Bound States in QCD and Beyond

WHAT NUCLEON RESONANCES TEACH US ABOUT NUCLEON STRUCTURE

Philip Cole* Idaho State University March 27, 2015

*U.S. National Science Foundation grant NSF-PHY-1206082 Talk given in coordination with Volker Burkert

Outline

- Introduction and three big questions
- Overview of effective degrees of freedom
- Establishing the N* spectrum
- Electroexcitation (Q² > 0) and N* structure
- Towards "complete" experiments
- Conclusions/outlook

First baryon resonance and beyond

Baryon resonances (N*s and \Delta*s)

N*s are broadly overlapping

Hard to disentangle without polarization observables

March 27, 2015

Fundamental questions of bound states in QCD

1. How does nature achieve confinement?

2. How is confinement tied into dynamical chiral symmetry breaking, which describes the origin of most of the visible mass in the universe?

3. Can the fundamental QCD Lagrangian successfully describe the complex structure of all the N* states?

Hadron structure via electromagnetic probes

What do we want to learn?

• Understand the effective degrees-of-freedom underlying the N* spectrum.

FIG. 2. Diagram (a) represents the scattering of an electron from a nucleon with the creation of a final state X. It is built from two contributions: (b) the excitation of several N^* intermediate states (only one shown in the figure), and (c) background contributions. Note that time flows from right to left in the diagrams.

- What configurations are seen in nature, do they depend on distance scale, what are the underlying symmetries?
- Is chiral symmetry restored at high masses?

What do we want to learn?

• Understand the effective degrees-of-freedom underlying the N* spectrum.

- A vigorous experimental program is underway along two avenues
 - Search for undiscovered states in meson photoproduction to systematically characterize the excited baryon spectrum

• the photon beam can be circularly or linearly polarized

March 27, 2015

the nucleon may be transversely or longitudinally polarized

(either target or beam may be polarized, both may be polarized, or neither the target nor the beam be polarized as the case may be)

What do we want to learn?

• Understand the effective degrees-of-freedom underlying the N* spectrum.

- A vigorous experimental program is underway along two avenues
 - Search for undiscovered states in meson photoproduction to systematically characterize the excited baryon spectrum
 - Measure the strength of resonance excitations vs time-distance scale in meson electroproduction (i.e. as a function of $Q^2 = -q^2$)

Modern tools for N* and Δ * studies

Establishing the nucleon spectrum

Most states discovered in πN , experiments focus now on γN .

Essential new data on hyperon production $\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

Strangeness production $\vec{\gamma}p \rightarrow K^+ \vec{\Lambda} \rightarrow K^+ p \pi^-$

A.V. Anisovich et al (BnGa), EPJ A48, 15 (2012)

The N(1900)3/2⁺ state

- State was solidly established in BnGa coupledchannel analysis making use of very precise KA cross-section and polarization data, lead to the *** rating in PDG2012.
- State confirmed in an effective Langrangian resonance model analysis of γp → K⁺Λ.
 O. V. Maxwell, PRC85, 034611, 2012
- State confirmed in a covariant isobar model single channel analysis of γp → K⁺Λ.
 T. Mart, M. J. Kholili , PRC86, 022201, 2012
- First baryon resonance observed and multiply confirmed in electromagnetic meson production.

=> Good candidate for **** state.

Evidence for new N* states and couplings

State N((mass)J [₽]	PDG 2010	PDG 2012	ΚΛ	ΚΣ	Νγ
N(1710)1/2+	*** (not seen in GW analysis)	***	***	**	***
N(1880)1/2+		**	**	*	**
N(1895)1/2 ⁻		**	**	*	***
N(1900)3/2+	**	***	***	**	***
N(1875)3/2 ⁻		***	***	**	***
N(2150)3/2 ⁻		**	**		**
N(2000)5/2+	*	***	**	*	**
N(2060)5/2 ⁻		***		**	***

Bonn-Gatchina Analysis – A.V. Anisovich et al., EPJ A48, 15 (2012) (First coupled-channel analysis that includes nearly all new photoproduction data)

March 27, 2015	P. Cole What Nucleon Resonances Teach us	14
	Bound States in QCD Sankt Goar	14

Do new states fit into CQM?

P	. Cole	What Nucleon	Resonances	Teach us.	
	Bound	States in QCD	Sankt	Goar	

March 27, 2015

Do new states fit into CQM?

