Polarization Observables using a Transverse Frozen Polarized Target in CLAS

Natalie K. Walford The Catholic University of America

Frontiers and Careers in Photonuclear Physics

Outline

- Motivation
- Polarization Observables
- Experimental Setup of FROST
- Particle Identification
- Preliminary Results
- Conclusion

QCD and Resonances

- QCD is the theory of the strong nuclear force
 - Describes the interactions of quarks and gluons
 - Quarks are confined within hadrons
 - Interactions mediated by gluons
 - Has a color charge (red, green, and blue)
- Since gluons carry a color charge (unlike photons), they mediate AND participate in the interactions
- QCD is extremely hard to solve at low energies
- Nucleon excitations are baryon resonances
- More model states are predicted than observed
- States at M>1600 MeV is difficult to study due to many overlapping resonances
- Cross section data is not enough to do full PWA on $K^+\Lambda$

QCD and Resonances

200

150

100

50

- QCD is the theory of the stror
 - Describes the interactions of a
 - Quarks are confined within hat
 - Interactions mediated by gluc
 - Has a color charge (red, green
- Since gluons carry a color cha mediate AND participate in the interactions

e at low energies n resonances ted than observed cult to study due to many

S. (1650) D. (1675) F. (1680)

Pa(1232)

P₃₁(1620)

S₁₁(1535)

D₁₃(1520)

P₁₁(1440

F_{vs}(1905)

D₂₀(1700)

P₁₃(1720)

P.1(1910)

F₂₇(1950)

C₁₇(2190)

H₁₀(2220)

• $\pi^+ p \rightarrow X$

• $\pi^* p \rightarrow X$

 $G_{10}(2250)$

 $H_{211}(2420)$

2.4 W (GeV)

gh to do full PWA on K⁺Λ

Polarization Observables

- Photoproduction for K and π production described by four complex helicity amplitudes :
 - Describes spin combinations of incoming and outgoing particles
 - 16 independent measurables calculated
 - Extracted based on target, beam, and recoil polarization
 - Not all independent from each other
- Need observables to disentangle angular momentum to see missing resonances as observables are more sensitive to resonances than cross-section

Photon	Target				Recoil			Target + Recoil			
		10 —	-	-	x'	y'	z'	x'	x'	z'	z'
	-	\boldsymbol{x}	y	z		-	8	x	z	\boldsymbol{x}	z
unpolarized	σ_0	0	Т	0	0	Р	0	$T_{x'}$	$-L_x$	$T_{z'}$	$L_{z'}$
linear pol.	$-\Sigma$	H	(-P)	-G	$O_{x'}$	(-T)	$O_{z'}$	$(-\mathbf{L}_{z'})$	$(\mathbf{T}_{z'})$	$(\text{-L}_{x'})$	$(\cdot \mathbf{T}_{x'})$
circular pol.	0	F	0	-E	$-C_{x'}$	0	$-C_{z'}$	0	0	0	0
Frontiers and Careers in Photonuclear Physics											5

Experimental Setup of g9b (FROST)

- Transversely polarized target
- Circularly polarized photon beam created by incoherent bremsstrahlung
- FROzen Spin Target
 - L pol g9a
 - T pol g9b

Results:

- g9b ran from March 2010 thru August 2010
- Collected ~14B events
- A complete measurement: all beam-target and target-recoil polarization observables for K⁺Λ and K⁺Σ⁰ channels

Preliminary Cuts

Cut on difference of measured β and calculated β for kaons

Frontiers and Careers in Photonuclear Physics

Event Selection Criteria

- Skimmed dataset for K⁺ events
 - Event must have 1 identified proton, 1 identified K⁺ and only two positively charged particles
- Applied energy loss and momentum corrections
- Timing offset corrected
- Bad TOF paddles cut from analysis
- Cut on coincidence time of ±1 ns

energy loss and momentum corrections

Background Subtraction

Deciphering the Background

- For pol sum and difference spectra,
 - fit both Λ and Σ^0 with a Gaussian
 - Fit background with a cubic polynomial
- Do for each cost, W bin!

Numerator

11

T Asymmetry for $K^+\Lambda$

KAON-MAID BOGA

T Asymmetry for K⁺Σ⁰ KAON-MAID BOGA

T_x Asymmetry for K⁺ Λ and K⁺ Σ^0 KAON-MAID BOGA

T_z Asymmetry for K⁺ Λ and K⁺ Σ^0 KAON-MAID BOGA

Physics

Conclusion

- FROST is the first experiment to measure T_x and T_z
- FROST is the first experiment to DIRECTLY measure T over a wide kinematic range for both K⁺Λ and K⁺Σ⁰
 - largely consistent with previously published data for T for K⁺A (obtained indirectly through double-polarization data together with $O_{x'}, O_{z'}$)
- Currently working on systematic studies
- This analysis will significantly add to the world database
- More accurate PWA more be performed using asymmetry data an will give clues regarding missing resonances and resonances that do not have much data

Back up

Fit in Phi Distribution Method

When using "phi-distribution" method, carbon has to be scaled drastically and background subtraction in a given kinematic bin causes large uncertainties due to large fluctuation of the low carbon yield and leakage from remaining Σ^0 signal

64 BOUND protons and ONLY 10 FREE protons in butanol!!

Physics

Moment Method Continued...

$$T = \frac{2(N_2 Z_{1,1} - N_1 Z_{2,1})}{P_2 N_2 (H_{1,0} - H_{1,2}) + P_1 N_1 (H_{2,0} - H_{1,2})}$$

H-cos moment terms Z-sin moment terms Y-normalization=N2/N1

P1-degree of positive polarization P2-degree of negative polarization N1-negative polarization events N2-positive polarization events

$$T = \frac{2(Ysin1pos - sin1neg)}{P_2Y(cos0pos - cos2pos) + P_1(cos0neg - cos2neg)}$$

i.e.
$$cos2 = M_{det}, weighted by cos2\phi$$
$$sin1 = M_{det}, weighted by sin1\phi$$

Frontiers and Careers in Photonuclear
Physics Market Structure Physics P

Moment Method for F

Similarly for F....

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_0} \left(1 + P_{XY}^{\text{lab}} P_C F \cos(\beta - \varphi) + P_{XY}^{\text{lab}} T \sin(\beta - \varphi) \right).$$

$$\widetilde{X}_1 = \widetilde{Y}_0 (1 + A_1 F \cos(\varphi))$$
$$\widetilde{X}_2 = \widetilde{Y}_0 (1 - A_2 F \cos(\varphi))$$

$$F = 2 \left(\frac{\widetilde{X}_{1m1} - \widetilde{X}_{2m1}}{A_2(\widetilde{X}_{1m0} + \widetilde{X}_{1m2}) + A_1(\widetilde{X}_{2m0} + \widetilde{X}_{2m2})} \right)$$

pos-postive target polarization neg-negative target polarization A₁-pos targ pol*pos circ beam A₂-neg targ pol*neg circ beam

i=moment j=1=aligned j=2=antialigned

