Present and Future of Polarized Target Experiment at CLAS12

Harut Avakian (JLab)

CLAS Collaboration Meeting February 20th

QCD: from testing to understanding

H. Avakian, Catania, Feb 20

3D structure of the nucleon

Semi-Inclusive processes and transverse momentum distributions

Main goal of the upgraded JLab 3D program:
Study spin and flavor dependence of transverse space and transverse momentum distributions of quarks.

Hard exclusive processes and spatial distributions of partons

	U	L	T
U	\mathcal{H}		\mathcal{E}_T
L		$\widetilde{\mathcal{H}}$	$\widetilde{\mathcal{E}}_T$
T	ε	$\widetilde{\mathcal{E}}$	$\mathcal{H}_T, \widetilde{\mathcal{H}}_T$

0.0

-0.2

Features of partonic 3D non-perturbative distributions

 $f^a(x, k_T^2; Q^2)$

Ex. TMD PDF for a given combination of parton and nucleon spins

Understanding of the 3D structure of nucleon requires studies of spin and flavor dependence of quark transverse momentum and space distributions

- transverse position and momentum of partons are correlated with the spin orientations of the parent hadron and the spin of the parton itself
- transverse position and momentum of partons depend on their flavor
- transverse position and momentum of partons are correlated with their longitudinal momentum
- quark-gluon interaction play a crucial role in kinematical distributions of final state hadrons, both in semi-inclusive and exclusive processes

Quark distributions at large k_T: lattice

Distributions of PDFs may depend on flavor and spin (lower fraction aligned with proton spin, and less u-quarks at large k_T, b_T) Jenerson Lab

A₁ P_T-dependence in SIDIS

•A_{LL} (π) sensitive to difference in k_T distributions for f₁ and g₁

P₊ (GeV/c)

•Wide range in P_T allows studies of transition from TMD to perturbative approach

Perturbative limit calculations

J.Zhou, F.Yuan, Z Liang: arXiv:0909.2238

available for $g_1^q(x, k_T), f_1(x, k_T)$

-0.1

0

2

CLAS12 A_{UT} with transverse proton target

asymmetry.

Accessing transversity in dihadron production at JLab

0.2

0.1

0.3

H. Avakian, Catania, Feb 20

0.4

0.5

0.6

X

Sivers effect in the target fragmentation

Wide coverage of CLAS12 will allow studies of kinematic dependences of the Sivers effect in target fragmentation region

Accessing Sivers TMD in dihadron production at JLab

A. Kotzinian, H. H. Matevosyan, and A. W. Thomas, Phys.Rev.Lett. 113, 062003 (2014), 1403.5562.

$$\frac{d\sigma^{h_1 h_2}}{dx \, dQ^2 \, d\varphi_S \, dz_1 \, dz_2 \, d^2 P_{1T} \, d^2 P_{2T}} = C(x, Q^2) \left(\sigma_U + \sigma_S\right)$$

$$\sigma_2 \frac{P_{2T}}{M} \sin(\varphi_2 - \varphi_S) \qquad \sigma_1 \frac{P_{1T}}{M} \sin(\varphi_1 - \varphi_S)$$

$$P_T = P_{\perp} + z k_T, \quad R_T = R_{\perp} + \frac{1}{2} (z_1 - z_2) k_T$$

 $\sigma_R \neq 0$ can be ensured, by choosing asymmetric cuts on the minimum values of **z**1 and **z**2.

where σ_S , σ_1 and σ_2 depend on x, Q^2 , z_1 , z_2 , P_{1T} , P_{2T} and $P_{1T} \cdot P_{2T}$ (or $\cos(\varphi_1 - \varphi_2)$).