Do new states fit into CQM?

March 27	' , 2 015
----------	------------------

Do new states fit into LQCD projections?

March 27, 2015

Electroproduction

Electroexcitation of N/^Δ resonances

- Real photon beam essential to establish the N* spectrum
- Virtual photons probe resonance strength vs time-distance scale

The Δ(1232)3/2⁺ transition

- 35% MB contributions needed to describe magnetic dipole transition at Q²=0.
- For G_{M}^{*} the MB contribution are decreasing with increasing Q² to 10% @ 5 GeV²
- $R_{EM} = E_{1+}/M_{1+}$ and $R_{SM} = S_{1+}/M_{1+}$ are small and can be described with MB contributions only

Electrocouplings of N(1520)3/2-

Bare

Total

Electrocouplings of N(1535)1/2⁻

• Chiral unitary (dynamical) models show the state may have a significant coupling to $K\Lambda$ and $p\phi$ which could indicate sizeable $qqqs\overline{s}$ component in the wave function.

- Could explain the large $p\eta$ branching ratio (~50%) and negative sign of $S_{1/2}$ at low Q^2 .
- Are there high mass N* states with significant N*--> pφ coupling?
 => Include γp-> pφ data in coupled-channel PWA.

March 27, 2015	P. Cole What Nucleon Resonances Teach us	
	Bound States in QCD Sankt Goar	

Meson-Baryon contributions to $\gamma p \rightarrow N(1675)5/2^{-1}$

How can we be sure that we need MB contributions to resonance excitations?

Input to calibrate dynamical coupled-channel model calculations.

March 27, 2015	P. Cole What Nucleon Resonances Teach us	24
March 27, 2015	Bound States in QCD Sankt Goar	24

Electrocouplings of N(1680)5/2⁺

Electrocouplings of 'Roper' N(1440)1/2+

Aznauryan et al. (CLAS), PRC80, 055203 (2009), V. Mokeev et al. (CLAS), PRC86, 035203 (2012)

A_{1/2} exhibits unusual Q² behavior, disappears at Q²=0.5, becomes large at Q² > 1.5 GeV².
In nrCQM the state is the first radial excitation of the nucleon => A_{1/2}(0) > 0.

- nrQM failure led to more exotic explanations, e.g. hybrid state, pure No molecule, Np.
- LC QM + N σ reproduce main features at small and at large Q².

A_{1/2} electrocouplings

March 27, 2015

P. Cole What Nucleon Resonances Teach us... Bound States in QCD Sankt Goar

27

Projections for N* transitions

For the foreseeable future, CLAS12 will be the only facility worldwide, which will be able to access the N* electrocouplings in the Q² regime of 5 GeV² to 10 GeV², where the quark degrees of freedom are expected to dominate. The approved experimentes "*Nucleon Resonance Studies with CLAS12*" and "*Exclusive N** \rightarrow *KY Studies with CLAS12*" have 60 days of beamtime:

- https://www.jlab.org/exp_prog/proposals/09/PR12-09-003.pdf
- <u>https://www.jlab.org/exp_prog/proposals/14/E12-06-108A.pdf</u>

Confirming the nucleon spectrum

 $\gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p \pi^-$

Electroproduction data are further needed to confirm the existence of N*s that decay through the K⁺ Λ channel in the nucleon spectrum for varying Q² bins.

Providing constraints on:

- N* hadronic decay widths
- N* masses should be the same in all Q² bins.

Complete photoproduction experiments

γ + p → K⁺ + Λ (pπ⁻)

- Process described by 4 complex amplitudes
- 8 well-chosen measurements are needed to determine amplitude.
- Up to 16 observables measured directly
- 3 inferred from double polarization observables
- 13 inferred from triple polarization observables

