# Polarization Observables T and F in K<sup>+</sup> $\Lambda$ and K<sup>+</sup> $\Sigma^{0}$ from FROST data in CLAS

Natalie K. Walford

The Catholic University of America

CLAS 4<sup>th</sup> European Workshop Catania, Italy February 20, 2015

### Outline

#### Motivation

- Experimental Setup
- Event Selection and Moment Method
- Systematic Studies
- Preliminary Results
- Conclusion

#### Constituent Quark Model

- Above 1850 MeV (N\*) and 1950 MeV (Δ\*) most have predicted states that have not been seen experimentally
- More model states predicted than observed so far



# Polarization Observables

| Spin                                        | Р    | olarizatio       | on     | Transversity                                         | Set            |
|---------------------------------------------|------|------------------|--------|------------------------------------------------------|----------------|
| Observable                                  | Beam | Target           | Recoil | Representation                                       |                |
| $\left(\frac{d\sigma}{d\Omega}\right)_{ii}$ | -    | -                | -      | $\frac{1}{2}( b_1 ^2 +  b_2 ^2 +  b_3 ^2 +  b_4 ^2)$ |                |
| Σ                                           | l    | -                | -      | $\frac{1}{2}( b_1 ^2 +  b_2 ^2 -  b_3 ^2 -  b_4 ^2)$ | S              |
| T                                           | -    | $\boldsymbol{y}$ | -      | $\frac{1}{2}( b_1 ^2 -  b_2 ^2 -  b_3 ^2 +  b_4 ^2)$ |                |
| P                                           | -    | -                | y'     | $\frac{1}{2}( b_2 ^2 +  b_4 ^2 -  b_1 ^2 -  b_3 ^2)$ |                |
| E                                           | c    | z                | -      | ${ m Re}(b_1b_3^*+b_2b_4^*)$                         |                |
| F                                           | c    | х                | -      | $Im(b_1b_3^* - b_2b_4^*)$                            | $\mathcal{B}T$ |
| $\overline{G}$                              | l    | z                | -      | $Im(-b_1b_3^* - b_2b_4^*)$                           |                |
| H                                           | l    | x                | -      | ${ m Re}(b_1b_3^*-b_2b_4^*)$                         |                |
| $O_x$                                       | l    | -                | x'     | ${ m Re}(-b_1b_4^*+b_2b_3^*)$                        |                |
| $O_z$                                       | l    | -                | z'     | $Im(b_1b_4^* + b_2b_3^*)$                            | $\mathcal{BR}$ |
| $C_x$                                       | c    | -                | x'     | ${ m Im}(b_2b_3^*-b_1b_4^*)$                         |                |
| $C_z$                                       | c    | -                | z'     | $\operatorname{Re}(-b_1b_4^* - b_2b_3^*)$            |                |
| $T_x$                                       | -    | T                | z'     | ${ m Re}(b_1b_2^*-b_3b_4^*)$                         |                |
| $T_z$                                       | -    | x                | z'     | ${ m Im}(b_3b_4^*-b_1b_2^*)$                         | $T\mathcal{R}$ |
| $L_x$                                       | -    | z                | x'     | $Im(-b_1b_2^* - b_3b_4^*)$                           |                |
| $L_z$                                       | -    | z                | z'     | $\operatorname{Re}(-b_1b_2^* - b_3b_4^*)$            |                |

Observables help to disentangle partial-waves to identify resonances since spin observables are more sensitive than cross-section

Photoproduction for K and π production are described by four complex amplitudes

- Describes spin combinations of incoming and outgoing particles
- 16 independent measurables calculated
- Extracted observable based on beam, target, and recoil polarization

### Available World Data

| $\gamma p \to K^+ \Lambda$ | Observ.           | $N_{\rm data}$ | $\chi_i^2/N_{\rm data}$ |
|----------------------------|-------------------|----------------|-------------------------|
| [43] CLAS                  | $d\sigma/d\Omega$ | 1320           | 0.69                    |
| [51] LEPS                  | Σ                 | 45             | 2.11                    |
| [50] GRAAL                 | Σ                 | 66             | 2.95                    |
| [43] CLAS                  | P                 | 1270           | 1.82                    |
| [50] GRAAL                 | P                 | 66             | 0.59                    |
| [52] GRAAL                 | T                 | 66             | 1.62                    |
| [40] CLAS                  | $C_x$             | 160            | 1.52                    |
| [40] CLAS                  | $C_z$             | 160            | 1.58                    |
| [52] GRAAL                 | $O_{x'}$          | 66             | 1.95                    |
| [52] GRAAL                 | $O_{z'}$          | 66             | 1.66                    |

