A search for baryon-number violating $\Lambda \to m\ell$ decays using CLAS @ JLab

Michael E. McCracken^{1,2}, Matt Bellis³ for the CLAS Collaboration

¹Washington & Jefferson College Washington, Pa. 15301

> ²Carnegie Mellon University Pittsburgh, Pa. 15213

³Siena College Loudonville, New York 12211

> 27 June 2013 BARYONS '13

University of Glasgow, Scotland, UK

M. McCracken (W&J)

BNV Λ Search

27 June 2013 1 / 20

MOTIVATION: MATTER ASYMMETRY

• We observe a matter-dominated (rather than symmetric) universe

$$\eta = \frac{N_B - N_{\bar{B}}}{N_{\gamma}} \approx 10^{-9}$$

- Likely that primordial universe began in a symmetric state
- Sakharov Conditions (1967) \rightarrow To achieve current asymmetry, need:
 - Violation of C and CP invariances
 - 2 B violation
 - Interactions outside of thermal equilibrium
- Standard Model allows for B violation via $\textit{sphalerons} \approx 10 \text{ TeV}$
- \bullet Observed CP violations in K and B mesons can't account for η
- Explanations:
 - 0 Undiscovered larger CP violations
 - **2** Undiscovered B violations

MOTIVATION: BARYON DECAY

- Sakharov theorized a new boson that mixes quark and lepton flavors
- $\bullet\,$ Such X bosons are features of many SU(5) theories and GUTs
- X may have $q = \pm \frac{1}{3}$, $\pm \frac{2}{3}$, $\pm \frac{4}{3}$
- Example: p decay with X of $q = \frac{1}{3}$

- Relies on $q \to X + \bar{q}$ and $q + X \to \bar{\ell}$
- Experimental upper bound on p lifetime is $> 10^{33}$ y!

M. McCracken (W&J)

27 June 2013 3 / 20

< D > < P > < P > < P > < P >

MOTIVATION: BARYON DECAY

- Non-observation of p decay:
 - ${\ensuremath{\, \circ }}$ large mass of X
 - flavor dependence of X coupling
- Parametrize X coupling (as in the CKM matrix)

MOTIVATION: BARYON DECAY

- Non-observation of p decay:
 - ${\ensuremath{\, \circ }}$ large mass of X
 - flavor dependence of X coupling
- Parametrize X coupling (as in the CKM matrix)

Motivation: $\Lambda \to m\ell$

- The Λ presents a long-lived strange state ($c au=7.89~{
 m cm}$)
- $\bullet\,$ Current uncertainties on $\Gamma\,$ allow for discovery at our sensitivities
- Opportunity to observe rare decays
- Differs from p decay by access to $X_{s\bar{q}}$
- CLAS has lots of them, easily separable from background
- Hyperon photoproduction in CLAS is understood
 - $d\sigma,$ polarization from $\gamma p \to K^+ Y$ published
 - $\gamma p \rightarrow K^+ \Lambda$ PRC **81**, 025201 (2010)
 - $\gamma p \rightarrow K^+ \Sigma^0$ PRC **82**, 025202 (2010)
 - forthcoming papers on Y^{\ast} arXiv:1305.6776 [nucl-ex]
- First measurement; upper-bound is worst-case scenario

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ANALYSIS OVERVIEW

- \bullet We search for $B\text{-violating }\Lambda \to m\ell$ decays in nine final states:
 - $K^+e^ K^-e^+$ $\pi^+e^ \pi^-e^+$ $K^0_*\nu$
 - $K^+\mu^ K^-\mu^+$ $\pi^+\mu^ \pi^-\mu^+$
- Chosen for:
 - $\Delta B = -1$
 - $\Delta L = \pm 1$
 - $\Delta(B-L)=0, 2$
 - Reconstructability in CLAS
 - Conservation of angular momentum
 - Conservation of charge

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

ANALYSIS OVERVIEW

 \bullet We search for $B\text{-violating }\Lambda \to m\ell$ decays in nine final states:

•
$$K^+e^-$$
 • K^-e^+ • π^+e^- • π^-e^+
• $K^+\mu^-$ • $K^-\mu^+$ • $\pi^+\mu^-$ • $\pi^-\mu^+$ • $K^0_s\nu$