Beam (P^{γ})	Target	(P^T)	Recoi	$l(P^R)$			Tar	get (i	P^T) +	Recoil	(P^R)		
			x' = y'	z'	x'	x'	x'	y'	y'	y'	z'	z'	z'
	x y	z			x	\boldsymbol{y}	z	x	\boldsymbol{y}	z	x	y	z
unpolarized $d\sigma_0$	\hat{T}		Ŷ)	$\hat{T}_{x'}$		$\hat{L}_{x'}$		<u> </u>		$\hat{T}_{z'}$		$\hat{L}_{z'}$
$P_L^{\gamma}\sin(2\phi_{\gamma})$	\hat{H}	\hat{G}	$\hat{O}_{x'}$	$\hat{O}_{z'}$		$\hat{\mathbf{C}}_{\mathbf{z}'}$		Ê		$\hat{\mathbf{F}}$		$-\hat{\mathbf{C}}_{\mathbf{x}'}$	
$P_L^\gamma \cos(2\phi_\gamma) - \hat{\Sigma}$	$-\hat{P}$	2	=	\hat{T}	$-\hat{\mathbf{L}}_{\mathbf{z}'}$		$\hat{T}_{\mathbf{z}'}$		$-\mathbf{d}\sigma_{0}$)	$\hat{L}_{\mathbf{x}'}$		$-\hat{\mathbf{T}}_{\mathbf{x}'}$
circular P_c^γ	\hat{F}	$-\hat{E}$	$\hat{C}_{x'}$	$\hat{C}_{z'}$		$-\hat{\mathbf{O}}_{\mathbf{z}'}$		Ĝ		$-\hat{\mathbf{H}}$		$\hat{O}_{\mathbf{x}'}$	

A. Sandorfi, S. Hoblit, H. Kamano, T.-S.H. Lee, J.Phys. 38 (2011) 053001

March 27, 2015	P. Cole What Nucleon Resonances Teach us	20
March 27, 2015	Bound States in QCD Sankt Goar	50

Towards "complete" experiments

Obser vables	σ	Σ	т	Р	E	F	G	н	T _x	T _z	L _x	L	0 _x	0 _z	C _x	C _z
🗸 publi	shed	v a	acquired	l or und	der ana	alysis	•			•		•				
ρ π ⁰	~	•	1	(🗸)	1	1	1	1	Droton torgoto							
nπ⁺	~	•	1	(🗸)	1	1	1	1								
рղ	~	1	1	(🗸)	1	1	1	1		FIOU	Jii ta	igets				
ρη'	~	1	1	(🗸)	1	1	1	1								
ρω/φ	~	1	1	(🗸)	1	1	1	 Image: A second s	Tensor polarization, SDME							
K⁺Λ	~	1	1	~	1	1	1	1	1	1	1	1	1	1	~	~
K ⁺ Σ ⁰	~	1	1	~	1	1	1	1	1	1	1	1	1	1	~	~
K ^{0*} Σ+	~	1									1	1				
							•			•						
рπ⁻	•	1		(🗸)	1	1	1				-					
pρ⁻	1	1		(🗸)	1	1	1			Neut	ron t	arge	ts			
Κ -Σ+	1	1		(🗸)	1	1	1									
K₀V	1	1		1	1	1	1		1	1	1	1	1	1	1	1
Κ⁰Σ⁰	1	1		1	1	1	1		1	1	1	1	1	1	1	1
K ^{0*} Σ ⁰	1	1									1	1				

Polarized photon beam asymmetry Σ

March 27, 2015

N* states in $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$?

$$\begin{aligned} \mathcal{I}(\sqrt{s}, \cos\theta^{\phi}_{\rm c.m.}) ~\sim~ \frac{1}{2}(1-\rho^{0}_{00}) + \frac{1}{2}(3\rho^{0}_{00}-1)\cos^{2}\zeta \\ &-\sqrt{2}Re\rho^{0}_{10}\sin 2\zeta \, \mathrm{co} \\ &-\rho^{0}_{1-1}\cos 2\varphi, \end{aligned} \tag{38}$$

- Very precise cross sections in W, $\cos\theta_{\omega}$. From ω decays => SDME $\rho^{0}_{00,}$ $\rho^{0}_{1-1,}\rho^{0}_{10}$, shown in blue - blue shades.
- Channel in preparation by BnGa and other groups for analysis in coupled channel framework.
- Single channel analysis shows evidence for (missing) N(2000)5/2⁺ state.

M. Williams, et al. (CLAS), Phys. Rev. C80:065209, 2009

Gluonic baryons q³G

J.J. Dudek and R.G. Edwards, PRD85 (2012) 054016

T. Barnes and F.E. Close, PLB128, 277 (1983)

Gluonic states q^3G have same J^P values as q^3 baryons. Lowest state should be a $J^P = 1/2^+$ Roper-like state. How to identify them?