| $\gamma p \to K^+ \Sigma^0$                                                                                     | Observ.                                                                                        | $N_{\rm data}$                                               | $\chi_{\rm i}^2/N_{\rm data}$                                       |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|
| [62] CLAS                                                                                                       | $d\sigma/d\Omega$                                                                              | 1590                                                         | 1.44                                                                |
| [51] LEPS                                                                                                       | Σ                                                                                              | 45                                                           | 1.23                                                                |
| [52] GRAAL                                                                                                      | Σ                                                                                              | 42                                                           | 1.99                                                                |
| [62] CLAS                                                                                                       | Р                                                                                              | 344                                                          | 2.69                                                                |
| [40] CLAS                                                                                                       | $C_x$                                                                                          | 94                                                           | 1.95                                                                |
| [40] CLAS                                                                                                       | $C_z$                                                                                          | 94                                                           | 1.66                                                                |
|                                                                                                                 |                                                                                                |                                                              |                                                                     |
| $\gamma p \to K^0 \Sigma^+$                                                                                     | Obsv.                                                                                          | $N_{\rm data}$                                               | $\chi_i^2/\!N_{\rm data}$                                           |
| $\gamma p \rightarrow K^0 \Sigma^+$ [63] CLAS                                                                   | Obsv.<br>$d\sigma/d\Omega$                                                                     | N <sub>data</sub>                                            | $\chi_1^2/N_{\text{data}}$<br>3.84                                  |
| $\gamma p \rightarrow K^0 \Sigma^+$ [63] CLAS [64] SAPHIR                                                       | Obsv.<br>$d\sigma/d\Omega$<br>$d\sigma/d\Omega$                                                | N <sub>data</sub><br>48<br>160                               | $\chi_i^2/N_{data}$<br>3.84<br>1.91                                 |
| $\gamma p \rightarrow K^0 \Sigma^+$ [63] CLAS [64] SAPHIR [65] CBT                                              | Obsv.<br>$\frac{d\sigma}{d\Omega}$<br>$\frac{d\sigma}{d\Omega}$<br>$\frac{d\sigma}{d\Omega}$   | N <sub>data</sub><br>48<br>160<br>72                         | $\chi_1^2/N_{data}$<br>3.84<br>1.91<br>0.76                         |
| $\gamma p \rightarrow K^0 \Sigma^+$ [63] CLAS [64] SAPHIR [65] CBT [66] CBT                                     | Obsv.<br>$d\sigma/d\Omega$<br>$d\sigma/d\Omega$<br>$d\sigma/d\Omega$<br>$d\sigma/d\Omega$      | N <sub>data</sub><br>48<br>160<br>72<br>72                   | $\chi_1^2/N_{data}$<br>3.84<br>1.91<br>0.76<br>0.62                 |
| $\gamma p \rightarrow K^0 \Sigma^+$<br>[63] CLAS<br>[64] SAPHIR<br>[65] CBT<br>[66] CBT<br>[65] CBT             | Obsv.<br>$d\sigma/d\Omega$<br>$d\sigma/d\Omega$<br>$d\sigma/d\Omega$<br>$d\sigma/d\Omega$<br>P | N <sub>data</sub><br>48<br>160<br>72<br>72<br>72<br>72       | $\chi_1^2/N_{data}$<br>3.84<br>1.91<br>0.76<br>0.62<br>0.90         |
| $\gamma p \rightarrow K^0 \Sigma^+$<br>[63] CLAS<br>[64] SAPHIR<br>[65] CBT<br>[66] CBT<br>[65] CBT<br>[66] CBT | Obsv.<br>$d\sigma/d\Omega$<br>$d\sigma/d\Omega$<br>$d\sigma/d\Omega$<br>P<br>P                 | N <sub>data</sub><br>48<br>160<br>72<br>72<br>72<br>72<br>24 | $\chi_1^2/N_{data}$<br>3.84<br>1.91<br>0.76<br>0.62<br>0.90<br>0.94 |

Available data used by Bonn-Gatchina solution (BG2011-12)

Clear lack in data for kaon photoproduction!!