After integration over the azimuthal angle of total transverse momentum $P_T = P_{1T} + P_{2T}$. The asymmetry as a function of transverse momentum $R = \frac{1}{2} \left(P_{1T} - P_{2T} \right)$

$$\begin{split} \frac{d\sigma^{h_1h_2}}{P_TdP_Td^2R} &= C(x,Q^2) \left[\sigma_{U,} + S_T \left(\frac{P_T}{2M} \sigma_{T,1} + \frac{R}{M} \sigma_{R,0} \right) \sin(\varphi_R - \varphi_S) \right] \\ &\text{1st harmonic of the } \\ &\cos(\phi_T - \phi_R) \\ &\sigma_T &= \frac{1}{2} \left(\sigma_1 + \sigma_2 \right), \, \sigma_R = \sigma_1 - \sigma_2 \end{split}$$

- Measurements with polarized protons @ CLAS12
- •Measurements with polarized neutrons @SOLID
- Measurements with EIC

3D structure: GPDs

Spin-azimuthal asymmetries in hard exclusive production of photons and pions give access to underlying GPDs

section for exclusive π^0 production

t-dependence of

Unpolarized beam, longitudinal target (TSA):

t-dependences of H_T

 $ep \rightarrow e' p\pi^0$

Goldstein, Liuti et al P.Kroll & S. Goloskokov

- •The production amplitude at large \mathbf{Q}^2 factorizes into the hard subprocess and GPDs
- •Within the handbag approach $\gamma^*_T \rightarrow \pi$ transitions are related to transversity (helicity-flip) GPDs accompanied by a twist-3 pion wave function

$$\mathcal{M}^a_{\mu'\pm,\mu+} = \sum_a \left[\langle H^a \rangle + O(\langle \widetilde{H}^a \rangle) \right]$$

$$\langle H^a \rangle = \sum_\lambda \int_{xi}^1 d\overline{x} \mathcal{H}^a_{\mu'\lambda,\mu\lambda}(Q^2,\overline{x},\xi,t) \hat{H}^a(\overline{x},\xi,t),$$
 Hard partonic subprocess

$$\sigma_{LL}^{const} = \frac{4\pi\alpha}{2k} \frac{\mu_{\pi}^2}{Q^8} \left(1 - \xi^2\right) \left| \langle H_T \rangle \right|^2$$

helicity flip GPDs $(H_T, E_T, \widetilde{H}_T, \widetilde{E}_T)$

Double-Spin-Asymmetry

$$A_{LL}^{const} = \frac{\sqrt{1-\epsilon^2}\sigma_{LL}^{const}}{\sigma_T + \epsilon\sigma_L}$$

•CLAS12 can measure Q² dependence of HT SSAs significantly extending the range of CLAS

SSAs in exclusive kaon production

0.4

Proposal for PAC43 (A.Kim et al)

 $K\Sigma$ asymmetries are predicted to be large and with opposite sign to $K\Lambda$

Beam and target asymmetries in exclusive production of $K\Lambda$ and $K\Sigma$ are very sensitive to chiral-odd GPDs.

0.0

0.2

$$\begin{split} H_T^{\gamma^* p \to \pi^0 p} &\sim [2H_T^u + H_T^d] \\ H_T^{\gamma^* p \to \eta p} &\sim [2H_T^u - H_T^d] \\ H_T^{\gamma^* p \to K^+ \Lambda} &\sim [2H_T^u - H_T^d - H_T^s] \\ H_T^{\gamma^* p \to K^+ \Sigma^0} &\sim [H_T^d - H_T^s] \end{split}$$

0.6

-0.1 -0.2

-0.3 -0.4

-0.5

0.2

Exclusive production of $K\Lambda$ and $K\Sigma$ provide access to different combinations of chiral-odd GPDs

0.6

0.4

DVCS on the neutron with a longitudinally polarized ND₃ target

A combined analysis of DVCS observables for proton and neutron targets is necessary for flavor separation of GPDs

$$(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \left[4(H,E)_{p}(\xi,\xi,t) - (H,E)_{n}(\xi,\xi,t) \right]$$

$$(H,E)_{d}(\xi,\xi,t) = \frac{9}{15} \left[4(H,E)_{n}(\xi,\xi,t) - (H,E)_{p}(\xi,\xi,t) \right]$$