- Overpopulation of N1/2⁺ and N3/2⁺ states compared to QM projections?
- Transition form factors in electroproduction?

Separating q³G from q³ states?

Z.P. Li, V. Burkert, Zh. Li, PRD 46, 70, 1992; C.E. Carlson, N. Mukhopadhyay, PRL 67, 3745, 1991

Lowest mass $|q^{3}G\rangle$ with $J^{P} = 1/2^{+}$ behave like the $\Delta(1232)$

For Roper-like hybrid states $A_{1/2}(Q^2)$ expected to drop very fast with Q^2 , and $S_{1/2}(Q^2) = 0$

- $A_{1/2}(Q^2)$ and $S_{1/2}(Q^2)$ are inconsistent with the Roper as a gluonic state.
- Electroexcitation could be a powerful tool for identifying gluonic baryons

March 27, 2015	P. Cole What Nucleon Resonances Teach us	25
	Bound States in QCD Sankt Goar	33

An "exotic" resonance at 1670 MeV ?

D. Werthmüller et al., PRL 111, 232001 (2013) BnGa: A.V. Anisonov et al., arXiv:1402.7164 (2014) Integrated cross section in η photoproduction off neutrons shows peak at
 1670 MeV that is not seen on the proton.

 Speculations that this may be a J^P=1/2⁺ a non-exotic member of a decuplet of penta-quark states predicted at this mass by χQSM.

Coupled-channel analysis shows this as interference effects of the N(1535)1/2⁻ and N(1650)1/2⁻ states. Different signs of the helicity amplitudes generate constructive and destructive effects on neutron and proton, respectively.

Studies of Nucleon Resonance Structure in Exclusive Meson Electroproduction

Studies of Nucleon Resonance Structure in Exclusive Meson Electroproduction

I. G. Aznauryan,^{1,2} A. Bashir,³ V. M. Braun,⁴ S. J. Brodsky,^{5,6} V. D. Burkert,² L. Chang,^{7,8} Ch. Chen,^{7,8,10} B. El-Bennich,^{11,12} L. C. Cotte,^{7,13} P. L. Cole,¹⁴ R. G. Edwards,² G. V. Fedotov,^{15,16} M. M. Giannin,^{17,18} R. W. Gothe,¹⁵ E. Gross,^{2,19} Huzy-Wen Lin,²⁰ P. Kroll,^{21,47} T.-S. H. Lae,⁷ W. Melnichouk,² V. I. Mokeev,^{2,16} M. T. Pefaz,^{22,23} G. Ramatho,²² C. D. Roberts,^{7,10} E. Santopinto,¹⁸ G. F. de Teramond,²⁴ K. Tsushima,^{10,25} and D. J. Wilson^{7,26}

¹Yerevan Physics Innisuse, Yerevan, Armenia ²Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ³Instineo de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, Morelia, Michoacan 58040, México ⁴Institue für Theoretische Physik, Universitä Regensburg, 93040 Regensburg, Germany ⁵Stanford National Accelerator Laboratory, Stanford University, Stanford, California 94025, USA. 6CP3-Origins, Souhern Denmark University, Odense, Denmark ⁷Physics Division, Argonne National Laboratory, Argonne Illinois 60439, USA Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA Forschungszentrum Jülich, D-52425 Jülich, Germany Institute for Theoretical Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, P. R. China ¹⁰Department of Physics, Illinois Invitute of Technology, Chicago, Illinois 60616, USA ¹¹Universidade Cruzeiro do Sul, Rua Galvão Buena, 868, 01506-000 São Paulo, SP, Brazil ¹¹Inseineo de Física Teórica, Universidade Exadual Pauliza, Rua Dr. Benio Teobaldo Ferraz, 271, 01 140-070 São Paulo, SP, Brasil ¹³CSSM and CoEPP. School of Chemisers and Physics. University of Adelaide. Adelaide SA 5005 Australia. ¹⁰Idaho State University, Department of Physics, Pocatello, Idaho, 83209, USA. 15 University of South Carolina, Columbia, South Carolina 29208, USA ¹⁶Skobelasyn Institute Nuclear Physics at Moscow State University, 119899 Moscow, Russia Dipanimenio di Fisica, Università di Genova, Italy ¹¹Istineo Nazionale di Fisica Nucleare, Sezione di Genova, kalv ¹⁹College of William and Mary, Williamsharg, Virginia 23187, USA ²⁰Deparamene of Physics, University of Washington, Seaule, Washington 98195, USA Fachbereich Physik, Universitär Wupperial, 42097 Wupperial, Germany ²²CFTP, IST, Universidade Técnica de Lisboa, UTL, Ponugal ²³Departamento de Física, IST, Universidade Técnica de Lisboa, UTL, Portugal ²⁸Universidad de Cosia Rica, San José, Cosia Rica ²⁶International Institute of Physics, Federal University of Rio Grande do None Natal, RN 59078-400, Brazil. ²⁶Department of Physics, Old Dominion University, Norfolk, Wryinia 23529, USA

