) fprintf (stderr,”options %d%d%d%d%d%d, step=%d\n” figskp,

figavg, flgmaxmin, flgdbg,flgnam, figmin,step);

28

Taclcsv.c C: Open Input/Output File

C1./* Open input file: */
C2. for (sptr = av[step]; *sptr |="\0'; ++sptr)
C3. if (*sptr =="") || (*sptr == \))

c4. {
C5.
C6.
c7. }

sprintf(inam, "%s", av[step]),
break;

C8. else sprintf(inam, "%s/%51d", av(step], timt);
C9. if ((Fpi = fopen(inam, "rb")) == NULL) error(inam);
C10./* Open output file: */

C11. if (fignam != 0) /* make an output file name var.ddd */

c12. {

C13. sprintf(tnam, "%s", av(step]),

C14. for (tptr = tnam; *tptr 1= "\0'"; ++tptr) ;

C15. dptr = tptr - 3; /* point at day */

C16. for (tptr -= 3; tptr > tnam; —tptr) if (ptr =="/") break;

C17. /* back to end of directory */

C18. for (*tptr ="\0'; tptr >= tnam; —tptr) if ("tptr =="7) break; I*to
start of directory */

c19. ++ptr; /* point at variable name */

C20. if ((int)(dptr - tptr) > 11)

c21. tptr = dptr - 11; /* else too long for DOS */

C22. sprintf(onam, "%s.%s", tptr, dptr);

C23. if (figdbg != 0) fprintf(stderr, "%s, %s, making %s\n", tptr, dptr,
onam),

C24. if ((Fpo = fopen(onam, "wt")) == NULL) error(onam),

C25. }

C26. else if (ac> step+1)
C27. if ((Fpo=fopen(av[step+1], “wt"))=="wt"))==NULL) error (av[step+1]);

29

Taclcsv.c D: Read Data in 8 byte blocks

D1./*Read data in 8 byte blocks, to end of file.”/
D2.for (n=0;;++n)

D3.{ if ((tmp=getc(Fpi))==EOF) break;
D4.byte[0]=(char)tmp;

D5.for (m=1; m<8; ++m) byte[m] = getc(Fpi); /* 8 bytes */
D6.tim = Oxff & (long)byte[0];

D7.tim = (tim << 8) + (Oxff & (long)byte[1]);
D8.tim = (tim << 8) + (Oxff & (long)byte[2]);
D9.tim = (tim << 8) + (Oxff & (long)byte[3]);
D10.timet = (time_t)tim;

D11.if (figmin)

D12 if (n==0)

D13. { tstart = tim; /*first line: time in seconds from 1970 */
D14. (void)fprintf(Fpo, "\'%s", ctime(&timet));

D15. } [* first line header: 'time */

D16. tim -= tstart; /* time in seconds from start of data */

D17. tim /= 60;

D18.}

D19.else if (n == Q)/*first line header: 'time */
D20.(void)fprintf(Fpo, "V'%s", ctime(&timet));
D21.if (flgtim)

D22 { if (figmin) sprintf(tbuf, "%2d:%2d", tim/60, tim%60);

D23. else

D24. {) timet = (time_t)tim;

D25. (void)sprintf(buffer, "%s", ctime(&timet));

D26. sscanf(buffer, "%s%s%s%s", dummy, dummy,
dummy, tbuf);

D27. }

D28.}

D29.else sprintf(tbuf, "%Id", tim);

D30.dat = Oxff & (long)byte[4];

D31.dat = (dat << 8) + (Oxff & (long)byte[5]);
D32.dat = (dat << 8) + (Oxff & (long)byte[6]);
D33.dat = (dat << 8) + (Oxff & (long)byte[7]);

30

Taclcsv.c E page: Translate Binary Data

E1./* Translate 32-bit FP: */

E2.bit = (Oxff & (int)byte[4]) >> 6; /* top 2 bits */

E3.shft = (int)((0Ox3f800000L & dat) >> 23); /™ next 7 bits = exponent */
EA4.if ((shft & Ox40) == 0x40) shft |= Oxffffff80; /* extend sign */

ES.if (dat == OL) f1 = 0.0; /* special case, | think */

E6.else f1 = (float)(Ox800000L | (Ox7ffffflL & dat)); /* add top bit */
E7.if ((2 & bit) == 2) f1 = f1: /* sign bit */

