Production of Resonances Using CLAS at Jefferson Lab

Kei Moriya

November 6, 2014

Resonance Workshop at Catania

Outline

- I. Introduction to Jefferson Lab and CLAS
- II. Analyses of Resonances at CLAS
 - (1) η , η ', ω , ϕ , $K^+ \Lambda$, $K^+ \Sigma^0$
 - (2) hyperon resonances ($\Sigma^{0}(1385), \Lambda(1405), \Lambda(1520)$)
- **III.Prospects and Conclusion**

I. Introduction to Jefferson Lab and CLAS

rimeter

Jefferson Lab new Hall D-

- Located in Newport News, VA
- CEBAF accelerator provides electron beam every 2 ns
- E_{e-} < 6 GeV until now, upgrading to 12 GeV
- New Hall D will house GlueX
 experiment for photoproduction of hadron resonances

Halls A, B, C

https://www.jlab.org/

Resonances @JLab

- Electron beam of < 6 GeV ideal for production of hadron resonances
- Production of mesons:
 - **-** π, η, η', K
 - **-** ω, φ, K*
 - *f*₀(980), ...
- Production of baryons:
 - N(1440) S = 0
 - $K^+ \Lambda, K^+ \Sigma^0, K^0 \Sigma^+, K^+ \Sigma^0(1385), K^+ \Lambda(1405), K^+ \Lambda(1520)$ S = -1
 - $K^+K^+\Xi^-, K^+K^+\Xi^-(1530)$

Refs: <u>http://www.jlab.org/Hall-B/shifts/index.php?display=utils&task=publications</u>

pseudoscalar

vector

scalar

S = -2

The CLAS Detector

- CLAS was in Hall B of Jefferson Lab
- Took data for 14 years
- Photon tagging system used for photoproduction
- 3-layer drift chamber with $\delta p/p \sim 0.5\%$
- Liquid H₂, D₂, nuclear targets
- Start Counter around target
- Scintillator TOF paddles for PID

CLAS Publications

 Experiments on hadron spectroscopy, nuclear structure functions, nuclear processes

	Hadron Spectroscopy & Structure	Hard Processes & Str. Functions	Nuclear Processes	ALL	publ/accept submitted
2000	-	1	1	2	
2001	2	3	-	5	
2002	3	-	1	4	
2003	7	4	1	12	
2004	3	3	4	10	
2005	7	3	2	12	
2006	8	4	3	15	
2007	7	2	3	12	
2008	4	6	2	12	
2009	8	7	4	19	
2010	4	2	4	10	
2011	3	1	4	8	
2012	6	3	2	11	
2013	8	6	2	16	
2014	3	2		5	
					undated 18 lune 2014
SUM	71	47	33	151	

Hall B Exp. Physics Publications (refereed Journals)

from http://www.jlab.org/Hall-B/pubs-web/

II. Analyses of Resonances at CLAS

 $\Theta_{K^+}^{c.m.}$

20

MICT R) (GeVIC)

M(K^t T) (GeVIC²)

 \hat{v}'

proton

proton

 $|\theta_{\rm Y}/\hat{q}|$

ア

PDG Breit. Wigner

Pel

Jer Jost

N(1520)

400

200

N(1405)

600

CLAS 6 GeV Results

- CLAS and others have published many photoproduction results
- Can be used to find intermediate resonances in $\gamma + p \rightarrow (N^*) \rightarrow$ final state
- $\gamma + p \rightarrow \omega p$
- near threshold to W=2.8 GeV
- differential cross sections
- SDMEs

CLAS 6 GeV Results

- CLAS and others have published many photoproduction results
- Can be used to find intermediate resonances in $\gamma + p \rightarrow (N^*) \rightarrow$ final state ¹
- $\gamma + p \rightarrow K^+ \Lambda$
 - near threshold to W=2.8 GeV
 - differential cross sections
 - recoil polarizations

