Cross Sections of K⁰A Photoproduction off the Deuteron

Presented by: Nick Compton

Co-authors: Ken Hicks, Max Camp

Ohio University

Data from CLAS (g10) at JLAB

Motivation and Significance

- It is possible that current missing resonances may yield a better signal for different initial and final states (i.e. neutron excitations or strange sector decay).
- The photocouplings to that of a neutron are different than that of a proton, therefore could yield results unique to the neutron.
- Data for neutron resonances are not very abundant. Specifically, there is minimal world data on the reaction $\gamma d \to K^0 \Lambda(p)$, if any.
- Investigated here are the differential and total cross section of $\gamma d \to K^0 \Lambda (p)$ on an unpolarized target with an unpolarized real photon beam with beam energies of 1.0-3.0 GeV.

Figure 40.13: Total and elastic cross sections for $\pi^{\pm}p$ and $\pi^{\pm}d$ (total only) collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html. (Courtesy of the COMPAS Group, IHEP, Protvino, August 2005.)

CLAS

Photon Tagger: Photons are created by a gold foil radiator, and tagged by detecting the electron

CLAS particle detection

Reaction: $\gamma d \to K^0 \Lambda(p)$

- Real Photon Beam
 - Created by Bremsstrahlung Radiation
 - Reviewed reactions with beam energies in the range of 1.0 to 3.0 GeV
- Required detection of all final state particles
 - $\pi^{+}\pi^{-}\pi^{-}p$
 - Three branching ratios come into play to obtain final state shown to the right
 - Use detection of K_S^0 decay products
- Initial invariant mass plots show a clear peak at the PDG values of K_S^0 and Λ
 - $M(K_S^0) = 0.498 \text{ GeV}$
 - $M(\Lambda) = 1.116 \text{ GeV}$

$$\gamma d \to K^0 \Lambda(p) \to \pi^+ \pi^- \pi^- p(p)$$

$$K_S^0 \to \pi^+ \pi^- \quad 69.2\%$$

$$\Lambda \to \pi^- p \qquad 63.9\%$$

Simulation of $K^0\Lambda$ Production

There is a clear signal at both the invariant mass of the Lambda and Kaon

The missing mass technique results in a mass equal to the spectator proton

$$m_p(spec) = \sqrt{{P_p}^2}$$
 $P_p(spec) = (P_{\gamma} + P_d - P_K - P_{\Lambda})$

Distributions within the Data

Invariant mass of the Lambda shown without any other invariant mass cut

Invariant mass of the Kaon shown with a cut about the Lambda invariant mass

Missing mass with both invariant

There are clearly a couple background processes

- Right of the spectator proton peak
- Under the invariant mass of the Kaon

Simulation of $\gamma d \to K^0 \Sigma^0(p)$

 $\Sigma^0 \to \Lambda \gamma$

Invariant Mass of the Lambda shown without any other invariant mass cut

Invariant Mass of the Kaon shown with a cut about the Lambda invariant mass

Missing mass with both invariant

Missing Mass with both invariant

Simulation of $\gamma d \to \pi^+\pi^-\pi^-p(p)$

Simulation was a generated 4-Body phase space

Invariant Mass of the Lambda shown without any other invariant mass cut

Invariant Mass of the Kaon shown with a cut about the Lambda invariant mass

This type of background will be hidden under the $m_p(spec)$ signal. A sideband subtraction can be done by looking at the sideband of K^0 .

Extraction of Yields

- Cut on the invariant mass of Lambda
- Cut on the invariant mass of Kaon
- Fit missing mass spectrum
- Σ^0 production still produces real signal in the K^0 and Λ invariant mass spectrum
 - Fit the edge of the MC missing mass of Σ^0 production
- Subtract phase space type background
 - $\gamma d \rightarrow \pi^+ \pi^- \pi^- p(p)$
 - Fit sideband and subtract

Differential Cross Section

•
$$\frac{d\sigma}{d\cos\theta} = \frac{Y(E,\theta)}{\delta(\cos\theta)AN_{\gamma}(E)} \frac{d_{MM}}{\rho LN_{A}}$$

- The plot to the right
 - Fit to 3rd order Legendre Polynomial
 - Error bars are statistical only
 - Systematic Uncertainty is ~10%
 - Point geometrically centered on angular bin
 - Energy bins of 200 MeV

Differential Cross Section

•
$$\frac{d\sigma}{d\cos\theta} = \frac{Y(E,\theta)}{\delta(\cos\theta)AN_{\gamma}(E)} \frac{d_{MM}}{\rho LN_{A}}$$

- The plot to the right
 - Fit to 3rd order Legendre Polynomial
 - Error bars are statistical only
 - Systematic Uncertainty is ~10%
 - Point geometrically centered on angular bin
 - Energy bins of 200 MeV

Total Cross Section: $\gamma d \to K^0 \Lambda(p)$

- Integrate Polynomial to obtain a total cross section
 - Several fits were applied to obtain an idea of systematic effects
- An increase in the cross section is seen in the energies below W = 1.87 GeV
 - Indicative of resonance coupling to this channel
 - There are several nucleon resonances within these energies
- Theoretical work still needs to be done but we will learn more about them in these data

Summary and Conclusion

- Demonstrates that a nucleon resonance may be coupled to this reaction channel
- More CLAS results to come shortly
 - Working concurrently with g13
 - Independent study is also being done
 - Much more statistics
 - Finer binning available
 - A comparison between two methods and two different data sets can be made
- These results are preliminary
 - An analysis note is in the review process within the CLAS collaboration
 - Plan to publish soon

Back-Up Slides

Theory Plots

Model created by T. Mart and C. Bennhold

Code executed by Dan Carman

Comparison of the Σ^0 background to the Data

Comparison of the phase space background to the Data

- Each plot is shown after a cut about the invariant mass of the lambda particles.
- As seen previously the phase space background has a linear distribution in the calculated K⁰ mass.
- This background can be removed by subtracting the events between the colored dotted lines.

Here "Mix" represents a subset of KOLam mixed with a 4 body phase space distribution