Continuation of the experimental program on nDVCS starting with the beam-spin asymmetry, the observable the most sensitive to the least constrained GPD, $E (\rightarrow J_q)$ (E12-11-003)

Unpolarized beam, longitudinal target: target-spin asymmetry

$$\mathbf{s^{I}}_{1,\mathrm{UL}} \sim \sin\phi \mathbf{Im} \left\{ F_{1}\widetilde{\mathbf{H}} + \xi(F_{1} + F_{2})(\mathbf{H} + \mathbf{x_{B}}/2\mathbf{E}) - \xi kF_{2}\widetilde{\mathbf{E}} + \ldots \right\}$$

$$Im \left\{ \mathcal{H}_{n}, \ \mathcal{E}_{n}, \ \widetilde{\mathcal{E}}_{n} \right\}$$

Polarized beam, longitudinal target: double-spin asymmetry

$$\mathbf{c^{I}_{1,LP}} \sim (\mathbf{A} + \mathbf{B} \cos \phi) \mathbf{Re} \{ \mathbf{F_{1}H} + \xi (\mathbf{F_{1} + F_{2}}) (\mathbf{H} + \mathbf{x_{B}/2E}) \dots \}$$

$$Re \{ \mathcal{H}_{n}, \mathcal{E}_{n}, \mathcal{E}_{n} \}$$

$$\operatorname{Im} \mathcal{H}_{q} = \pi e_{q}^{2} \left[H_{q}(\xi, \xi, t) - H_{q}(-\xi, \xi, t) \right] \quad \xi = x_{B}/(2 - x_{B}) \quad k = -t/4M^{2}$$

$$\operatorname{Re} \mathcal{H}_{q} = e_{q}^{2} P \int_{0}^{+1} \left(H^{q}(x, \xi, t) - H^{q}(-x, \xi, t) \right) \left[\frac{1}{\xi - x} + \frac{1}{\xi + x} \right] dx$$

Proposal for PAC43

(S. Niccolai, A. Biselli, C. Keith, S. Pisano, D. Sokhan)

Jefferson Lab H. Avakian, Catania, Feb 20

SA 15

Experimental setup

 $ed \rightarrow e(p)n\gamma$

• ¹⁴ND₃ longitudinally polarized target (DNP) (see C. Keith's talk):

$$L = f \rho L N_A I = 9.1 \times 10^{33} \text{ s}^{-1} \text{ cm}^{-2} \text{ (per nA)}$$

f = filling factor,0.6; $\rho(^{14}ND_3) = 1.007$ g/cm³; L = 4.0 cm; I = 6.24 x 10^9 e-/s (per nA) Neutron polarization = ~40%

At 10 nA, to repair the target from radiation damage 1-2 anneals per week are needed

- CLAS12 + Forward tagger: detection of electron, γ ($\theta > 5^{\circ}$) and γ ($2.5^{\circ} < \theta < 5^{\circ}$)
- Central Neutron Detector for the recoil neutron: ~10% detection efficiency

CND design: scintillator barrel, 3 radial layers, 48 bars per layer coupled downstream by "u-turn" lightguides, signals read upstream by PMTs at the end of 1.5-m-long lightguides

Expected accuracy and coverage: TSA

Summary

The main goal of the upgraded JLab 3D program is the study of spin and flavor dependence of transverse space and transverse momentum distributions of quarks.

- •Understanding of transverse momentum and space distributions of polarized quarks is crucial for interpretation of semi-inclusive and exclusive production of hadrons and photons
- •Identification of Kaons will significantly enhance CLAS12 capabilities to study flavor dependence of transverse distributions in semi-inclusive and exclusive processes.
- •Measurements with unpolarized, longitudinally and transversely polarized targets of hard exclusive and semi-inclusive processes will help to accomplish the CLAS12 program of studies of the 3D structure of the nucleon

Need TMD/CFF extraction framework with controlled systematics.

Support slides....