 \bigcirc CLAS(2010) \land CLAS(2006) \diamondsuit SAPHIR +LEPS

M McCracken (CLAS) PRC81, 025201 (2010)

CLAS 6 GeV Results

- CLAS and others have published many photoproduction results
- Can be used to find intermediate resonances in $\gamma + p \rightarrow (N^*) \rightarrow$ final state
- $\gamma + p \rightarrow \phi p$
 - near threshold to W=2.8 GeV
 - differential cross sections
 - SDMEs

Δ

N* States

- Recent results and analyses from CLAS and elsewhere have lead to updates in PDG
- Strange baryons remain unchanged, future work at Jefferson Lab 12 GeV

N^*	$J^P\left(L_{2I,2J}\right)$	2010	2012	Δ	$J^P\left(L_{2I,2J}\right)$	2010	2012
р	$1/2^{+}(P_{11})$	* * **	* * **	Δ(1232)	$3/2^+(P_{33})$	* * **	* * **
n	$1/2^{+}(P_{11})$	* * **	* * **	$\Delta(1600)$	$3/2^{+}(P_{33})$	* * *	* * *
N(1440)	$1/2^{+}(P_{11})$	* * **	* * **	$\Delta(1620)$	$1/2^{-}(S_{31})$	* * **	* * **
N(1520)	$3/2^{-}(D_{13})$	* * **	* * **	$\Delta(1700)$	$3/2^{-}(D_{33})$	* * **	* * **
N(1535)	$1/2^{-}(S_{11})$	* * **	* * **	$\Delta(1750)$	$1/2^{+}(P_{31})$	*	*
N(1650)	$1/2^{-}(S_{11})$	* * **	* * **	$\Delta(1900)$	$1/2^{-}(S_{31})$	**	**
N(1675)	$5/2^{-}(D_{15})$	* * **	* * **	$\Delta(1905)$	$5/2^+(F_{35})$	* * **	* * **
N(1680)	$5/2^{+}(F_{15})$	* * **	* * **	$\Delta(1910)$	$1/2^{+}(P_{31})$	* * **	* * **
N(1685)			*				
N(1700)	$3/2^{-}(D_{13})$	* * *	* * *	$\Delta(1920)$	$3/2^{+}(P_{33})$	* * *	* * *
N(1710)	$1/2^{+}(P_{11})$	* * *	* * *	$\Delta(1930)$	$5/2^{-}(D_{35})$	* * *	* * *
N(1720)	$3/2^{+}(P_{13})$	* * **	* * **	$\Delta(1940)$	$3/2^{-}(D_{33})$	*	**
N(1860)	$5/2^{+}$		**				
N(1875)	$3/2^{-}$		* * *				
N(1880)	$1/2^{+}$		**				
N(1895)	$1/2^{-}$		**				
N(1900)	$3/2^{+}(P_{13})$	**	* * *	$\Delta(1950)$	$7/2^{+}(F_{37})$	* * **	* * **
N(1990)	$7/2^{+}(F_{17})$	**	**	$\Delta(2000)$	$5/2^{+}(F_{35})$	**	**
N(2000)	$5/2^{+}(F_{15})$	**	**	$\Delta(2150)$	$1/2^{-}(S_{31})$	*	*
N(2080)	D_{13}	**		$\Delta(2200)$	$7/2^{-}(G_{37})$	*	*
N(2090)	S_{11}	*		$\Delta(2300)$	$9/2^{+}(H_{39})$	**	**
N(2040)	$3/2^{+}$		*				
N(2060)	$5/2^{-}$		**				
N(2100)	$1/2^{+}(P_{11})$	*	*	$\Delta(2350)$	$5/2^{-}(D_{35})$	*	*
N(2120)	$3/2^{-}$		**				
N(2190)	$7/2^{-}(G_{17})$	* * **	* * **	$\Delta(2390)$	$7/2^{+}(F_{37})$	*	*
N(2200)	D_{15}	**		$\Delta(2400)$	$9/2^{-}(G_{39})$	**	**
N(2220)	$9/2^{+}(H_{19})$	* * **	* * **	$\Delta(2420)$	$11/2^+(H_{3,11})$	* * **	* * **
N(2250)	$9/2^{-}(G_{19})$	* * **	* * **	$\Delta(2750)$	$13/2^{-}(I_{3,13})$	**	**
N(2600)	$11/2^{-}(I_{1,11})$	* * *	* * *	$\Delta(2950)$	$15/2^+(K_{3,15})$	**	**
N(2700)	$13/2^+(K_{1,13})$	**	**				
	,						