ABSTRACT

Studies of the structure of excited baryons are key to the N⁺ program at lefterson Lab. Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N⁺ electrocouplings at high photon virtualities Q². This experiment will allow exploration of the structure of N⁺ resonances at the highest photon virtualities ever yet achieved, with a kinematic reach up Q² = 12 GeV². This high Q² reach will make it possible to probe the text cited nucleon structures at distance scales ranging from where effective degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed freedom are relevant. In this document, we present a detailed description of the physics that can be addressed freedom are relevant. In this document, we present a feature description of the physics that can be addressed freedom are relevant. In this document, we present as from meson electroproduction off protons, along with QCD-based approaches to the theoretical interpretation interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking, in buy ons, and how excited nucleonse merger from QCD.

http://arxiv.org/abs/1212.4891

I. G. Aznauryan, A. Bashir, V. Braun,
S.J. Brodsky, V.D. Burkert, L. Chang,
Ch. Chen, B. El-Bennich, I.C. Cloët,
P.L. Cole, R.G. Edwards, G.V. Fedotov,
M.M. Giannini, R.W. Gothe, F. Gross,
Huey-Wen Lin, P. Kroll, T.-S.H. Lee,
W. Melnitchouk, V.I. Mokeev,
M.T. Peña, G. Ramalho, C.D. Roberts,
E. Santopinto, G F. de Teramond,
K. Tsushima, D.J. Wilson (99 pages)

- Posted on arXiv on 20 Dec 2012.
- Revised on 3 April 2013

Sankt Goar

 Published in the International Journal of Modern Physics E (IJMPE) Volume 22, Issue 06, June 2013.

March 27, 2015

P. Cole What Nucleon Resonances Teach us...

Bound States in QCD

What have we have learned from N* studies?

- Evidence for many new states revealed in coupled-channel analysis involving high precision KΛ and KΣ photoproduction reactions.
- States can be accommodated within the SU(6)xO(3) group and LQCD spin-parity projections but not in the naïve quark-diquark picture.
- Meson photoproduction is reaching the "holy grail" of complete measurements, allowing major advances in the search for new states.
- For access to high mass excited nucleon states precision vector meson production data need to be incorporated in coupled-channel analyses.
- Low Q² behavior may be essential to identify hybrid baryons.
- The CLAS data on $\gamma_v NN^*$ electrocouplings have revealed that the N* structure as being a complex interplay between the inner core of three dressed quarks and the external meson-baryon cloud. The relative contribution of quark degrees of freedom increases with Q² and is expected to be dominant at Q² > 5.0 GeV².

High Q² data are needed to access and quantify the short distance behavior (=>JLab@12GeV)

March 27, 2015

March 27, 2015	P. Cole What Nucleon Resonances Teach us	39
	Bound States in QCD Sankt Goar	

Additional slides

Sankt Goar

N* Light Cone transition charge densities

March 27, 2015

y_vNN* Electrocouplings from Exclusive Meson Electroproduction Data

Consistent results on $\gamma_v NN^*$ electrocouplings from different meson electroproduction channels and from different analysis approaches will demonstrate the reliable extraction of these quantities.

March 27, 2015	P. Cole What Nucleon Resonances Teach us	
	Bound States in QCD Sankt Goar	42

N* states in $\gamma p \rightarrow p \omega \rightarrow p \pi^+ \pi^- \pi^0$

Process acts as isospin filter and is sensitive only to N* states

 $\Delta \phi$ (radians)

Diff. CS and SDME for $\gamma p \rightarrow p \phi \rightarrow p K^+K^-(K_s K_l)$

B. Dey et al., (CLAS), arXiv:1403.2110

March 27, 2015