

Study of the structure of hadrons using beam and target polarization observables with CLAS AKA Overview of the eg1-dvcs results

Angela Biselli

Some open questions on hadronic structure

- Can we describe nucleons in terms of its constituents
- Where does the spin of the nucleon come from?

5 Dimensional Structure of the nucleon

eg1-dvcs run

- Polarized electron beam ~85%
- Polarized target
 - NH3 ~80%
 - ND3 ~40%
- CLAS+ Inner calorimeter (IC)

Part A (FebMar. 2009)	Part B (AprJun. 2009)	Part C (AugSep. 2009)
Hydrogen target NH ₃	Hydrogen target NH ₃	Deuteron target ND ₃
Beam energy: 5.892 & 4.735 GeV	Beam energy: 5.967 GeV	Beam energy: 5.764 GeV
Luminosity: 22.7 fb^{-1}	Luminosity: 50.7 fb^{-1}	Luminosity: 25.3 fb^{-1}
Target position: -57.95 cm	Target position: -67.97 cm	Target position: -68.18 cm

Summary of eg1-dvcs analyses and status

Analysis	Authors	Status
Single and double spin asymmetries for Deeply Virtual Compton Scattering on Longitudinally Polarized Proton Target	Biselli, Niccolai, Pisano, Seder	E. Seder et al Phys. Rev. Lett. 114 (2015) 032001 PRD: S. Pisano et al arXiv: 1501.07052 - ACCEPTED
Single and Double Spin Asymmetries for Deeply Virtual Exclusive π^0 Production on Longitudinally Polarized Proton Target	A. Kim	Ad Hoc review
Measurement of Single and Double Spin Asymmetries in Semi- Inclusive Deep Inelastic Scattering on Proton and Deuteron	S Koirala	Analysis note review
Target and beam spin asymmetries for di-hadron production ep $\rightarrow e^{'}\pi^{+}\pi^{-}X$	S. Anefalos Pereira	In progress
DVCS beam and target spin asymmetries on the neutron target	D. Sokhan	In progress
Spin Asymmetries in exclusive π^+ , π^0 , η , and π^- electroproduction from the eg1-DVCS experiment	P. Bosted	Analysis note approved
Precision measurements of g_1 of the proton and the deuteron with 6 GeV electrons	Y. Prok	Y. Prok et al Phys.Rev. C90 (2014) 2, 025212
		Eninfield

Single and double spin asymmetries for DVCS on proton target

 $F(x,\xi,t)$

- x longitudinal quark momentum fraction
- 2ξ longitudinal momentum transfer to the struck quark
- t momentum transfer to the nucleon

Compton Form Factors: 8 GPDs related quantities

$$\Re \mathbf{e}\mathcal{F} = \mathcal{P} \int_{-1}^{1} dx \left[\frac{1}{x-\xi} \mp \frac{1}{x+\xi} \right] F(x,\xi,t)$$
$$\Im \mathbf{m}\mathcal{F} = \pi \left[F(\xi,\xi,t) \mp F(-\xi,\xi,t) \right]$$

DVCS Polarization observables

eg1-DVCS highlights

- High statistics, improvement of a factor 10 over previous target asymmetry measurement (S. Chen et al)
- Complete detection of the final state ->small nuclear background
- Large kinematic range
- Simultaneous measurement of all three Beam, Target, and Double spin asymmetries in the same kinematic range
 - simultaneous fit
 - Compton Form Factors

Observable	Sensitivity to CFFs	Experiment	Notes
$\Delta \sigma_{beam}(p)$	Im ઋ p	Hall A	High statistics, limited coverage, 4 dimensional
A _{LU} (p)	Im ઋ p	HERMES CLAS	High statistics and coverage, 4 dimensional
$\Delta \sigma_{beam}(n)$	Im \mathcal{E}_n	Hall A	One (Q ² ,x _{b)} bin, 7 -t bins, low statistics, high
A _{UL} (p)	Im ୖୣୄୣ୷ _p ,Im ઋ _p	HERMES CLAS	Low statistics integrated over 3/4 variables
A _{LL} (p)	Re [~] # _p ,Re # _p	HERMES	Low statistics integrated over 3/4 variables
А _{∪т} (р)	Im $\mathscr{H}_{p,}$ Im \mathscr{E}_{p}	HERMES	Low statistics integrated over 3/4 variables

Target Spin Asymmetries for DVCS

E. Seder et al Phys. Rev. Lett. 114 (2015) 032001

Target Spin Asymmetries for DVCS

 $\alpha_{UL}\sin\phi$ $A_{UL} =$ $+\beta\cos\phi$

- Agreement with Hermes & CLAS
- Weaker drop in -t than AUL Axial charge $Im^{\sim} \mathcal{A} \Leftrightarrow A_{LU}$ is more concentrated than electric charge Im≄ ⇔ Auu
 - Qualitative agreement VGG & GK low t
 - Good agreement KMM12 but $t < Q^{2}/4$ Models
 - VGG Vanderhaeghen, Guidal, Guichon
 - GK Goloskokov, Kroll
 - KMM12 Kumericki, Müller, Murray
 - GGL Gonzalez, Goldstein, Liuti