February 20, 2015

## Outline

#### Motivation

- Experimental Setup
- Event Selection and Moment Method
- Systematic Studies
- Preliminary Results
- Conclusion

# **Experimental Setup**

- FROST experiment first approved in 2002 in CLAS, ran in two parts in 2007-2008 (g9a-longitudinally polarized target) and 2010 (g9b-transversely polarized target)
- Butanol FROzen Spin Target with free protons polarized
- Polarized photon beam
  - Circularly (Au radiator)
  - Longitudinally (Diamond radiator)
- Photon beam energies from 0.5 to 3.0 GeV (circular) and 1.1 to 2.1 GeV (linear)
- 14 billion events collected (in g9b)
- Complete measurement: all beam-target and target-recoil observables from K<sup>+</sup>Λ and K<sup>+</sup>Σ<sup>0</sup> final states



# The FROST Target



+

0.3

0.1

+

+

62800 Bun number

~once per

week!!



- Butanol dripped into LN<sub>2</sub> bath and then cooled to <1K and then LN<sub>2</sub> is replaced by LHe bath
- \* Polarizing 5 Tesla magnet aligns free proton spins in the butanol target to about 95% at 1K
- Holding coil keeps protons polarization at 30 mK

February 20, 2015

### Outline

- Motivation
- Experimental Setup
- Event Selection and Moment Method
- Systematic Studies
- Preliminary Results
- Conclusion

# **Event Selection**

- Skimmed data for events
  - $\square \gamma p \rightarrow K^+ \Lambda \rightarrow K^+ p(\pi^-) \text{ AND } \gamma p \rightarrow K^+ \Sigma^0 \rightarrow K^+ \Lambda \gamma \rightarrow K^+ p(\gamma \pi^-)$
- One proton, one kaon identified
- One photon identified with cut on coincidence of ±1 ns
- Only two positively charged particles



10<sup>7</sup>

10<sup>6</sup>

10<sup>5</sup>

10<sup>4</sup>

10<sup>3</sup>

10<sup>2</sup>

10

2

February 20, 2015







Check whether p from Λ decay vertex by comparing azimuthal angles of p and K<sup>+</sup> (p almost in same direction as Λ, which is opposite of K<sup>+</sup> in CM frame)

### Corrections

- Bad TOF paddles cut
- Phi-dependence of missing mass found for CLAS sectors, sector dependent momentum correction applied



February 20, 2015

#### More Corrections

Timing offset between protons and pions in TOF found – correction applied









# Missing Mass Cuts

With correct beam photon and K and p identified: can construct missing mass







Comparing g9b data to g1c, more background and less events!

# **Differential Cross-Section**

$$rac{d\sigma}{d\Omega} = rac{d\sigma_0}{d\Omega} (1 + P_{XY}^{lab} P_C F cos \phi - P_{XY}^{lab} T sin \phi)$$

#### Polarized cross-section depends on:

- Center-of-mass energy W
- Polar angle  $\theta_{CM}$
- Azimuthal  $\phi$  ( $\phi = \beta_{K} \Phi_{0}$ )
- Direction cosines of proton momentum in  $\Lambda$  rest frame



#### Extracting $\phi$ -Dependent Observables: The Moment Method

$$rac{d\sigma}{d\Omega} = rac{d\sigma_0}{d\Omega} (1 + P_{XY}^{lab} P_C F cos(eta_K - \phi_0) - P_{XY}^{lab} T sin(eta_K - \phi_0))$$

Define phi dependent density function within each W and cosine bin

$$f^{i,j}(\varphi) \equiv \rho L \int_{E_{i-1}}^{E_i} \int_{\cos\theta_{j-1}}^{\cos\theta_j} \varepsilon(E,\theta,\varphi) \frac{d^3\sigma}{d(\cos\theta)dEd\varphi} d(\cos\theta)dE$$
  
Expand density function f(\varphi) in Fourier series...

