Polarized observables from from Deeply Virtual π^0 and η Production with CLAS

Andrey Kim for the EMP workshop

Jefferson Lab

Exclusive Meson Production Workshop, 2014

Model frameworks: GK and GL models

$$\langle F \rangle = \sum_{\lambda} \int_{-1}^{1} dx \mathcal{H}_{0\lambda,\mu\lambda}(x,\xi,Q^2,t) F(x,\xi,t)$$

Simplified formulae:

UNPOLARIZED STRUCTURE FUNCTIONS:	POLARIZED OBSERVABLES:	
$\sigma_L ~\sim \left\{ \left(1-\xi^2 ight) \left \langle ilde{H} ight angle ight ^2 - 2\xi^2 { m Re} \left[\langle ilde{H} angle^* \langle ilde{E} angle ight] - rac{t'}{4m^2} \xi^2 \left \langle ilde{E} angle ight ^2 ight\}$	$A_{LU}^{\sin \phi} \sigma_0 \sim ~ \mathrm{Im} \left[\langle H_T angle^* \langle ilde{E} angle ight]$	
$\sigma_T ~\sim \left[\left(1-\xi^2 ight) \left \langle H_T angle ight ^2 - rac{t ~'}{8m^2} \left \langle E_T angle ight ^2 ight]$	$A_{UL}^{\sin \phi} \sigma_0 ~\sim~ \mathrm{Im} \left[\langle ar{E}_T angle^st \langle ar{H} angle + \xi \langle H_T angle^st \langle ar{E} angle ight]$	
$\sigma_{TT}~\sim \left \langle ar{E}_T ight angle ight ^2$	$A_{LL}^{\cos 0 \phi} \sigma_0 ~\sim ~ \left \langle H_T angle ight ^2$	
	$A_{LL}^{\cos \phi} \sigma_0 ~\sim~ { m Re} \left[\langle ar E_T angle^* \langle ar H angle + \xi \langle H_T angle^* \langle ar E angle ight]$	

• Quark flavor decomposition:
$$F_i^{\pi^o} = \frac{(e_u F_i^u - e_d F_i^d)}{\sqrt{2}}$$
 $F_i^{\eta} = \frac{(e_u F_i^u + e_d F_i^d)}{\sqrt{6}}$

Exclusive Meson Production Workshop, 2014

UCONN

DVMP 4-dimensional kinematic binning

$$A = \frac{N_1 - N_2}{f(N_1 + N_2)}$$

where

- N₁₍₂₎ number of events normalized to the beam intensity
- 1(2) indicesrepresent different combinations of beam/target/double polarizations
 - f correction factor (e.g. dilution, polarization etc)

	$\{Q^2, x_B\}$	-t	ϕ
η	4 bins	3 bins	12 bins
π^{0}	2 bins	5 bins	11 bins

Exclusive Meson Production Workshop, 2014

Exclusive events: $ep ightarrow ep\eta$

Beam Spin Asymmetries: $ep ightarrow ep\eta$ and $ep ightarrow ep\pi^0$

Azimuthal dependence of BEAM spin asymmetries in different kinematic bins B.Zhao analysis

$$A_{LU}(\phi) = \frac{\alpha \sin \phi}{1 + \beta \cos \phi + \gamma \cos 2\phi}$$

Beam Spin Asymmetries: $ep ightarrow ep\eta\,$ and $ep ightarrow ep\pi^{0}$

B.Zhao analysis

Longitudinally polarized target

Frozen ammonia was used as a target

Jefferson Lab

It was longitudinally polarized using Dynamic Nuclear Polarization (DNP)

in a 5 Tesla homogeneous magnetic field

✦ The polarization was monitored using a Nuclear Magnetic Resonance (NMR) system

Exclusive Meson Production Workshop, 2014

UCONN

Exclusive events: $ep ightarrow ep \pi^0$

Target Spin Asymmetries: $ep ightarrow ep \pi^0$ and $ep ightarrow ep \pi^0$

Azimuthal dependence of TARGET spin asymmetries in different kinematic bins

Double Spin Asymmetries: $ep ightarrow ep \pi^0$

Azimuthal dependence of DOUBLE spin asymmetries in different kinematic bins

Target and Double Spin Asymmetries: $ep ightarrow ep \pi^0$

σ_L/σ_T : first steps to synergy

Skip parametrizations of GPDs involved

within Goloskokov-Kroll model framework!!!

UCONN

Use the data to constrain GPDs

Confirmed expectations of dominant transverse photon amplitudes

Jefferson Lab

Exclusive Meson Production Workshop, 2014

CLAS12 UPGRADE

- The combination of high beam intensity with large acceptance detectors allows for precise measurements of "rare" processes such as deep exclusive reactions: CLAS12 is uniquely suited for simultaneous detection of various DVMP channels
- Expansion of the kinematic coverage provides the opportunity to test the mechanism of pseudoscalar meson electroproduction in great details and perform the separation of the contributions from the different chiral-odd GPDs

UCONN

Exclusive Meson Production Workshop, 2014

Summary

- The beam spin asymmetries for exclusive η electroproduction, target and double spin asymmetries for π^0 have been extracted from CLAS data for the first time
- Hard exclusive production of pseudoscalar mesons provide access to the chiral-odd GPDs
- Beam Spin Asymmetries of pseudoscalar meson production provide access to polarized structure functions and, therefore, to imaginary part of chiral-odd GPDs
- CLAS provides the most extensive set of polarized structure functions from $π^0$ and η electroproduction data
- Large number of experimental observables provide tighter constraints for parametrizations of underlying transverse GPDs
- The variety of deeply virtual meson production channels provide and opportunity to perform flavor decomposition of GPDs
- CLAS12 upgrade will extend the current analysis adding new and sensitive information that will impact the extraction of the GPDs from the data

