Spin density matrix elements in $\Lambda(1520)$ photoproduction at CLAS

Will Levine

August 28, 2014

 $\gamma p \rightarrow K^+ \Lambda(1520)$

(1) $\gamma p \rightarrow K^+ \Lambda(1520)$: Theoretical background and motivation

2 Experiment and analysis procedure

(3) $\gamma p \rightarrow K^+ \Lambda(1520)$: Decay distributions and spin density matrix elements

E SQA

- $\Lambda(1520)$ is $\frac{3}{2}^{-}$ baryon
- Decay modes
 - $N\bar{K}$ (pK^- , $n\bar{K}^0$): 45%
 - $\Sigma \pi (\Sigma^+ \pi^-, \Sigma^0 \pi^0, \Sigma^- \pi^+)$: 42%
 - Λππ: 10%

 $\bullet\,$ Narrow resonance ($\Gamma=15\,{\rm MeV})$ compared to other excited baryons

$\gamma p \rightarrow K^+ \Lambda(1520)$: Polarization observables

- Polarization of $\Lambda(1520)$ expressed by spin density matrix, measured by angular distribution of decay products
- Polarization reveals information about production mechanism
- Use Gottfried-Jackson (t-channel helicity) frame

$\gamma p \rightarrow K^+ \Lambda(1520)$: Polarization observables

• For decay $\frac{3}{2}^- \rightarrow \frac{1}{2}^+ 0^-$ with unpolarized target, unpolarized beam, parity-conserving production and decay: seven independent observables:

$$\begin{pmatrix} \frac{1}{2} - \rho_{\frac{1}{2}\frac{1}{2}} & \operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) + i\operatorname{Im}(\rho_{\frac{3}{2}\frac{1}{2}}) & \operatorname{Re}(\rho_{\frac{3}{2}-\frac{1}{2}}) + i\operatorname{Im}(\rho_{\frac{3}{2}-\frac{1}{2}}) & i\operatorname{Im}(\rho_{\frac{3}{2}-\frac{3}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}} & i\operatorname{Im}(\rho_{\frac{1}{2}-\frac{1}{2}}) & \operatorname{Re}(\rho_{\frac{3}{2}-\frac{1}{2}}) - i\operatorname{Im}(\rho_{\frac{3}{2}-\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}} & \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) + i\operatorname{Im}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) + i\operatorname{Im}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) + i\operatorname{Im}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}} & \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}} & \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}} & \rho_{\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) \\ \rho_{\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}} & -\operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}\frac{$$

• Only three of these observables are measureable in decay distribution:

$$W(\theta, \phi) = \frac{3}{4\pi} \left\{ \left(\frac{1}{3} + \cos^2 \theta \right) \rho_{\frac{1}{2}\frac{1}{2}} + \sin^2 \theta \left(\frac{1}{2} - \rho_{\frac{1}{2}\frac{1}{2}} \right) - \frac{1}{\sqrt{3}} \sin 2\theta \cos \phi \operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) - \frac{1}{\sqrt{3}} \sin^2 \theta \cos 2\phi \operatorname{Re}(\rho_{\frac{3}{2}-\frac{1}{2}}) \right\}$$

Jackson, High Energy Physics, Les Houches 1965

- Can generalize to case of polarized photon beam
 - Unpolarized beam: can measure 3 independent observables
 - Linearly polarized beam: 6 additional observables
 - Circularly polarized beam: 2 additional observables

Possible production mechanisms

- t-channel
 - K exchange
 - Pure scalar meson exchange implies $\rho_{\frac{1}{2}\frac{1}{2}} = \frac{1}{2}$, all other $\rho = 0$ (in GJ frame)
 - K^{*} exchange
- contact term
 - Needed to preserve gauge invariance
 - Absent for photoproduction off neutron
 - Contact term dominance could explain suppressed cross-section off neutron LEPS, PRL 103, 012001 (2009)
- s-channel
 - Prediction of $N^* \to K\Lambda(1520)$ decays from $N^*(2120)\frac{3}{2}^-$ (formerly called $N^*(2080)$), missing $\frac{1}{2}^-$ and $\frac{5}{2}^-$ states Capstick and Roberts, PRD 58, 074011 (1998)
- u-channel

- Nam and Kao predict decay angular distributions as function of production angle and energy PRC 81, 055206 (2010)
- Model includes:
 - Reggeized t-channel (K and K*) exchange
 - contact term
 - s-channel (ground-state N and $N^*(2120) \frac{3}{2}^-$) exchange
 - u-channel (ground-state Λ) exchange

Previous measurements of decay distributions

Barber et al (LAMP2), Z. Physik C 7, 17-20 (1980)

- LAMP2 (Daresbury): $E_{\gamma} = 2.8 - 4.8 \text{ GeV}$
- LEPS: $E_{\gamma} = 1.75 2.4$ GeV, 2 angular bins
- SAPHIR: 4 bins from $E_{\gamma} = 1.69 2.65 \text{ GeV}$
- All previous results averaged over wide energy bins, coarse (or no) binning in production angle

$\Lambda(1520)$ cross-section bump

- Bump in $\Lambda(1520)$ differential cross-section at $\sqrt{s} = 2.1 \,\mathrm{GeV}$
- Origin unknown
 - Resonance?
 - Other?