Poaction	ΛB	ΔΤ	$\Lambda(B I)$	X charge	quark	lepton-quark
Reaction	ΔD	ΔL	$\Delta(D-L)$	(e)	couplings	couplings
$\Lambda \to K^+ \ell^-$	-1	+1	-2	$\frac{2}{3}$	$dar{s}$, $sar{s}$	$s\ell$, $d\ell$
$\Lambda \to K^- \ell^+$	-1	-1	0	$-\frac{4}{3}, -\frac{1}{3}$	$uar{u}$, $dar{u}$	$sar{\ell}$, $dar{\ell}$
$\Lambda \to \pi^+ \ell^-$	$^{-1}$	+1	-2	$\frac{2}{3}$	$dar{d}$, $sar{d}$	$s\ell$, $d\ell$
$\Lambda \to \pi^- \ell^+$	-1	-1	0	$-\frac{1}{3}, -\frac{4}{3}$	$sar{u}$, $uar{u}$	$uar{\ell}$, $sar{\ell}$
$\Lambda \to K^0 \nu$	$^{-1}$	± 1	0, -2	$-\frac{1}{3}, \frac{2}{3}$	$uar{s}$, $sar{s}$	$s\nu$, $u\nu$
				0 0	$d\bar{d}$. $u\bar{d}$	d u

< 日 > < 同 > < 三 > < 三 >

CLAS DETECTOR @ JLAB

- CEBAF Large Acceptance Spectrometer
- Toroidal \vec{B}
- Wire tracking chambers
- Scintillator timing detectors
- Tagged γ from bremsstrahlung of 4.023 GeV e^- beam
- Dataset collected in 2005

- (日) (三)

BLIND ANALYSIS OVERVIEW

 $\textbf{ ldentify number of } \gamma p \to K^+\Lambda, \ \Lambda \to p\pi^- \text{ events}$

- Fiducial, particle ID, and analysis cuts applied
- Acceptance correct to get the number of $\Lambda \to p \pi^-$ produced
- ② Develop cuts to select bnv signal
 - optimize cuts using signal MC and blinded data
- Investigate effect of bnv cuts on background MC
- (Un-blind data, identify $N_{\rm bnv}$
- $\textbf{O} \quad \text{Calculate } \Gamma_{bnv} \text{ or set upper limit}$

BLIND ANALYSIS OVERVIEW

• We use a naïve estimate of the significance of a measurement

$$\varsigma = N_s / \sqrt{N_s + N_b} \tag{1}$$

- \bullet We set confidence levels for bnv observation to 4σ
- ϵ is the efficiency for a given bnv channel (acceptance and cuts)
- $\Gamma_{p\pi^-} = 0.639$ is the $\Lambda \to p\pi^-$ branching fraction
- $N_{p\pi^-}$ is the number of $\Lambda \to p\pi^-$ decays in dataset
- ullet $N_{
 m bnv}$ is the observed number of bnv events after unblinding
- Then we can calculate Γ_{bnv}

$$\Gamma_{\rm bnv} = (\Gamma_{p\pi^-}) \frac{N_{\rm bnv}}{\epsilon \cdot N_{p\pi^-}}$$
(2)

$\Lambda \to p \pi^-$ Counting

- $\bullet\,$ Identify data SM decays using a $K^+p\pi^-$ final state
- Generate $3\times 10^6~{\rm MC}~\gamma p\to K^+\Lambda\to K^+p\pi^$
 - ullet distributed according to brem. spectrum and published $d\sigma/d\Omega$
 - Process with detector simulation
- Apply loose missing mass and timing cuts, detector cuts
- Extract number of events from $(p_p+p_\pi)^2$ histograms, binned in $\cos\theta_K^{cm}$
- 3.01×10^6 events after all cuts
- Acceptance correct for analysis cuts and detector acceptance
- $N_{p\pi^-}=3.23\times 10^7~\Lambda \to p\pi^-$ produced during data taking

イロト 不得 とうせい かほとう ほ

Counting $\Lambda \to p\pi^-$ events

Invariant mass of $p\pi^-$ system for all data events, binned in $\cos heta_K^{cm}$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ 国 - の Q @

$\Lambda \to m \ell$ event selection

- Begin with timing-based PID cuts specific to final-state particles
 - Cutting out proton is a strong constraint
- $\bullet\,$ Tune additional cuts on MM^2 and $MM(K^+)$
- Use $inv(m_d, \ell)$ spectrum to identify signal
- Select optimal cuts based on (reduced) Punzi figure of merit arXiv:physics/0308063 [data-an]
- For a given set of cuts, C,

$$\mathcal{P}(C) = \frac{\epsilon(C)}{a/2 + \sqrt{B(C)}} \tag{3}$$

< D > < P > < P > < P >

- Attractive features:
 - *a* is confidence level (sigmas)
 - finite as $B(C) \rightarrow 0$
 - does NOT depend on amount of signal or production cross section

