CLAS NOTE 95-023
Nov 2, 1995

Hv: A Graphical User Interface Library for Scientific and
Engineering Applications

D. P. Heddle

Christopher Newport University and the Continuous Electron Beam Accelerator Facility, Newport

News, VA 23606

Electronic mail: heddle@cebaf.gov

Abstract

We have developed Hyv, a library based on Motif and X-Windows for use in scientific and engineering
applications. Through more than 500 public functions, Hv provides for multiple “views” with inde-
pendent world and pixel coordinate systems. Hv will perform all necessary coordinate transforma-
tions and window maintenance and will automatically provide Hv applications with the ability to
print their views to postscript printers or to save their contents as encapsulated postscript files for
inclusion into other documents. Applications may draw upon a rich suite of predefined graphical
items or easily add their own. Examples of applications written in Hv include the single event-display
for the CEBAF Large Acceptance Spectrometer (CLAS), the graphical level-one “trigger” program-

ming software for experiments using CLAS, a scientific plotter, and a simulation of theater missile

defense architectures.

I Introduction

Hyv is a library that greatly simplifies the development of applications with a sophisticated graphical
user interface. It is layered on top of X, Xt (R4 or later), and OSF Motif (version 1.1or later); how-
ever, the developer is completely insulated from those libraries. Applications can be developed solely
through calls to the Hv library. Hv is not an interface builder for creating Motif applications; it is a
library whose use results in applications with a unique appearance and feature set. While Hv is in part
a tool for simplifying Motif and X, it has extended capabilities not available in either package. In par-

ticular, Hv is useful for scientific and engineering applications including modeling and simulation.

Hv is also to be distinguished from data visualization packages, such as the AVS and Explorer sys-
tems. Hv is used, for the most part, to display and interact with representations of physical objects
rather than complex data sets, although visualization at the level of scientific plotting (usually of the
results of a simulation) is an integrated Hv feature. This will become clear as we discuss example Hv

applications.

As a simple but important example of why Hv is particularly useful for scientific and engineering
applications, we note that Hv maintains a floating-point world coordinate system as well as the pixel
based local system used by X and Motif. The world system is sized to accommodate the dimensions
of what is actually being drawn. For example, a display of detectors in a nuclear physics laboratory
might require a world system that is several meters in extent. With Hv, there is no need to artificially
pre-scale physical objects to match a screen-based pixel system. The graphical items carry along the

actual dimensions and positions of the objects they represent.

Another example of an Hv feature that is especially useful for technical applications is pointer-track-
ing (also called feedback). As the usér moves the pointer over graphical items, the application will
display information about the item. Retuming to the detector example, when the user points at a
detector component, the application will display in real-time the ID and location of the component, as
well as any data presently available that pertain to the item. Hv automates this as much as possible for
the developer by continuously reporting both which item is being pointed at and the pointer’s present

pixel and world coordinates.

Hv also provides a mechanism for registering multiple simulations. One application can have many
simulations running simultaneously, each being updated at a different (user controllable) rate. By reg-
istering a simulation, the developer is guaranteed that a private simulation process will be called at
programmable time intervals. For example, the demo application Avmap mcluded with the Hv distri-
bution displays a rotating globe. The rotation is handled by registering a simulation, called once per

second, that recalculates the map configurations based on the earth’s rotation.

Hv requires

» the Motif library (not just the Motif window manager, which in fact is not required), version

1.1 or higher.

+ a color monitor that supports 256 colors or gray scales. Hv takes full advantage of color, and

we lack the manpower to insure that it does something reasonable on monochrome monitors.

Hv has been tested on a variety of UNIX platforms including Dec (Ultrix and OSF), Sun, SGI, IBM,

HP, and also under linux. Hv was written in K&R “C” and contains about 45,000 lines of code and

more than 500 “public” functions. Space will not permit using this forum to publish a programming

manual.