Studies of DVCS (IC vs EC)

The Hall A kinematics are: $Q^2 = 2.3 \text{ GeV}^2$, $x_B = 0.36$, and different -t values (0.23, 0.28, GeV^2). Figure 297 shows the finite bin size corrections (see Section 13), as a function of ϕ , for hree bins in t. Figure 298 presents the comparison of the ϕ distributions between the unpolar $p \to ep\gamma$ cross sections that we extracted at the Hall A kinematics (black circles) and the Hall esults (green squares), for the three bins in t. The BH cross section is also shown, as a function ϕ , represented by the green curves.

BH-> along the beam DVCS-> γ^* To study DVCS-> have to look around the virtual photon

Intrinsic k_T : Valence vs. sea quarks

Dynamical mechanisms creating nucleon sea?

Non-perturbative sea in nucleon due to chiral symmetry breaking

- -- Large flavor asymmetry dbar > ubar as evidence
- -- Partonic expression of q-qbar vacuum condensate?
- -- Related to dynamical mass generation -

Higher probability to find more sea quarks at large k_T

- Predictions from dynamical model of chiral symmetry breaking [Schweitzer, Strikman, Weiss JHEP 1301 (2013) 163]
 - $-- k_T \text{ (sea)} >> k_T \text{ (valence)}$
 - -- short-range correlations between partons (small-size q-qbar pairs)
 - -- directly observable in P_T-dependence of hadrons in SIDIS

Exclusive $\pi + /\pi^0$

arXiv:0906.0460

$$\begin{split} A_{UT}^{\sin(\phi-\phi_s)}\sigma_0 &= -2\epsilon\cos\theta_\gamma \operatorname{Im} \left[\mathcal{M}_{0-,0+}^*\mathcal{M}_{0+,0+}\right] \\ &-\cos\theta_\gamma \operatorname{Im} \left[\mathcal{M}_{0+,++}^*\mathcal{M}_{0-,-+} - \mathcal{M}_{0-,++}^*\mathcal{M}_{0+,-+}\right], \\ &+ \frac{1}{2}\sin\theta_\gamma \sqrt{\epsilon(1+\epsilon)} \operatorname{Im} \left[(\mathcal{M}_{0+,++}^* + \mathcal{M}_{0+,-+}^*) \mathcal{M}_{0+,0+} \right. \\ &+ \left. \left(\mathcal{M}_{0-,++}^* + \mathcal{M}_{0-,-+}^* \right) \mathcal{M}_{0-,0+} \right] \\ A_{UT}^{\sin(\phi_s)}\sigma_0 &= \cos\theta_\gamma \sqrt{\epsilon(1+\epsilon)} \operatorname{Im} \left[\mathcal{M}_{0+,++}^*\mathcal{M}_{0-,0+} - \mathcal{M}_{0-,++}^*\mathcal{M}_{0+,0+} \right], \\ A_{UT}^{\sin(2\phi-\phi_s)}\sigma_0 &= \cos\theta_\gamma \sqrt{\epsilon(1+\epsilon)} \operatorname{Im} \left[(\mathcal{M}_{0+,-+}^*\mathcal{M}_{0-,0+} - \mathcal{M}_{0-,-+}^*\mathcal{M}_{0+,0+}) \right. \\ &+ \frac{1}{2}\epsilon\sin\theta_\gamma \operatorname{Im} \left[\mathcal{M}_{0+,++}^*\mathcal{M}_{0+,-+} + \mathcal{M}_{0-,++}^*\mathcal{M}_{0-,-+} \right], \\ A_{UT}^{\sin(\phi+\phi_s)}\sigma_0 &= \epsilon\cos\theta_\gamma \operatorname{Im} \left[\mathcal{M}_{0-,++}^*\mathcal{M}_{0+,++} \right] \\ &+ \left. \left(\mathcal{M}_{0-,++}^* + \mathcal{M}_{0-,-+}^* \right) \mathcal{M}_{0-,0+} \right] \\ A_{UT}^{\sin(2\phi+\phi_s)}\sigma_0 &= \frac{1}{2}\epsilon\sin\theta_\gamma \operatorname{Im} \left[\mathcal{M}_{0+,++}^*\mathcal{M}_{0+,-+} + \mathcal{M}_{0-,++}^*\mathcal{M}_{0-,-+} \right], \\ A_{UT}^{\sin(3\phi-\phi_s)}\sigma_0 &= \epsilon\cos\theta_\gamma \operatorname{Im} \left[\mathcal{M}_{0+,++}^*\mathcal{M}_{0-,-+} \right]. \end{split}$$