Separate cosine/sin terms

#### Moment Method continued...

$$Y_{l,n}=\int_{0}^{2\pi}f_{l}^{i,j}(\phi)cos(n\phi)d\phi \qquad \quad Z_{l,n}=\int_{0}^{2\pi}f_{l}^{i,j}(\phi)sin(n\phi)d\phi$$

$$T = 2 \frac{\tilde{Z}_{A,1} + \tilde{Z}_{B,1} - \tilde{Z}_{C,1} - \tilde{Z}_{D,1}}{P_C(\tilde{Y}_{A,0} + \tilde{Y}_{B,0} - \tilde{Y}_{A,2} - \tilde{Y}_{B,2}) + P_A(\tilde{Y}_{C,0} + \tilde{Y}_{D,0} - \tilde{Y}_{C,2} - \tilde{Y}_{D,2})}$$

$$F = \frac{2(P_A + P_C)}{P_A P_C(\lambda_A + \lambda_C)} \frac{P_C(\tilde{Y}_{A,0} - \tilde{Y}_{B,1}) + P_A(\tilde{Y}_{D,1} - \tilde{Y}_{C,1})}{P_C(\tilde{Y}_{A,0} + \tilde{Y}_{B,0} + \tilde{Y}_{A,2} + \tilde{Y}_{B,2}) + P_A(\tilde{Y}_{C,0} + \tilde{Y}_{D,0} + \tilde{Y}_{C,2} + \tilde{Y}_{D,2})}$$

 $\lambda_{A}$  – positive helicity  $\lambda_{C}$  – negitive helicity

 $P_A$  – positive target polarization  $P_C$  – negative target polarization

#### Comparison of Moment Method using g1c data

To check the validity of the Moment Method, can compare g9b results to published C<sub>z</sub> results (Bradford et al.)

$$C_z = \frac{\tilde{Y}_{A,0001} - \tilde{Y}_{B,0001}}{\frac{2}{9}\alpha_Y \lambda_A (\tilde{Y}_{,0000} + \tilde{Y}_{B,0000} + 2\tilde{Y}_{A,0002} + 2\tilde{Y}_{B,0002})}.$$

Data: CLAS g9b Bradford07



# **Background Subtraction**

- Quasi-free kaon production is suppressed on carbon – so need to subtract free protons from bound protons
  - $\blacksquare$  Fit  $\Lambda$  and  $\Sigma^{\,0}$  signals with Gaussian
  - **Fit remaining background with cubic polynomial**
  - Then make a combined fit
  - **D** for every  $\cos \theta$  bin in every W bin!





Butanol –  $C_4H_9OH$  – only 10 free protons, 64 bound protons!!

## More Background Subtraction



### Outline

- Motivation
- Experimental Setup
- Event Selection and Moment Method
- Systematic Studies
- Preliminary Results
- Conclusion

# Total Systematic Uncertainty

- \* Systematics present in data
- \* Vary cuts (particle ID, missing mass, order of background polynomial)
- \* Uncertainties in beam and target polarization
- \* Relative normalization for data on upwards and downwards target polarization (using all events, all carbon or CH<sub>2</sub> events, etc)

| <u>Systematics</u>       | <u>Effect</u>          |
|--------------------------|------------------------|
| Photon Beam Polarization | 3%                     |
| Beam Charge Asymmetry    | < 0.1%                 |
| Target Polarization      | ~4-5%                  |
| Target Quench            | <1%                    |
| Target Offset            | < 0.02 (absolute)      |
| Fiducial Cuts            | < 0.04 (absolute)      |
| β Cuts                   | < 0.04 (absolute)      |
| Missing Mass Cuts        | < 0.03 (absolute)      |
| All Cuts Simultaneously  | < 0.05 (absolute)      |
| Background Fit           | < 0.05 (absolute)      |
| Normalization            | < 0.05 (absolute)      |
| Simulation               | ~5%                    |
| Overall Uncertainty      | ± 0.09 (absolute) ± 8% |
|                          |                        |

February 20, 2015

Tight Cuts:

0.11 - 0.17

0.46 - 0.54

0.9 - 1.0

55 (27)

66 (41)

-4.35(0)

0.92

n/a

 $-0.094 \pm 0.273$ 

-0.0181

374 (110)

- 7.65 (-6.78)

613(225)

-0.81(-6.64)

1.08

 $-0.834 \pm 0.027$ 

-2.21

 $-0.189 \pm 0.084$ 

0.177

307 (95)

-0.32(-2.06)

218 (186)

-1.36(-2.62)