LEPS, PRL 104, 172001

CLAS, PRC 88, 045201

 $\gamma p \rightarrow K^+ \Lambda(1520)$

-

- CEBAF: 6 GeV (now 12 GeV)
 e⁻ accelerator at Jefferson Lab (Newport News, Virginia)
- CLAS (CEBAF Large Acceptance Spectrometer) electroproduction and photoproduction experiments
- Tagged bremsstrahlung photon beam

 $\gamma p \rightarrow K^+ \Lambda(1520)$

Analysis overview

- g11a dataset
 - photon beam on liquid H_2 target
 - unpolarized beam, unpolarized target
 - $E_e = 4.019$ GeV electron beam energy
 - 20 billion triggers
- $\Lambda(1520) \rightarrow pK^-$ decay mode (pK^+K^- final state)
 - 3-track: pK^+K^-
 - 2-track: pK⁺(K⁻): 10x more statistics, wider acceptance, background difficulties (results not presented today)
- Bin in 60 MeV wide \sqrt{s} bins
 - 13 bins from $\sqrt{s} = 2.04 2.82 \,\mathrm{GeV}$
- Standard fiducial, PID cuts
- Kinematic fit with 5% confidence level cut
 - 4C fit: $\gamma p \rightarrow K^+ K^- p$
- Cut out $\mathit{IM}(\mathit{K}^+\mathit{K}^-) < 1.040~{\rm GeV}$ to remove ϕ

After all cuts:

 $\Lambda(1520)$ peak on top of non- $\Lambda(1520)$ pK^+K^- events

- Can we separate $\Lambda(1520)$ events?
- Not possible if processes interfere

Q-value method:

- For each event, calculate probability that given event is signal
 - Find N=100 nearest neighbor events in phase space
 - Fit mass distribution of nearest neighbor events to signal (Breit-Wigner) + background (polynomial) function
 - Williams et al JINST 4 P10003 (2009)
- Assumes non-interfering background
- Use signal probability as weight in event-based maximum likelihood fit

Background subtraction

For SDME extraction, only consider events in the center of the peak (1500-1540 MeV)

Will Levine (CMU)

 $\gamma p \rightarrow K^+ \Lambda(1520)$

August 28, 2014 14 / 21

Background subtraction

For SDME extraction, only consider events in the center of the peak (1500-1540 MeV)

Will Levine (CMU)

 $\gamma p \rightarrow K^+ \Lambda(1520)$

August 28, 2014 14 / 21

Decay distributions

- Look at (acceptance-corrected) decay distributions in Gottfried-Jackson frame $(\cos \theta_{GJ})$ weighted by $\Lambda(1520)$ probability.
 - Bin in production angle $\theta_{K^+,CM}$
 - Correct for acceptance
 - Not how we will extract spin density matrix elements!
 - Just a check
- After integrating over ϕ , decay distribution should have form $\alpha + \beta \cos^2 \theta_{GJ}$. Distribution is even in $\cos \theta$!

= 900

Can compare with models of Nam and Kao at two energies/angles.

$$W(\theta, \phi) = \frac{3}{4\pi} \left\{ \left(\frac{1}{3} + \cos^2 \theta\right) \rho_{\frac{1}{2}\frac{1}{2}} + \sin^2 \theta \left(\frac{1}{2} - \rho_{\frac{1}{2}\frac{1}{2}}\right) - \frac{1}{\sqrt{3}} \sin 2\theta \cos \phi \operatorname{Re}(\rho_{\frac{3}{2}\frac{1}{2}}) - \frac{1}{\sqrt{3}} \sin^2 \theta \cos 2\phi \operatorname{Re}(\rho_{\frac{3}{2}-\frac{1}{2}}) \right\} \right\}$$

What we measure is not the true decay distribution, $W(\rho, \vec{x})$, but decay distibution times acceptance: $W(\rho, \vec{x})\eta(\vec{x})$ (ρ is the spin density matrix, \vec{x} is the kinematics of the reaction, η is acceptance).