Hyv is freely available without warranty. Developers may use Hv providing they give proper attribu-

tion and citation. A complete manual’, source code, installation instructions, and demo applications
are available via anonymous ftp from two sites: the Super Computing Research Institute at Florida
State University: fip.scri.fsu.edu in the directory pub/CLASsoft/files/Hv, and from amer-
ica.pcs.cnu.edu in the directory pub/heddle/Hv. All necessary files are compressed into one tar file

named Hv.IXXX.tar.Z where XXX is a number representing the latest version.

II The Hv Paradigm

An Hv application looks something like a cross between a Motif and a Macintosh application. It con-
tains a single X window, (henceforth called the Hv main window) with a single main menubar, much
like the Macintosh desktop. However, unlike the Macintosh desktop the Hv main window can be

moved, resized, and iconified.

Within the Hv main window are additional window-like objects called views. Again, these views are
like the windows on the Macintosh desktop, except they have increased functionality: dragging, resiz-
ing, pointer tracking (feedback), scrolling, zooming, zoom-to-fill, controls, etc. The views have a 3D
sculptured appearance that provides an elegant look-and-feel to Hv applications, An example of a Hv

main window containing multiple views is shown in Figure 1.

Contained in each Hv view are Hv items. These include but are not limited to sliders, buttons, rainbow

scales, wheels, text, and, most importantly, user-defined items that represent real objects, such as
detectors. Each item has a rich suite of artributes that can be used to control its behavior. To reiterate:

the Hv main window contains one or more Hv views; each Hv view contains many Hv items.

An Hv view has three distinct areas, each being optional but typically all three being present. The
HotRect is the primary “drawing” area where the bulk of the graphical items will live. The Control
area is where sliders, buttons (of various flavors), and other control items are found. Finally the Feed-

back area is where updates associated with tracking the pointer are displayed.

In Figure 2 we display a typical view arrangement, designating the controls, HotRect, and feedback
areas. Also in Figure 2 we point out a familiar set of manipulators for dragging, resizing, hiding, and

scrolling an Hv view.

It is essential to understand the purpose of each area. The HotRect is the “canvas” for the view. Items,
usually very application-specific representations of actual objects, will be dragged, resized and
rotated within the HotRect. Results may be represented graphically and displayed within the HotRect.

It is the area affected by scrolling and zooming. In most applications it will change frequently.

The Control area is relatively static, and it is also the only of the three areas that need not be rectangu-
lar. It gives the view its personality in the sense that the controls are specific to that view, as opposed
to the main menubar which applies to all views. The Control area is not affected by scrolling or zoom-
ing. A typical application will have a small family of view types, each with a specialized set of con-

trols. In Hv applications the bulk of the power to control the state of an application resides in the

views’ controls, not in the main menubar, which tends to remain relatively simple.

The Feedback area is where the results of pointer tracking are displayed. In most Hv applications, as
the pointer is dragged through the HotRect, the text in the feedback area will be rapidly changing. The
user stops at a point of interest and reads the information in the feedback area, Pointing at items in the
HotRect and getting instant feedback is perhaps the most popular Hv feature. In any of the figures in

this report that display Hv views you can find examples Hv’s feedback mechanism.

The size and placement of these areas is at the discretion of the developer. For example, the view
shown in Figure 3 has a very different layout than the view in Figure 2, since its parent application is
less demanding in its need for controls and feedback. The arrangement of Figure 3 minimizes wasted

screen real estate.

Some discussion of the figures in this document is appropriate. Hv provides for postscript and encap-
sulated postscript rendering of its views. In fact, that is how the figures of views used in this paper

were produced. Thus, any representation of a view is faithful to its actual appearance on the screen.

One more point about the figures. In Figures 1-3, the view is shown as it appears on the screen,
namely with three areés on a gray 3D sculptured background. Figure 4, however, shows only the con-
tents of a view’s HotRect on a clean “white” background. This is almost always what users want to
print, just the contents of the HotRect. Printing the entire view is useful when producing a user’s man-
ual, so that one can refer to the controls when discussing their use. When a print request is made from

an Hv application, the user can choose whether to print the entire view with all adornments or just the

HotRect.