1.13

 $-0.542 \pm 0.094$ 

0.423 -0.202±0.141

0.045

0.070

0.036

|                                                                                                                   |                                                 | Normal Cuts:       | Loose Cuts:           |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------|-----------------------|
|                                                                                                                   | $\pi$ range                                     | 0.11-0.2           | 0.06 - 0.25           |
|                                                                                                                   | K range                                         | 0.44 - 0.55        | 0.39-0.60             |
| SVSTEMOTICS                                                                                                       | p range                                         | 0.85 - 1.05        | 0.80-1.10             |
| o y si o i i i o i i o si                                                                                         | W =                                             | 2075 MeV, cos 6    | $\theta_{K^+} = -0.5$ |
|                                                                                                                   | Λ yield (background):                           | 55 (27)            | 55 (27)               |
|                                                                                                                   | Λ gain/loss %:                                  |                    |                       |
|                                                                                                                   | $\Sigma^0$ yield (background):                  | 69 (41)            | 70 (41)               |
|                                                                                                                   | $\Sigma^0$ gain/loss %:                         |                    | 1.45 (0)              |
|                                                                                                                   | $\chi^2/NDF$ :                                  | 0.95               | 0.96                  |
| Example of varied B CUT for                                                                                       | $T \Lambda$ asymmetry:                          | n/a                | n/a                   |
| W = 2075 MeV                                                                                                      | $T \Lambda$ change (DSR):                       |                    |                       |
|                                                                                                                   | $T \Sigma^0$ asymmetry:                         | $-0.087 \pm 0.273$ | $-0.022 \pm 0.267$    |
|                                                                                                                   | $T \Sigma^0$ change (DSR):                      | 0                  | 0.17                  |
|                                                                                                                   | $W = 2075 \text{ MeV}, \cos \theta_{K^+} = 0.1$ |                    |                       |
|                                                                                                                   | Λ yield (background):                           | 405 (118)          | 411 (118)             |
| $\Delta Y = Y_{\text{varied}} - Y_{\text{normal}}$                                                                | $\Lambda$ gain/loss %:                          |                    | 1.48(0)               |
| $\frac{1}{1}$ = $\frac{1}{1}$ (in %)                                                                              | $\Sigma^0$ yield (background):                  | 618 (241)          | 628 (242)             |
| Y <sub>0</sub> Y <sub>normal</sub>                                                                                | $\Sigma^0$ gain/loss %:                         |                    | 1.62(0.41)            |
|                                                                                                                   | $\chi^2/NDF$ :                                  | 0.98               | 0.98                  |
|                                                                                                                   | $T \Lambda$ asymmetry:                          | $-0.66 \pm 0.074$  | $-0.63 \pm 0.075$     |
|                                                                                                                   | $T \Lambda$ change (DSR):                       |                    | 0.285                 |
| $T_{\text{varied}} - T_{\text{normal}}$                                                                           | $T \Sigma^0$ asymmetry:                         | $-0.21\pm0.084$    | $-0.203 \pm 0.082$    |
| DSR = -                                                                                                           | $T \Sigma^0$ change (DSR):                      |                    | 0.0596                |
| $\sqrt{\sigma_T^2} + \sigma_T^2$                                                                                  | $W = 2075 \text{ MeV}, \cos \theta_{K^+} = 0.9$ |                    |                       |
| V varied · I normal                                                                                               | Λ yield (background):                           | 308 (97)           | 313 (28)              |
|                                                                                                                   | Λ gain/loss %:                                  |                    | 1.62(-71.13)          |
|                                                                                                                   | $\Sigma^0$ yield (background):                  | 221 (191)          | 226 (194)             |
|                                                                                                                   | $\Sigma^0$ gain/loss %:                         |                    | 2.26(1.57)            |
|                                                                                                                   | $\chi^2/NDF$ :                                  | 1.22               | 1.24                  |
| $\begin{pmatrix} 10 \\ -1 \end{pmatrix}^{-1} \begin{pmatrix} 10 \\ -1 \end{pmatrix}^{-1} (T^{(i)} - T^{(i)})^2$   | $T \Lambda$ asymmetry:                          | $-0.597 \pm 0.09$  | $-0.567 \pm 0.091$    |
| $\sigma_T = \sqrt{\left(\sum_{i=1}^{n} \frac{1}{i}\right)} \sum_{i=1}^{n} \frac{(\text{a varied a normal})}{(i)}$ | $T \Lambda$ change (DSR):                       |                    | 0.234                 |
| $\left( \sum_{i=1}^{(i)} (\delta T_{normal}^{(i)})^2 \right) = \sum_{i=1}^{(i)} (\delta T_{normal}^{(i)})^2$      | $T \Sigma^0$ asymmetry:                         | $-0.211 \pm 0.142$ | $-0.16 \pm 0.14$      |
|                                                                                                                   | $T \Sigma^0$ change (DSR):                      |                    | 0.256                 |
|                                                                                                                   | $\sigma_T (\Lambda)$ :                          |                    | 0.030                 |
|                                                                                                                   | $\sigma_T (\Sigma^0)$ :                         |                    | 0.016                 |

