

The Meson Spectroscopy Program at Jefferson Laboratory

Alessandra Filippi INFN Torino, Italy

Outline of the talk

- Hadron spectroscopy: the light meson spectrum
- Meson spectroscopy with photons at JLAB-12 GeV
 - GlueX vs CLAS12
 - Real vs quasi-real photoproduction
- The Meson-EX experiment @CLAS12: the experimental setup
- Data analysis
 - PWA
 - test of performances and feasibility with CLAS12
 - ... and beyond: towards a common and integrated framework
- Conclusions

The meson spectrum + gluons: exotics

- The meson spectrum bears also the information about gluons, which bind quarks
- Which is the expected signature of gluonic degrees of freedom?
 - Observation of extra states possibly with quantum numbers not allowed by CQM
- New states with gluonic content:
 - Glueballs (ggg)
 - Hybrids (q\u00e4gg)
 - Multiquark/molecular states
 - EXOTICS

Lattice QCD calculations: mesons and hybrids

- Unquenched calculations with two light flavors + heavier 3rd quark (strange)
- Good agreement between lattice computations and experimental data for conventional states
 - Number of states
 - Mass hierarchy
- Predictive power to lead the search of new states

LQCD predicts the lightest hybrids and glueballs in the 1.4-3.GeV range:

- 0⁺⁺: 2 GeV - 1⁻⁺: 1.6 GeV
- Mass range perfectly accessible by experiments at JLAB

Observations of 1⁻⁺ states by BNL-E852 and CRYSTAL BARREL: $\pi_1(1400)$ and $\pi_1(1600)$

CRYSTAL BARREL: study of pp annihilations at rest

 $\bar{p}n \rightarrow \pi^{-}\pi^{0}\eta$ $\bar{p}p \rightarrow \pi^{0}\pi^{0}\eta$ The decays of σ and ρ into $\pi\pi$ and of $a_{2}(1320)$ into $\eta\pi$ do not describe the data correctly

enough

The presence of a π₁(1400) meson decaying into ηπ, is needed

Meson spectroscopy with electromagnetic probes

- The electromagnetic interaction is weaker than the strong one and can be calculated perturbatively with high precision (based on well-known QED)
 - Scattering: one-photon exchange approximation

 Meson photoproduction: high probability of spin-1 meson production from photons

π (K)N:
Need spin-flip
for exotic
quantum
number

No spin-flip for exotic quantum number

Expected production rate for exotics and conventional mesons: comparable

CEBAF @12 GeV: the new electron machine at JLAB

JLAB experiments for meson spectroscopy in photoproduction

- Able to measure exclusively the production reactions and the decays of the emitted particles
- Requirements:
 - Good acceptance, momentum resolution, particle id capabilities

- Good hermeticity
- Uniform acceptance
- Limited resolution
- Limited pID

- Good resolution
- Good pID
- Resonable hermeticity
- NON-Uniform acceptance

Photon beams at JLAB-12 GeV

- Photon beam requirements
 - High luminosity
 - Production information: photon tagging
 - Linear polarization if possible (to simplify PWA's and isolate the nature of t-channel exchange)
- Only few choices available with 12 GeV e⁻ beam
 - Coherent tagged bremsstrahlung (Hall-D GlueX)
 - Low-Q² electroproduction (Hall-B CLAS12)

Bremsstrahlung:

consolidated technique in Hall-B @ 6 GeV for polarized photon beam

- E_{γ} = 6-9 GeV, 10 MeV resolution
- γ flux: 10⁷-10⁸ γ /s
- L $\sim 10^{31}$ cm⁻²s⁻¹ on a 30 cm LH₂ tgt
- linear polarization: 50%-15% (collective)

Photon production in Hall B

 The existing dipole magnet in Hall-B cannot deflect the 11 GeV electron beam on the beam dump

- New technique: quasi-real photoproduction at low Q²
 - CLAS12 to be equipped with a tagging facility for the detection of the electron emitted at very small angles (2.5°-4.5°) and Q² ~ 10⁻² GeV² or lower (+hadronic final state measured in coincidence)

The Meson-Ex experiment @CLAS (Exp-11-005)

- Study of the meson spectrum in the 1-3 GeV mass range to identify gluonic excitation of mesons (hybrids) and other quark configurations beyond CQM
 - Hybrid mesons and exotics
 - Different final states
 - Charged and neutral decay modes
 - $\gamma p \rightarrow n3\pi$, $\gamma p \rightarrow p\eta\pi$, ...
 - Hybrids/exotics with hidden strangeness or strangeonia
 - s quarks: links between long/short distance QCD potential
 - Requirements: good resolution and Kaon p.id.
 - $\gamma p \rightarrow p\pi \phi$, $\gamma p \rightarrow p\eta \phi$, $\gamma p \rightarrow p2K\pi$, ...
 - Scalar mesons
 - f₀ and a₀ mesons in the 1-2 GeV mass range still poorly known
 - Theoretical indications for unconventional configurations (σ̄σ̄qq or gg)
 - $\gamma p \rightarrow p2\pi$, $\gamma p \rightarrow p2K$