M. McCracken (W&J)

BNV Λ Search

≧▶ ◀ ≧ ▶ ≧ ∽ ೩ ⊂ 27 June 2013 12 / 20

Example: $\Lambda \to \pi^+ \mu^-$ event selection

•
$$\gamma p \to K_r^+ \Lambda \to K_r^+ \pi^+ \mu^-$$

- Choose positive track assignment using $inv(\pi^+,\mu^-)$
- Generate $10^6 \Lambda \rightarrow K^+ \pi^+ \mu^-$ MC events
- timing cuts vetted on MC; skim dataset

hdeltatof2_p_a

hdeltatof3_p_a

$\Lambda \to \pi^+ \mu^-$ event selection

- Apply cuts on ${\cal M}{\cal M}^2$ and ${\cal M}{\cal M}({\cal K}^+_r)$
- \bullet Vary widths, choose pair with optimal ${\cal P}$
 - MM^2 : $w_1 \in [0.0001, 0.004] \text{ GeV}^2/c^4$
 - $MM(K_r^+)$: $w_2 \in [0.001, 0.2] \text{ GeV}/c^2$

$\Lambda \to K_s^0 \nu$ event selection

- Apply cuts on MM^2 and 2-d cut based on $\pi^+\pi^-$ opening angle and $|\vec{p}_{K^0}|$
- \bullet Vary widths, choose pair with optimal ${\cal P}$
- Due to missing \vec{p}_{ν} , background persists

Assessing background signatures

- Assess whether cuts give background some signal-like shape
- $\bullet\,$ Generate $5\times 10^5\,\, {\rm MC}$ events for the following final states
- pe^+e^- • $p\mu^+\mu^-$ • pK^+K^- • $p\pi^+\pi^-\pi^0$ • $p\pi^+\pi^-\pi^0$ • $p\pi^+\pi^-\pi^0$

- Effects of cuts on signal and background MC are understood
- Unblind the signal region of identification plots

3

A single event in signal region...

M. McCracken (W&J)

BNV Λ Search

27 June 2013 17 / 20

э

< A >

- In all but the $K^0_s \nu$ channel, there are 0 or 1 events in signal region
- We estimate the upper-bound on $N_{\rm bnv}$ using the Feldman-Cousins method PRD 57, 3873-3889 (1998)
- At 95% confidence, what is the maximum $N_{\rm bnv}$ given expected background $B_{\rm B}$ and observed $N_{\rm O}?$
- Example: for $\Lambda \to \pi^+ \mu^-$
 - $N_{\rm B} = 0.5$
 - $N_{\rm O} = 1$
 - $\rightarrow N_{\rm bnv} < 4.64$

くロ とくぼ とくほ とくほ とうしょう

- In all but the $K^0_s\nu$ channel, there are 0 or 1 events in signal region
- We estimate the upper-bound on $N_{\rm bnv}$ using the Feldman-Cousins method PRD 57, 3873-3889 (1998)
- At 95% confidence, what is the maximum $N_{\rm bnv}$ given expected background $B_{\rm B}$ and observed $N_{\rm O}?$
- Example: for $\Lambda \to \pi^+ \mu^-$
 - $N_{\rm B} = 0.5$
 - $N_{\rm O} = 1$
 - $\rightarrow N_{\rm bnv} < 4.64$
- \bullet We use this upper bound and calculate a maximum $\Gamma_{\rm bnv}$

$$\Gamma_{\rm bnv} = (\Gamma_{p\pi^-}) \frac{N_{\rm bnv}}{\epsilon \cdot N_{p\pi^-}} < (0.639) \frac{4.64}{0.105 \cdot 6.23 \times 10^7} = 1.61 \times 10^{-6} \quad (4)$$

PRELIMINARY

M. McCracken (W&J)

BNV Λ Search

27 June 2013 18 / 20

PRELIMINARY RESULTS

We use the FC method for all of the charged decay modes

decay	$N_{\rm B}$	$N_{\rm O}$	FC $N_{ m bnv}$	$\Gamma_{ m bnv}$ upper
			upper bound	bound ($ imes 10^{-7}$)
K^+e^-	0.25	0	< 2.63	< 5.26
$K^+\mu^-$	0.0	0	3.09	8.13
K^-e^+	0.5	0	2.63	5.35
$K^-\mu^+$	0.25	0	< 2.63	< 5.65
$\pi^+ e^-$	0.0	0	3.09	3.32
$\pi^+\mu^-$	0.5	1	4.64	4.53
$\pi^- e^+$	0.0	0	3.09	3.44
$\pi^-\mu^+$	0.0	0	3.09	3.65
$K_s^0 \nu$	82.5	58	to come	to come

PRELIMINARY

э

Conclusions

CONCLUSIONS

- $\Lambda \to m \ell$ is useful as a test of B conservation
- Provides search similar to that for nucleon decay
- $\bullet~{\rm CLAS}$ data set provides $\approx 10^{-7}$ sensitivities
- We find no appreciable signal at these sensitivities
- MC studies are necessary to estimate Γ for $\Lambda \to K^0_s \nu$