Beam Spin Asymmetries for DVCS

S. Pisano et al arXiv:1501.07052 - PRD Accepted

- Agreement with CLAS on H₂
- No sensitivity to nuclear effects
- Sensitivity to Im #p
- Fast drop in -t
- Good agreement KMM12 but t<Q²/4
- Good agreement GL in some bins

 VGG & GK overestimate

 $\beta \cos \phi$

 $\alpha_{LU}\sin\phi$

Double Spin Asymmetries for DVCS

S. Pisano et al arXiv:1501.07052 - PRD Accepted

Compton Form Factors

S. Pisano et al arXiv:1501.07052 - PRD Accepted

- M. Guidal, Eur. Phys. J. A 37, 319 (2008)
- Local fitting at each experimental Q²,x_B,t
- Quasi model-independent: bounding the domains of variation of the CFFs (5xVGG)
- 8 unknowns, non linear problem, strong correlations
- Mostly sensitive to Im[~]²
- Im# has a steeper slope than Im[~]# axial charge more concentrated?
- Slope of Im# decreasing as x_b increases fast quarks (valence) more concentrated in the nucleon's center, slow quarks (sea) more spread out
- Not enough A_{LL} statistical precision to extract real parts Re[~]# Re[~]E

DVCS Beam and Target spin asymmetries on the neutron target

$$en \to en\gamma$$

- Pioneering CLAS measurement
- nDVCS important for flavor separation

$$(H, E)_u(\xi, \xi, t) = 9/15[4(H, E)_p(\xi, \xi, t) - (H, E)_n(\xi, \xi, t)]$$

 $(H, E)_d(\xi, \xi, t) = 9/15[4(H, E)_n(\xi, \xi, t) - (H, E)_p(\xi, \xi, t)]$

 A_{LU} on neutron needed to constrain E_n, together with E_p (from A_{UT}) and H_{p,n} we can extract the quark angular momentum (Ji's sum rule)

$$J^{q} = \frac{1}{2} - J^{G} = \frac{1}{2} \int_{-1}^{+1} x dx [H^{q}(x,\xi,0) + E^{q}(x,\xi,0)]$$

Single and Double Spin Asymmetries for Deeply Virtual Exclusive π⁰

8 GPDs"F"

 $H^{q}, \tilde{H}^{q}, E^{q}, \tilde{E}^{q}$ parton helicity-conserving (chiral- even) $H^{q}_{T}, \tilde{H}^{q}_{T}, E^{q}_{T}, \tilde{E}^{q}_{T}$ parton helicity-flip (chiral-odd) For the π^{0} $F^{\pi^{0}}_{i} = (e_{u}F^{u}_{i} - e_{d}F^{d}_{i})/\sqrt{2}$

Single and Double Spin Asymmetries for Deeply Virtual Exclusive π⁰

$$\frac{2\pi}{\Gamma} \frac{d^4\sigma}{dQ^2 dx_B dt d\phi_{\pi}} = \sigma_T + \epsilon \sigma_L + \epsilon \sigma_{TT} \cos 2\phi + \sqrt{\epsilon(1+\epsilon)} \sigma_{LT} \cos \phi + P_b \sqrt{\epsilon(1-\epsilon)} \sigma_{LT'} \sin \phi + P_b \sqrt{\epsilon(1-\epsilon)} \sigma_{LL'} \sin \phi + \epsilon \sigma_{UL}^{\sin 2\phi} \sin 2\phi) + P_b P_t (\sqrt{1-\epsilon^2} \sigma_{LL} + \sqrt{\epsilon(1-\epsilon)} \sigma_{LL}^{\cos \phi} \cos \phi)$$

$$\langle F \rangle = \sum_{\lambda} \int_{-1}^{1} dx \mathcal{H}_{0\lambda,\mu\lambda}(x,\xi,Q^2,t) F(x,\xi,t) + \sum_{\lambda} \int_{-1}^{1} dx \mathcal{H}_{0\lambda,\mu\lambda}(x,\xi,Q^2,t) + \sum_{\lambda} \int_{-1}^{1} dx \mathcal{H}_{0\lambda,\mu\lambda}(x,\xi,Q^2,t) + \sum_{\lambda} \int_{$$