Low Q² quasi-real photoproduction

$E_{scattered}$	0.5 - 4.5 GeV
θ	2.5^{o} - 4.5^{o}
ϕ	0° - 360°
ν	6.5 - 10.5 GeV
Q^2	$0.01 - 0.3 \text{ GeV}^2 \ (< Q^2 > 0.1 \text{ GeV}^2)$
W	3.6 - 4.5 GeV

- Electron scattering at "0" deg (2.5°-4.5°)
 - Low Q² virtual photon ⇒ quasi real
- Photon tagging: detection of electron at small angles
 - High energy photons: 6.5 10.5 GeV
 - To be accomplished by a "Forward Tagger"
- Quasi real photons: linearly polarized
 - Polarization: 70%-10%, measured event by event
- High luminosity: $N_{\gamma} \sim 5 \times 10^{8}$, L ~ 10^{35} cm⁻²s⁻¹ on 5 cm LH₂ target
 - Thin targets can be used
 A. Filippi Meson Spectroscopy @JLAB

The CLAS12 Experiment

Forward detector

- Torus Magnet
- Forward SVT tracker
- HT Cherenkov counter
- Drift chamber system
- LT Cherenkov counter
- Forward TOF system
- Preshower calorimeter
- EM calorimeter (EC)

Central detector

- Solenoid magnet
- Barrel silicon tracker
- Central TOF

Proposed add-ons

- Micromegas (CD)
- Neutron Detector (CD)
- RICH Detector (FD)
- Forward tagger (FD)

CLAS12: The Forward Tagger

CLAS12: The Forward Tagger

- FT-CAL: PbWO₄ calorimeter, to measure
 - Electron energy/momentum
 - Photon energy: v = E E'
 - Photon polarization: ε⁻¹ ≅ 1+ ν ²/2ΕΕ³
- FT-Hodo: scintillator tiles
 - Veto for photons

- FT-tracker: micromegas detectors
 - Measure electron angles and polarization plane

Data analysis: PWA techniques

- Partial Wave Analysis: parameterization of the cross sections via the sum of partial amplitudes
 - Function of quantum numbers: J, P, C, L, I
 - Dynamical functions of particle momenta
 - Models needed to describe each partial wave
 - Isobar model with coupled channels
 - Dispersion relations
- How reliable are the existent models?
- How effective to single out tiny effects?
- The problem can only be faced by comparing the production of the same final state in different reactions
 - Only abundant and precise experimental data can constrain the partial wave shapes

Will PWA be possible/successful in CLAS12?

- PWA analysis simulation: to what extent the detector acceptance and resolution distort the reaction mechanisms?
- Events generated using a realistic differential cross section, filtered through the full reconstruction chain, and fitting them with a set of partial waves in bins of kinematic variables (m, t)

Benchmark reaction:

$$\gamma p \rightarrow \pi^+\pi^+\pi^- p$$

- sum of 8 isobar channels, in S, P, D wave + exotic signal
- CLAS12 acceptance projected and fitted
- The results are stable against acceptance distortions
- PWA is feasible in CLAS12!

Towards a common and robust analysis framework

- Many communities all over the world involved with hadron spectroscopy
- Necessary to exploit information for all available reactions, and compare all experimental results in different channels: a comprehensive and integrated framework is mandatory
- Development of a network for the development of common tools, databases and computing resources
 - PWA techniques (ex. AmpTools)
 - Wide data access and distribution (cloud infrastructure, ...)
 - Computing techniques: fitting procedures, GPU's, ...
- Creation of a "Hadron Spectroscopy" (HASPECT) working group

Summary and conclusions

- A rich and comprehensive meson spectroscopy program is set for JLAB in the coming future: GLUEX and CLAS12
 - Complementary features and capabilities
- Photon beams of high intensity, linearly polarized produced in two experimental halls (real: hall D, quasi real: hall B)
 - Unprecedented quality of meson spectroscopy in photon induced reactions
- CLAS12 will exploit excellent resolution and pID capabilities to perform precision studies in the exotic and strangeness-rich meson sectors
- Great effort to provide a common and robust global analysis framework: several experimental groups synergy

Beam time request and expected statistics for Meson-EX run

- Required beam time (excluding commissioning and tests at low luminosity, total ~120 d):
 - 80 d @ full luminosity
 (~10³⁵ cm⁻²s⁻¹)
 - Run in parallel with e⁻ experiments
 - Determined by the smallest cross sections
 - apparatus acceptance for 4 track events: 15%
 - Strangeonia: ~ 10 nb
 - » 3000 events per mass bin
 - OK for PWA!
 - Total expected trigger rate:
 < 10 kHz

Lightest glueball candidate: f₀(1500) seen by CRYSTAL BARREL and OBELIX @ LEAR