V Crede, W Roberts, Rep. Prog. Phys. 76, 076301 (2013)

- Production of K⁺ $\Sigma^0(1385)$, K⁺ $\Lambda(1405)$, K⁺ $\Lambda(1520)$
- Interest is in properties of each state:
 - nature of each state corresponce to constituent quark model states?
 - what is production mechanism?
 - does comparison give insight into composition?

$\gamma + p \rightarrow K^+ \Sigma^0(1385)$

180

160

140

120

100

80

60

 $\Lambda \pi^0$ threshold

- SU(3) flavor decuplet state
- $J^{P} = 3/2^{+}$
- Interest is in cross section
- Reconstructed through $\Sigma^{0}(1385) \rightarrow \Lambda \pi^{0} (87\%)$

 $\Gamma \propto$

Line shape symmetric, does not fit well with mom.-dependent Breit-Wigner function: $\sum_{j=2L+1}^{2L+1} p$: breakup mom. in rest frame

counts

data

Σ(1385)

 $K^{*_{+}}\Lambda$

1.4

sum of fit

1.6

$\gamma + p \twoheadrightarrow \mathrm{K}^+ \Lambda(1405)$

N. Isgur and G. Karl, <u>PRD18, 4187 (1978)</u>
 S. Capstick and N. Isgur, <u>PRD34, 2809 (1986)</u>
 S. Capstick and W. Roberts, <u>Prog.Part.Nucl.Phys. 45, S241 (2000)</u>

- **** state in PDG, first excited Λ state
- $M = 1405 \text{ MeV/}c^2$, $\Gamma = 50 \text{ MeV}$ (PDG)
- Constituent Quark Model¹ has difficulty predicting mass
- Chiral unitary theory predicts two poles
- What is the line shape?
- Chiral Unitary Theory (χUT): combine chiral Lagrangians of low-mom. interactions + unitarity between channels
- "Fundamental" states (ground state pseudoscalar mesons, baryons) can "dynamically generate" resonances
- Within χUT , $\Lambda(1405)$ is textbook example

$\gamma + p \twoheadrightarrow K^+ \Lambda(1520)$

- Flavor SU(3) singlet state, partner of $\Lambda(1405)$?
- Interest is in cross section

Line Shape of $\Lambda(1405)$

- Most precise measurement of $\Lambda(1405)$
- Measurement for all $3 \Sigma \pi$ channels
- Clear difference in shapes at low energies \rightarrow small *I*=1 amplitude

Discussion on Line Shapes

- Fits to data with chiral unitary amplitudes
- Interference of isospin I=1amplitude causes differences in $\Sigma\pi$ channels

• *I=1* amplitude produces cusp in the vicinity of the NK threshold - similar to a₀(980)

Discussion on Line Shapes

- S. X. Nakamura, D. Jido fit the line shapes and differential cross simultaneously using χUT amplitudes
 - Data fit well with χUT amplitudes
 - Fits are done in low energy region only where χUT assumptions hold

S. X. Nakamura, D. Jido Prog. Theor. Exp. Phys. 2014, 023D01

Discussion on Line Shapes

- S. X. Nakamura, D. Jido fit the line shapes and differential cross simultaneously using χUT amplitudes
 - χUT amplitudes suggest higher mass \int_{4}^{4} w = 2.0 GeV pole contributes more \int_{4}^{4}
 - More extensive analysis planned