Construct a PDF for probability of detecting event with kinematics \vec{x} given SDM ρ :

$$\mathcal{P}(
ho, ec{x}) = rac{W(
ho, ec{x})\eta(ec{x})}{\int W(
ho, ec{x}')\eta(ec{x}')\,dec{x}'}$$

Denominator is easy to calculate using Monte Carlo method:

$$\mathcal{N}(\rho) = \int \mathcal{W}(\rho, \vec{x}') \eta(\vec{x}') \, d\vec{x}' = C \sum_{i \in accepted} \mathcal{W}(\rho, \vec{x}_i)$$

Construct likelihood

$$L \propto \prod_{i \in data} rac{W(
ho, ec{x}_i)}{N(
ho)}$$

Maximize L to find best values of ρ

Will Levine (CMU)

Spin density matrix elements

•
$$\rho_{\frac{1}{2}\frac{1}{2}} = .25 \implies \rho_{\frac{3}{2}\frac{3}{2}} = .25$$
: $S_z = \pm \frac{3}{2}$, $S_z = \pm \frac{1}{2}$ equally populated

• $\rho_{\frac{3}{2}\frac{1}{2}}$ consistent with zero • $\rho_{\frac{3}{2}-\frac{1}{2}}$ non-zero (non-flat ϕ_{GJ} distribution)

Will Levine (CMU)

August 28, 2014 18 / 21

Spin density matrix elements

Gottfried-Jackson frame, statistical errors only

- No strong energy dependence
- $\rho_{\frac{1}{2}\frac{1}{2}} = .20$ -.40 in most regions
- $\rho_{\frac{3}{2}\frac{1}{2}}$ consistent with zero
- $\rho_{\frac{3}{2}-\frac{1}{2}}$ non-zero (non-flat ϕ_{GJ} distribution)

Will Levine (CMU)

 $\gamma p \rightarrow K^+ \Lambda(1520)$

Spin density matrix elements vs. energy

Gottfried-Jackson frame, statistical errors only

Will Levine (CMU)

 $\gamma p \rightarrow K^+ \Lambda(1520)$

-

- Polarization of $\Lambda(1520)$ expressed in spin density matrix formalism
- Spin density matrix elements extracted from CLAS photoproduction data
 - Much finer binning in energy, production angle than previous measurements
 - $ho_{rac{1}{2}rac{1}{2}}$ measurement shows neither $S_z=\pmrac{3}{2}$ or $S_z=\pmrac{1}{2}$ dominates
 - Non-flat ϕ_{GJ} distribution measured for first time (non-zero $\rho_{\frac{3}{2}-\frac{1}{2}}$)
- $\bullet\,$ More statistics, wider angular coverage coming soon with missing K^- analysis

Backup slides

A 🖓

ELE NOR

ϕ_{GJ} Decay Distributions

What about ϕ_{GJ} ? Irregular acceptance makes difficult to compare.

Some deviation from flat distribution

Need to input functional form of $MM(K^+)$ to do background fit:

Breit-Wigner w/ mass-dependent width, convoluted with Gaussian. Quadratic background.

Q-value method

Choose kinematic variable, M, whose distribution can be described by a sum of background and signal functions:

$$F(M,\vec{\alpha}) = S(M,\vec{\alpha}) + B(M,\vec{\alpha})$$

where $\vec{\alpha}$ is a set of unknown parameters, *S* is the signal distribution (e.g. Breit-Wigner), *B* is the background distribution (e.g. polynomial) For each event *i*, find *N* nearest neighbors, with distance to event *j* as:

$$d_{ij} = \sum_{k} \left[rac{ heta_k^i - heta_k^j}{R_k}
ight]^2$$

where $\vec{\theta}$ are kinematic variables other than M (e.g. $\cos \theta_{\text{production}}$, $\cos \theta_{\text{decay}}$), R_k is range of θ_k Fit M distribution of nearest neighbors to F to determine $\vec{\alpha}_i$. Calculate signal probability:

$$Q_i = \frac{S(M_i, \vec{\alpha_i})}{S(M_i, \vec{\alpha_i}) + B(M_i, \vec{\alpha_i})}$$

 $\gamma p \rightarrow K^+ \Lambda(1520)$

two-track vs three-track

$K^+\Lambda(1520)$ - ϕp coupled-channel effects

- $K^+\Lambda(1520)$ intermediate state studied in $\gamma p \rightarrow \phi p$
 - Proposed to explain bump in $\gamma p \rightarrow \phi p$ cross-section near $K\Lambda(1520)$ threshold
 - Ozaki et al, PRC 80, 035201 (2009)
 - Ryu et al, arxiv:1212.6075
- Understanding $K^+\Lambda(1520)$ production mechanism may help understanding of ϕ photoproduction

 $\gamma p \rightarrow K^+ \Lambda(1520)$

$\Lambda(1520)/\phi$ overlap

- ϕp and $K^+ \Lambda(1520)$ can decay to the same final state $(K^+ K^- p)$, overlap in phase space
- Interfering background
- No acceptance in overlap region for 3-track topology
- Hard cut on K^+K^- mass to cut out ϕ
- No overlap at higher energies

 $\sqrt{s} = 2340 - 2400$ GeV Black is data (not acceptance corrected). Blue is accepted Monte Carlo weighted by full fit to decay angular distribution.