Different transverse moments will give access to different combinations of GPDs

We propose a combination of measurements of cross sections, spin and azimuthal asymmetries with a longitudinally polarized beam and both unpolarized and longitudinally polarized proton target providing a flavor decomposition of underlying chiral-odd GPDs.

- Exclusive production of pseudoscalar mesons
- Chiral-Odd GPDs and transverse photon
- Studies of Transversity and GPD Ē⊤
- •Exclusive kaon production and separation of different channels

Flavor separation of form factors

space distributions depend on flavor and spin (modify in medium)

$$\int_0^1 dx \, \mathcal{H}^q(x,t) = F_1^q(t)$$
$$\int_0^1 dx \, \mathcal{E}^q(x,t) = F_2^q(t)$$

form factors of the nucleon fell off faster in nuclear matter

reall spin Asymmetries. $ep o ep\pi$

GL model:

Exclusive kaon production

0.4

-t'[GeV²]

0.6

0.2

$$\begin{split} H_T^{\gamma^* p \to \pi^0 p} &\sim [2H_T^u + H_T^d] \\ H_T^{\gamma^* p \to \eta p} &\sim [2H_T^u - H_T^d] \\ H_T^{\gamma^* p \to K^+ \Lambda} &\sim [2H_T^u - H_T^d - H_T^s] \\ H_T^{\gamma^* p \to K^+ \Sigma^0} &\sim [H_T^d - H_T^s] \end{split}$$

-10

pole contribution

negligible

• $K^+\Lambda$ production. This channel should be predominated by transversity H_T contribution. This can be checked by the absence of forward dip in unseparated (or transverse if possible) cross section. From cross section, information about H_T transversity GPDs can be extracted.

0.2

-t'[GeV²]

• $K^+\Sigma^0$ production channel should be determined mainly by the \bar{E}_T transversity GPD. This can be tested by the t' dependence of the cross section. Assuming the

Exclusive production of $K\Lambda$ and $K\Sigma$ provide access to different combinations of chiral-odd GPDs

0.6

Expected accuracy and coverage: DSA

Transverse momentum dependence of sea quark distributions

Understanding of the 3D structure of nucleon requires studies of spin and flavor dependence of quark transverse momentum distributions

$$f^a(x, k_T^2; Q^2)$$

TMD PDF for a given combination of parton and nucleon spins

To apply the TMD formalism to data we need to understand the basic properties of the TMDs at a low scale, determined by non-perturbative QCD interactions

Nucleon could be regarded as a many-body system with short-range correlations induced by the chiral-symmetry breaking interactions.

Dynamical mechanisms producing intrinsic transverse momentum in the nucleon may be be very different for valence and sea quarks

- k_T-distributions of valence quarks governed by the overall size of the nucleon of ~1fm (bag,light-front,..)
- sea k_T~vacuum fluctuations (0.3 fm), with significant contribution from short-range forces (ex. flavor structure of the sea)
- Short—range interactions $\rho \sim 0.3\,\mathrm{fm}$ New dynamical scale $\rho \ll R$ Shurvak; Diakonov, Petrov 80's

Exclusive π^0

 $\mathcal{M}_{0+,\mu+}^{P,twist-3} \propto \frac{\sqrt{-t'}}{4m} \int_{-1}^{1} d\overline{x} \mathcal{H}_{0-,\mu+}(\overline{x},...) \; \bar{E}_{T}^{P}$ $\bar{E}_{T}^{P} = 2 \; \tilde{H}_{T} + E_{T}.$

 ${\bf K^2}_{\perp}/{\bf Q^2}$ corrections in the propagators of the hard subprocess amplitude are essential in the description of the cross section at low ${\bf Q^2}$. They decrease σ by a factor of about 10 at ${\bf Q^2}$ ~ 3GeV²

M $_{0+,++}$ amplitude is important in $\sigma_{\, {
m T}}$.