Below we present an additional (but partial) list of features that come “for free” when programming

with the Hv library:

* Drag and Drop. Hv will allow you to create items that can be dragged, resized and rotated,

usually within the confines of the HotRect.

» Drawing Tools. Hv provides a set of drawing tools that can be optionally added to any

view. Thus any view can be annotated with text, lines, rectangles, etc. prior to printing.

« Scientific Plotting. Hv provides a scientific plotter that can be integrated into any Hv

application. The plotter includes spline smoothing and curve fitting of various types, such as

to a sum of Legendre polynomials.

» Simulations. Each Hv view in an application can register a simulation by providing a simula-
tion process and a simulation time step in milliseconds. Hv will automatically call the simula-
tion process at intervals of the time step, for example every 100 ms. Thus an application could
have the same simulation running independently in multiple cloned Hv views, or a completely

different simulation in each Hv view.

» Postscript printing. Any application will be able to print its views to a postscript printer or

to create postscript (or encapsulated postscript) files for inclusion into other documents.

* Balloon-Help. Any item created by an application can include a string that will appear in a
balloon when the balloon-help feature is enabled (via an automatically provided Help menu)

and the pointer is placed over the item.

* On-line help. 'When the user selects “Help” from the Help menu, a scrollable list of top-
ics (automatically alphabetized) is presented. Clicking on an item brings up any available

help. Developers only need to maintain a simple ASCII file containing the help text. This fea-
ture, along with the balloon-help, enables developers to easily add a substantive help capabil-

ity to their applications.

* Fonts and colors. Hy provides 37 predefined fonts for use in Hv functions that take “font”
as an argument, and 80 colors for use in Hv functions that take “color” as an argument. Some

color manipulation routines are also provided.

* Animated Items. Any Hv item can be assigned a redraw time, for example it can be told to

redraw itself every 500 ms, from which the developer can effect simple animation.

III' Typical Hv Applications

Hv was developed for scientific and engineering applications wherein part or even most of the pur-
pose of the application is to produce and interact with some sort of graphical output, The interaction
can occur in the usual way with controls (buttons, etc.) but also in a less familiar way: by placing the
pointer over (and perhaps clicking) non-control items such as pieces of a physics detector or a map of
the world. This concept might be clarified by a synopsis of some existing Hv applications, views from

which are used for the figures in this document.

= ced. The original Hv application, ced displays multiple representations of the Continuous
Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS), over-
laying the raw and/or reconstructed data. The user can place the pointer on a detector compo-
nent and get immediate feedback about the data for that component, such as raw electronic

data, or perhaps reconstructed information such as the energy deposited.

= hvplot. Included as a demo with the Hv installation, Avplot is actually the most widely dis-
tributed and used Hv application. Scientific plots are generated from ASCII data files. The

user can then interact with the plots in a variety of ways, such as zooming individual plots or

double clicking to bring up various graphical editors of the plot attributes.

« figris. Another CLAS related application. Like ced, tigris provides a graphical representa-
tion of the detector. In this case, however, the user clicks on various components to program a
“trigger”, which is a template for the data acquisition system. In effect the trigger instructs the
data acquisition system regarding what class of events are considered interesting enough to

record in an ensuing experiment.

e caps. In a commercial use of the Hv library, SPARTA, Inc. of Mclean VA has developed a
theater missile defense simulation by combining a FORTRAN “engine” with an Hv graphical
interface. Objects such as radars and interceptors are placed on maps and can then be dragged
and rotated. Once the Hv interface has established a “scenario”, it sends the information to the
FORTRAN simulation and, upon completion of the simulation, graphically displays the
results. The user can then interact with the results through the feedback mechanism and in

some cases by clicking on their graphical representation.

These applications share the feature of requiring, or at the very least providing for, extensive user

interaction with complex, user-defined graphical objects. Nuclear physics detector components and
radar fans are not part of any standard widget set. With Hv, the developer can turn such objects into

dynamic graphical entities in a straightforward manner.