Cross Section Results

- Measure $\Lambda(1405)$ differential cross section results
 - Each $\Sigma\pi$ channel measured separately
- Also measure nearby
 - $\Sigma^0(1385) (J^P = 3/2^+)$
 - $\Lambda(1520) \ (J^P = 3/2)$
- Three excited hyperons, all with different characteristics

Λ(1405)	dynamically generated resonance? S-wave $\Sigma \pi$ -NK coupling, or internal <i>P</i> -wave quark excitation?
Σ(1385)	flavor SU(3) decuplet, $J^P = 3/2^+$ with L=0 for quarks
Λ(1520)	flavor SU(3) singlet, $J^P = 3/2^-$ with $L=1$ for quarks

<u>3 Hyperons</u>

- 9 bins of energy
- All 3 hyperons have similar forward-peaked behavior
- Λ(1520): larger production at higher energies

 $\frac{\sum (1385)}{\Lambda(1405)} \\ - \Lambda(1520)$

K. Moriya, R. Schumacher *et al.* [CLAS Collaboration] PRC 88, 045201 (2013)

Measurement of σ_{tot}

- Extrapolate to all angles, determine σ_{tot}
- Cross sections comparable to ground state hyperons

Cross Section Discussion

- PDG lists ** N(2080) state (now N(2120))
- Fit to CLAS $\Lambda(1520)$ results: Regge-plus-resonance effective approach shows $N(2120) 3/2^{-}$ is preferred

III. Future Prospects

"Complete" Experiments

- Ongoing analysis effort at CLAS
- Measure enough polarization combinations to completely determine amplitudes
- 4 complex amplitudes →16 real observables →need to measure 8
- Use polarized γ , p for $\vec{\gamma} + \vec{p} \rightarrow$ K+ $\vec{\Lambda}$ and measure final pol. of Λ
- Analyses also ongoing for other channels (η, ω production)

see backup for full list

Usual symbol	Helicity representation	Transversity representation	Experiment required ^{a)}	Туре
dσ/dt	$ N ^{2} + S_{1} ^{2} + S_{2} ^{2} + D ^{2}$	$ b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$	{-; -; -}	
$\Sigma d\sigma/dt$	$2\operatorname{Re}(S^*_1S_2 - ND^*)$	$ b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2$	$ \{ L(\frac{1}{2}\pi, 0); -; - \} \\ \{ -; y; y \} $	
Τdσ/dt	$2\mathrm{Im}(S_1N^* - S_2D^*)$	$ b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$	$\{-; y; -\} \\ \{L(\frac{1}{2}\pi, 0); 0; y\}$	S
P d <i>o</i> /dt	$2\mathrm{Im}(S_2N^*-S_1D^*)$	$ b_1 ^2 - b_2 ^2 + b_3 ^2 - b_4 ^2$	$ \{-; -; y\} \\ \{L(\frac{1}{2}\pi, 0); y; -\} $	
$Gd\sigma/dt$	$-2Im(S_1S_2^* + ND^*)$	$2Im(b_1b_3^* + b_2b_4^*)$	$\{L(\pm\frac{1}{4}\pi);z;-\}$	
Hdo/dt	$-2 \text{Im}(S_1 D^* + S_2 N^*)$	$-2\text{Re}(b_1b_3^* - b_2b_4^*)$	$\{L(\pm \frac{1}{4}\pi); x; -\}$	DT
Ed <i>o</i> /dt	$ S_2 ^2 - S_1 ^2 - D ^2 + N ^2$	$-2\text{Re}(b_1b_3^* + b_2b_4^*)$	$\{c; z; -\}$	BI
Fd <i>o</i> /d <i>t</i>	$2\operatorname{Re}(S_2D^* + S_1N^*)$	$2 \text{Im}(b_1 b_3^* - b_2 b_4^*)$	$\{c;x;-\}$	
$O_{\chi} d\sigma/dt$	$-2 \text{Im}(S_2 D^* + S_1 N^*)$	$-2\text{Re}(b_1b_4^* - b_2b_3^*)$	${L(\pm\frac{1}{4}\pi);-;x'}$	
$O_z d\sigma/dt$	$-2Im(S_2S_1^* + ND^*)$	$-2Im(b_1b_4*+b_2b_3*)$	$\left\{L(\pm \frac{1}{4}\pi); -; z'\right\}$	חח
$C_x d\sigma/dt$	$-2\text{Re}(S_2N^* + S_1D^*)$	$2 \text{Im}(b_1 b_4^* - b_2 b_3^*)$	$\{c; -; x'\}$	BK
$C_z d\sigma/dt$	$ S_2 ^2 - S_1 ^2 - N ^2 + D ^2$	$-2\text{Re}(b_1b_4^* + b_2b_3^*)$	$\{c; -; z'\}$	
$\overline{T_x d\sigma/dt}$	$2\operatorname{Re}(S_1S_2^* + ND^*)$	$2\text{Re}(b_1b_2^* - b_3b_4^*)$	$\{-;x;x'\}$	
$T_z d\sigma/dt$	$2\operatorname{Re}(S_1N^* - S_2D^*)$	$2 \text{Im}(b_1 b_2^* - b_3 b_4^*)$	$\{-; x; z'\}$	тр
$L_x d\sigma/dt$	$2\operatorname{Re}(S_2N^* - S_1D^*)$	$2 \text{Im}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; x'\}$	IK
$L_z d\sigma/dt$	$ S_1 ^2 + S_2 ^2 - N ^2 - D ^2$	$2\text{Re}(b_1b_2*+b_3b_4*)$	$\{-; z; z'\}$	