#### 23

### Simulations

#### Check whether simulated T asymmetry (T=1.0) is correctly reconstructed



### Outline

- Motivation
- Experimental Setup
- Event Selection and Moment Method
- Systematic Studies
- Preliminary Results
- Conclusion

### Results

All results are preliminary

- T observable has previously published results for K<sup>+</sup>Λ (GRAAL in green triangles and Bonn in black circles)
- $\square$  T observable measurements for K<sup>+</sup>  $\Sigma$ <sup>0</sup> is the first of its kind
- F observable measurements is the first of its kind for both K<sup>+</sup>Λ and K<sup>+</sup>Σ<sup>0</sup>
- Compared to three theoretical models
  - KAON-MAID
  - Bonn-Gatchina (BOGA)
  - RPR-Ghent

#### T for $K^+\Lambda$



February 20, 2015

#### T for $K^+\Lambda$



#### Data: CLAS g9b

#### February 20, 2015

#### T for $K^+ \Sigma^0$



February 20, 2015

#### T for $K^+ \Sigma^0$



Data: CLAS g9b

30

#### February 20, 2015

#### F for $K^+\Lambda$



Data: CLAS g9b

<u>Models:</u> RPR-Ghent Kaon-MAID BOGA

February 20, 2015

#### F for $K^+\Lambda$ -0.8<cos0\_\_\_<-0.6 -0.6<cos0\_\_\_<-0.4 -0.4<cos0,\_\_<-0.2 0.5 F asymmetry Data: CLAS g9b 0 3333 . . . . . . . . . . -0.2<cos0,\_\_\_<0.0 0.0<cos0\_\_\_<0.2 0.2<cos0,\_\_\_<0.4 0.5 F asymmetry 0.4<cos0<sub>cm</sub><0.6 0.6<cos<sub>em</sub><0.8 0.8<cos0<sub>cm</sub><1.0 0.5 F asymmetry -+- I.1. I.8 I.9 2 2.1 2.2 2.1 1.7 1.8 1.9 2 2.1 2.2 2.1 1.7 1.8 1.9 2 2.1 2.2 2.1 1.7 1.8 1.9 2 2.1 2.2 2.1 1.7 1.8 1.9 2 2.1 2.2 2.1 1.7 1.8 1.9 2 2.1 2.2 2.1 1.7 1.8 1.9 2 2.1 2.2 2.1 1.7 1.8 1.9 2 2.1 2.2 2.1 1.7 1.8 1.9 2 2.1 2.2 2.1 1.7 1.8 1.9 2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1</ w W (GeV) (GeV) w (GeV)

32

#### February 20, 2015



February 20, 2015

#### F for K<sup>+</sup>Σ<sup>0</sup>



Data: CLAS g9b

34

### Outline

- Motivation
- Experimental Setup
- Event Selection and Moment Method
- Systematic Studies
- Preliminary Results
- Conclusion

#### Conclusion

- These new FROST results will add greatly to the world database which needs more kaon photoproduction
- **D** First results of its kind for *F* for both  $K^+\Lambda$  and  $K^+\Sigma^0$
- **D** First results of its kind for T for  $K^+ \Sigma^0$
- Comparisons to GRAAL and Bonn for T for  $K^+\Lambda$  show good consistency with GRAAL (GRAAL did NOT have a polarized target, used double polarization data  $O_x$  and  $O_z$  to extract T)
- Analysis note ready to be submitted
- Can then move on to finish up  $T_x$  and  $T_z$  from thesis for K<sup>+</sup>  $\Lambda$  and K<sup>+</sup>  $\Sigma^0$  and also *E*,  $L_x$  and  $L_z$  K<sup>+</sup>  $\Lambda$  and K<sup>+</sup>  $\Sigma^0$  from g9a