For applications similar to one of the four described above, where users click and in some sense probe
and/or modify specialized graphical items, or interact with the graphical representation of the data
resulting from an analysis or simulation, then Hv should be an appropriate tool. For applications
requiring only normal controls, such as buttons, file-selection boxes, sliders, etc., well known contro]

toolkits such as Tcl/Tk might better serve the developer.

IV Hyv Programming

As mentioned, we cannot present a programming manual in this report. Instead, we will give a top-
level overview of how an Hv application is developed. No actual code is presented nor is any actual
Hv procedure described. Such details are available in the manual included in the Hv distribution. The
purpose here is outline the basic steps used i constructing an Hv application and in doing so to pro-

vide further elucidation of the nature of Hv.

The design that must be carried out prior to the development of an Hv application involves deciding
how many different types of views are required and then deciding on a view-by-view basis what con-
trol items are needed, what HotRect (usually user-defined application-specific) items are needed, and

what manner of pointer tracking (feedback) would be informative.

Let us return to the CLAS event display (ced) and recreate part of the process of this preliminary

10

design phase. A slice through the middle and showing the entire detector is presented in Figure 4. It is
not important for the reader to have any knowledge of detectors, only to recognize that we want to
represent a large object (CLAS) that is comprised of independent components (the various detector

packages).

We decided to construct one view that shows the entire detector -- the view shown in Figure 4. We
also recognized the need for several additional views, each showing only one component of CLAS,
and a final view displaying the toroidal magnetic field that gives CLAS its spectroscopic capability.
Some of these views can be found in Figure 1. Thus we designed ced to contain a handful of view
types, each with its own controls, user-defined items, and feedback but all behaving consistently in
terms of the user interface. Finally we note that each view type can be cloned indefinitely: We could
have any number of magnetic field views, each a carbon copy in regards to the controls and feedback,

but independently positioned, sized, and zoomed.

Having a design in mind, we are ready to begin coding. Our discussion is now completely generic.
The main program in an Hv application generally consists of three lines: one to initialize Hv, one to

call the application’s private initialization, and a final call to enter an event dispatching loop.

The first step, the Hv initialization, performs all the underlying X initialization, creates the Hv main
window, allocates the fonts and colors, and creates the main menubar. The third step, the event loop,
1s where X events such as pointer motion, pointer clicks and keystrokes are dispatched. The developer

does not need to know any of the details of the Hv initialization or how Hv processes X events.

11

All the development goes into the second step, the private initialization. Here is where an applica-
tion’s initial views are created, along with the controls, user-defined items, and entries into the feed-
back area. Any routine initialization (such as initializing global variables) and additions to or

modifications of the main menubar are also done here. This is represented schematically in Figure 5.

When creating the views and items, the developer will attach to them procedures that are called in
response to various actions, entirely analogous (but simpler than) the “callbacks” of X and Motif, For
example, when a view is created, a feedback procedure is (optionally) attached. This is the procedure
that Hv will invoke as the pointer is moved within the view’s HotRect. The user has to provide the
code that will take the information passed to it by Hv (i.e., the present pointer position) and convert it

to a meaningful string which Hv will then display in the appropriate position in the feedback area.

As for the user-defined items, there are two methods available for the developer. One is to create truly
user-defined items that Hv knows nothing about. Here the developer has to provide a procedure for
drawing the item as well as various support procedures that tell Hv how the object should respond to
scrolling, resizing, rotation, etc. A simpler method recommended whenever applicable is to “piggy-
back” onto an existing Hv item. For example, many items (such as the detectors in CLAS) can often
be represented by world-based polygons, i.e., polygons with vertices stored as world rather than pixel
locations. Hv has a predefined world-based polygon, so creating an item based on it has the advantage
that Hv already knows how to handle all the basic drawing and item maintenance. The user only pro-
vides a customized drawing procedure that Hv calls after its basic polygon drawing that converts the

item from generic to specific.