I.S. Barker, A. Donnachie, J.K. Storrow Nucl. Phys. B95, 347 (1975)

Hadronic Physics Programs @12 GeV

- CLAS12
 - Meson spectroscopy with low Q²
 - Very Strange Collaboration: baryons of S = -2, -3
- GlueX
 - Mapping of meson spectrum
 - Search for *J^{PC}*-exotic mesons
 - Studies of baryons with S=-1, -2

Resonances with Strangeness -1, -2

- Jefferson Lab 12 GeV program will feature higher mass hyperon resonances
 - larger kinematic energy range
 - higher, more uniform acceptance, also for neutrals
- For S = -1, coupling of channels between $\Sigma \pi$, $\Lambda \pi$, $N\overline{K}$
- For S = -2, decay modes are $\Xi \pi$, $\Xi \pi \pi$, $\Lambda \overline{K}$, $\Sigma \overline{K}$
- Are there any states of interest, surprises in S = -1, -2?

Conclusions

- Jefferson Lab and CLAS has produced many detailed results on hadron production with < 6 GeV beams
- For all CLAS results see http://www.jlab.org/Hall-B/shifts/index.php?display=utils&task=publications
- Many more analyses under review for both mesons and baryons
- CLAS12 and GlueX will produce further electro- or photoproduction results at 12 GeV
 - exotic J^{PC} mesons
 - excited hyperons with S = -1, -2, -3?
 - Commissioning has started for 12 GeV era, the future is almost here

Backup

CLAS Analyses on proton target

	σ	Σ	Т	Ρ	E	F	G	н	T _x	Tz	L _x	Lz	0 _x	O _z	C _×	C _z	CLAS run Period
pπ ⁰	~	1	1	1	1	1	1	1									g1, g8, g9
$n\pi^+$	~	1	1	1	1	1	1	1									g1, g8, g9
рη	~	1	1	1	1	1	1	1									g1, g11, g8, g9
pη'	~	1	1	1	1	1	1	1									g1, g11, g8, g9
pω	~	1	1	1	1	1	1	1									g11, g8, g9
K ⁺ Λ	~	1	1	~	√	1	~	1	1	1	1	~	1	1	~	~	g1, g8, g11
Κ+Σ0	~	~	1	~	1	1	1	1	1	1	1	1	1	1	~	~	g1, g8, g11
K ^{0*} Σ ⁺	~										1	1			1	1	g1, g8, g11