Evolution Studies: from JLab12 to EIC

- •Q² dependence of Sivers function is sensitive to the non-perturbative physics
- •Wide range in Q² is crucial to study the evolution
- •Study of large x domain requires high luminosity
- •Overlap of EIC and JLab12 in the valence region will be crucial for the TMD program

Exclusive π + cross sections in modified perturbative approach

• For π + production the $\mathbf{p} \to \mathbf{n}$ transition GPDs are required which are given by the isovector combination of proton GPDs $\mathbf{F}(3) = \mathbf{F}\mathbf{u} - \mathbf{F}\mathbf{d}$.

 The γ*q → πq subprocess amplitudes within the modified perturbative approach is defined

$$\mathcal{H}_{0\lambda,0\lambda} = \int d\tau d^2b \,\hat{\Psi}_{\pi}(\tau, -\mathbf{b}) \,\hat{\mathcal{F}}_{0\lambda,0\lambda}^{(3)}(\bar{x}, \xi, \tau, Q^2, \mathbf{b}) \\ \times \alpha_{\mathbf{s}}(\mu_R) \exp[-S(\tau, \mathbf{b}, Q^2)] \,. \qquad \text{momentum fraction of the quark defined with respect to the meson momentum}$$

transverse cross section for large t (-t>~ 0.2 GeV2) is larger than the longitudinal one

Transverse densities in the nucleon in nuclear matter

Quark transverse charge densities inside an unpolarized proton arXiv:1304.5926

- form factors of the nucleon fell off faster in nuclear matter
- the size of the nucleon tends to bulge out in nuclear matter.

K/K^* and Λ/Σ separation

Due to detector resolution clean separation of different channels (Λ, Σ, K^*) will require detection of 4 particles

K+ Λ/Σ separation

Studies of 1D PDFs

F. Aaron et al., JHEP 1001 (2010)

P. Jimenez-Delgado et al (2014), 1403.3355.

- Strong model and parametrization dependence observed already for 1D PDFs
- Positivity requirement may change significantly the PDF (need self consistent fits of polarized and unpolarized target data!!!)

Exclusive Λ/Σ separation

Detection of the complete final sate allow separation of exclusive Σ s

Jefferson Lab H. Avakian, Catania, Feb 20

GPDs from cross section ratios

$$\rho^{+}n \propto [2H^{u} - H^{d}] - [H^{\bar{u}} - H^{\bar{d}}]) \qquad K^{+} \wedge \propto -\frac{1}{\sqrt{6}} (2[2\tilde{H}^{u} - \tilde{H}^{d} - \tilde{H}^{\bar{s}}] + [2\tilde{H}^{\bar{u}} - \tilde{H}^{\bar{d}} - \tilde{H}^{\bar{s}}])$$

$$K^{*+} \wedge \propto -\frac{1}{\sqrt{6}} (2[2H^{u} - H^{d} - H^{s}] - [2H^{\bar{u}} - H^{\bar{d}} - H^{\bar{s}}])$$

M.Diehl et al. hep-ph/0506171

• L/T separation from $K^* \to K\pi$ decay + SCHC

- •Study ratio observables: K/K*/ρ+,polarization transfer
- •Different final state mesons filter out different combinations of unpolarized (H,E) and polarized (H,E) GPDs.

Correlations between target and current

 q_{val}

 q_{val}

•how the remnant system dresses itself up to become a full-fledged hadron

 $\mathbf{p}_{\mathbf{T}}$

 $\Delta_T M_T^h, \Delta_T M_T^\perp$

•correlation with the spin of the target or/and the produced particles