12

V Summary

The Hv library is an option for graphics-intensive applicatioﬁs, especially scientific modeling and simulation. It
transparently handles mundane tasks such as refreshing the window after it was occluded and then exposed (a
task many novice programmers assume is done “by the system”) and the administration of printing, fonts, and
colors. More importantly, it provides a suite of tools such as coordinate transformations that are tailored as to

their utility for such developments but are not provided by Motif and X.

ACKNOWLEDGEMENTS

The author is delighted to acknowledge the early users and critics of Hv, including Dave Doughty at CNU, Mick
Guidal, Etienne Burtin, Mikhail Kossov and Kevin Beard at CEBAF, Tim Smith at the University of New Hamp-
shire, Larry Dennis, Greg Riccardi and Peter Dragovitsch at Florida State University, Barry Preedom at The Uni-
versity of South Carolina, and Martin Durbin, Rick Addelson, Wai Lee and Laura Lee at SPARTA. Special
acknowledgments are reserved for Mike Finn at INRT and CNU who contributed much code to a precursor devel-
opment, and to James Muguira of CEBAF and CNU. This work was supported by The Southeastern Universities
Research Association (SURA), which operates the Continuous Electron Beam Accelerator Facility (CEBAF) for

the United States Department of Energy under contract DE-AC05-84ER40150.

REFERENCES

1) D. P. Heddle, Hv Programming Manual (unpublished), included in the Hv distribution or as a technical note:

CLAS 95-024 from CEBAF, 12000 Jefferson Avenue, Newport News VA 23606.

13

Figure 1. A example of a main window from an Hv application. Three over-lapping views are present.

Figure 2. The anaz‘bmy_of an Hy view. This view could be described as following the canonical Hv
style: drawing tools (if desired) to left of the HotRect, textual buttons along the top, picture buttons

and other controls on the top right and the feedback area on the bottom right.

Figure 3. An example of an Hv view with very different layout from the one shown in Figure 2. Here
only minimal controls and feedback are required and are placed along the top. This allows the maxi-

mal allocation of screen real estate to the HotRect.

Figure 4. A slice of the CLAS detector, which is comprised of concentrically (with the target at the
center) arranged component packages. A knowledge of detectors is not important here, only the

notion that we are representing a large, composite object.

Figure 5. A top level overview of Hv programming. The user’s main program typically consists of
three lines: one to initialize Hv, one to call the application specific initialization and a final call to an
event processing loop. The user’s initialization is further expanded into the standard sequence of

steps, the most important of which is the creation of the application specific views.

14

Action Views Color Events Help

Figure |

Explode Box
Close Box (resizes view to

(hides view) Title bar (used to drag the view) , fill main window)
Controls

Vertical
Scroll
Area

HotRect

Horizontal Scroll Area : /
Grow Box
(resizes view)

Figure 2

Small Feedback Area

Controls

-0.46)

e

¥ {~0:49,

2
-
J
A}
Hi \
n

© H . ' 48

e HA : \

.m..VI \ ._

S & H | 1 N
Hwn._i \.0 N
> = «— H : P

| Hi ! Do\

1 PN

.] Y

_ o ;o)

| < !]

! 1o
/e
/
4
/
@ 4w
3 <
8 =
c P
e o
L O
m =
1
|]
]
o
o
e

cos(8)

tusrfimp/aasal1915

R — R T T rlv uJ
PO T IRV B

i

D Ty o Rt

igure 3

Figure 4

e beam
Drift Chambers —p

\\A

~ Scintillators

Cerenkov

Detectors\

Cerenkov /

Detectors

Shower
Counters

Shower
Counters

Initialize Hv

Private Initialization

Figure 5

Event Loop

.
b

Routine Initialization

Y

Create/Modify Main Menubar

Yiew Creation

Basic View Creation

Create Control Items

Create Feedback Enlries

Create User-Defined Items