E8.f2 = 4194304.0; [*=(2%22)
E9.flgshft = O;

E10.if (shft < Q)

E11. if (shft < -18) flgshft = 1;

E12. else f2 *= (float)(1 << (-shft));
E13.}

E14.else

E15.{ if (shft > 15) flgshft = 1;

E16. else 2 /= (float)(1 << shft);
E17.}

E18.if ((flgskp != 0) && (dat == Istd)) continue;
E19.Istd = dat;

E20.if (f2 ==0.0) f2 =f1;

E21.else f2 = f1/f2;

E22.if (flgdbg != 0)

E23.{ (void)fprintf(stderr, "%4d:%51d, %8Ix; ", n, tbuf, dat);

E24. (void)fprintf(stderr, "bits=%1x%1x, shft=%3d, num=0x%Ix=%.0f,
%An", bit>>1, 1&bit, shft, (long)f1, f1, (f2 == 0.0) ? f1 : f1/f2);

E25.}

E26.If (flgavg) sum = sum +f2;

E27.if (n==0) min = max = f2;

E28.if (f2>max)

E29.{ max = f2;

E30. for(i=0; i==16; ++i)
E31. tmax(i] = tbufli];
E32.}

E33.if (f2<min)

E34.{ min = f2;

E35. for (1I=0; i==16; ++i)
E36. tmin(i] = tbufTi];

E37.}

31

Taclcsv.c F page: Print Result

F1./* print result: */

F2. if (flgavg)

F3. (void)fprintf(Fpo, “The average of the data is %f\n”, sum/(n+1));

F4. else if (flgmaxmin)

F5.

F6. (void)fprintf(Fpo, “The maximum value, %f, occured at time %s”,
max, tmax);

F7. (void)fprintf(Fpo, “The minimum value, %f, occured at time %s”,
min, tmin);

F8. (void)fprintf(Fpo, “The differential is %f’, max-min);

F9. }

F10. else if (flgshft)

F11. {

F12. (void)fprintf(Fpo, "%s, ??7\n", tbuf);

F13. (void)fprintf(stderr, "shft = %d, dat = %8Ix\n", shft, dat);

F14. }

F15. else

F16. { if (f2 > 0.9999)

F17. {

F18. if (f2 > 99.9)

F19. (void)fprintf(Fpo, "%s, \t%.3f", tbuf, f2);

F20. else if (f2 > 9.99)

F21. (void)fprintf(Fpo, "%s,\t %.4f", tbuf, f2);

F22. else (void)fprintf(Fpo, "%s, \t%.5f", tbuf, f2);

F23. }

F24. else if (f2 < -0.9999)

F25. {

F26. if (f2 < -99.9)

F27. (void)fprintf(Fpo, "%s, \t%.3f", tbuf, f2);

F28. else if (f2 < -9.99)

F29. (void)fprintf(Fpo, "%s,\t %.4f", tbuf, f2);

F30. else (void)fprintf(Fpo, "%s,\t %.5f", tbuf, f2);

F31. }

F32. else (void)fprintf(Fpo, "%s,\t %.6f", thuf, f2);

F33. }

F34.1f ((n%2) !=0) (void)fprintf(Fpo, “\n"); /*if odd values ptr goes to next line*/

F35.else (void) fprintf(Fpo, “\t"); ["tabs for even n values to make columns®/

F36.

F37.

F38.}

32

F39.timet = (time_t)tim; '
F40.if (flgskp) (void)fprintf(Fpo, "\'%s", ctime(&timet));
F41.

F42.

F43.}

F44.error(s)

F45.char *s;

F46.{

F47.perror(s);

F48.exit(1);

F49.}

F50./* end taclcsv.c */

33

Conclusions

Currently, the program is in the process of being compiled. These modifications

have been made to produce the following changes upon execution of the program:

1. Calculate and print the average of the set of data.

2. Determine and print the maximum and minimum value with their respective
time periods.

3. Evaluate the differential between the maximum and the minimum value.

4. Only print the requested data, instead of the default listing of all of the data.

5. Output the data in columns for better readability and for transfer into the
EXCEL program.

6. Allow the user to input the wanted day by calendar date, instead of a difference
between the current date and the date wanted.

7. Revision of the source code for better readability and understanding through
the addition of commands, elimination of unused portions in the program, and

the replacement of functions.

34