Source: Volker Burkert

published, acquired, FroST(g9b)Butanol (C4H9OH) target

CLAS Analyses on neutron target

	σ	Σ	Т	Ρ	E	F	G	н	T _x	Tz	L _x	Lz	<i>O</i> _×	Oz	C _×	C _z	CLAS run Period
рπ⁻	~	1	1		1	1	1	1									g2, g10, g13, g14
pp⁻	1	1	1		1	1	1	1									g2, g10, g13, g14
К⁰ Л	√	√	√	√	1	1	1	1	 Image: A second s	1	1	1	√	√	√	√	g13, g14
K ⁰ Σ ⁰	√	√	1	√	1	1	1	1	1	1	1	1	√	√	~	√	g13, g14
Κ+Σ-	<	1	1		1	1	1	1									g10, g13, g14
$\mathrm{K}^{0*}\Sigma^0$	1	1															g10, g13

Source: Volker Burkert

published, acquired, HD-ice HD target

$\Sigma(1385)$ Line shape

- S.R. Borenstein et al., PRD9, 3006 (1974)
- $K^- + p \rightarrow \Lambda \pi^+ \pi^-$ with $p_K = 2.18$ GeV/c at BNL 31-in. liquid hydrogen bubble chamber
- Fits are with Breit-Wigner curve with energyindependent width
- Note this is for the charged $\Sigma(1385)$, where there is no $\Lambda(1405)$

FIG. 1. (a) The $\Lambda \pi^+$ mass distribution and (b) the $\Lambda \pi^-$ mass distribution of the events from the final state $\Lambda \pi^+ \pi^-$; (c) and (d) the same as (a) and (b) but with events excluded if $M(\pi^+\pi^-)$ falls in the ρ band, 660-860 MeV; the solid curve and the dashed background curve are the result of the fitting procedure described in the text.

$\Sigma(1385)$ Line shape

- W. Cameron et al., NPB143, 189 (1978)
- $K^- + p \rightarrow \Lambda \pi^+ \pi^-$ with W = 1.775 1.957 GeV at CERN 2m HBC
- Fits are with relativistic Breit-Wigner curve with energy-independent width
- Good fits are not obtained when using a Pwave relativistic Breit-Wigner form

Fig. 4. (a) $\Lambda \pi^+$ and (b) $\Lambda \pi^-$ mass-squared distributions in the region of the $\Sigma(1385)$ resonance The curves are the result of the FIT 1 described in the text, the dashed line indicates the background under the resonance

Theory

- Chiral Unitary Theory (χUT): combine chiral Lagrangians of low-momentum interactions + unitarity between channels
- "Fundamental" states (ground state pseudoscalar mesons, baryons) can "dynamically generate" resonances
- Within χUT , $\Lambda(1405)$ is textbook example
- Recent developments predict that there are <u>2 poles</u> near the $\Lambda(1405)$, each excited differently depending on the reaction

χUT Prediction

- χUT predicted photoproduction line shape of the $\Lambda(1405)$
- Distortion due to the $N\overline{K}$ and other channels
- Interference with small I=1 amplitude causes differences in $\Sigma\pi$ channels
- More recent summary by Hyodo, Jido (Prog. Part. Nucl. Phys. 67, 55) I=1 I=0 interference of I = 0,1

$$\frac{d\sigma(\pi^{+}\Sigma^{-})}{dM_{I}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} + \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^{-}\Sigma^{+})}{dM_{I}} \propto \frac{1}{2} |T^{(1)}|^{2} + \frac{1}{3} |T^{(0)}|^{2} - \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*}) + O(T^{(2)})$$
$$\frac{d\sigma(\pi^{0}\Sigma^{0})}{dM_{I}} \propto \frac{1}{3} |T^{(0)}|^{2} + O(T^{(2)})$$

Phys. Lett. B 455, 55 (1999)