Target Spin Asymmetries for ep->epπ⁰

CLAS2015 4th European CLAS workshop, Catania, Italy, February 16-22 2015

Double Spin Asymmetries for ep->epπ⁰

Measurement of Single and Double Spin Asymmetries in Semi-Inclusive DIS

Leading	twist	TMD
---------	-------	-----

f ₁		${h_1}^{\!\!\!\perp}$
	g _{1L}	${h_{1L}}^{\!\!\perp}$
f_{1T}^{\perp}	g _{1T}	h_1, h_{1T}^{\perp}
	f ₁ f _{1T} [⊥]	f1 g11 g1∟ f1T [⊥] g1T

$$eN \to e\pi X$$

$$A_{UL} = \frac{1}{fP_t} \frac{N^+ - N^-}{N^+ + N^-} \propto A_{UL}^{\sin \phi} \sin \phi + A_{UL}^{\sin 2\phi} \sin 2\phi \quad ----$$

$$A_{LL} = \frac{1}{fD'(y)P_bP_t} \frac{N^+ - N^-}{N^+ + N^-} \propto \frac{g_1 \otimes D_1}{f_1 \otimes D_1}$$

 g_1 well known from the collinear case (DIS), its $\mathsf{P}_{h\perp}$ dependence only recently explored

CLAS2015 4th European CLAS workshop, Catania, Italy, February 16-22 2015

FF q/H U Т L \mathbf{H}_{1}^{\perp} D1 U H_{1L}^{\perp} G11 ${H_1}^{\perp}$ G_{1T} Т $H_{1'}H_{1T}$ $A_{UL}^{\sin 2\phi}$ only term at LEADING ORDER • involves $h_{1L}^{\perp} \otimes H_1^{\perp}$ • @ Hermes ~ zero related to transverse polarization of quarks in the longitudinal target

• Non-zero in CLAS (Avakian PRL 105, 262002 (2010)

Target Spin Asymmetries for ep->eπX

S. Koirala

 $\pi^+\pi^-\pi^0$

 $\pi^+\pi^-\pi^0$

Double Spin Asymmetries for ep->eπX

S. Koirala

 $\pi^+\pi^-\pi^0$

Fairfield

Target and beam spin asymmetries for di-hadron production

DiFF

 $\tilde{H_1} \overset{\lessdot q}{\underset{\text{fragmentation function}}{ \text{fragmentation function}}}$

extracted by the Belle Collaboration from e⁺/e⁻ data PRD 85, 114023 (2012)

Experimental status

- $f_1(x),g_1(x)$, and $g_T(x)$ measured through DIS
- h₁(x): transversity distribution chiral odd. Can be accessed only with Semi-Inclusive DIS
- e(x), and $h_L(x)$ still unknown

Target and beam spin asymmetries for di-hadron production

	S Anefalos Pereira			ra 🔔
ep	\rightarrow	$e\pi^{-}$	$^{\scriptscriptstyle au}\pi^{\scriptscriptstyle au}$	^{-}X

Accessing higher twist PDFs with polarization experiments

 $F_{UU,T} = x f_1^q(x) D_1^q(z, \cos \theta, M_h)$ $F_{UU}^{\cos \phi_R} = -x \frac{|\mathbf{R}| \sin \theta}{Q} \frac{1}{z} f_1^q(x) \tilde{D}^{\triangleleft q}(z, \cos \theta, M_h)$ $F_{UU}^{\sin \phi_R} = -x \frac{|\mathbf{R}| \sin \theta}{Q} \left[\frac{M}{M_h} e^{q(x)} \tilde{H}_1^{\triangleleft q}(z, \cos \theta, M_h) + \frac{1}{z} f_1^q(x) \tilde{G}^{\triangleleft q}(z, \cos \theta, M_h) \right]$ $F_{UL}^{\sin \phi_R} = -x \frac{|\mathbf{R}| \sin \theta}{Q} \left[\frac{M}{M_h} x h_L^q(x) \tilde{H}_1^{\triangleleft q}(z, \cos \theta, M_h) + \frac{1}{z} g_1^q(x) \tilde{G}^{\triangleleft q}(z, \cos \theta, M_h) \right]$ $F_{LL}^{\cos \phi_R} = -x \frac{|\mathbf{R}| \sin \theta}{Q} \frac{1}{z} g_1^q(x) \tilde{D}^{\triangleleft q}(z, \cos \theta, M_h)$ $F_{LL}^{\cos \phi_R} = -x \frac{|\mathbf{R}| \sin \theta}{Q} \frac{1}{z} g_1^q(x) \tilde{D}^{\triangleleft q}(z, \cos \theta, M_h)$

e(x) and $h_L(x)$

- related to quark-gluon correlations
- e(x) x-integral related to scalar-charge of the nucleon
- h_L(x) x-integral related to the nucleon tensor charge

• Significant non-zero asymmetry

 $A_{LU} \propto e^q(x) \tilde{H_1}^{\triangleleft q}(z, \cos \theta, M_h)$

Agreement with e1f analysis (Pisano)

- Non zero sinφ
- sin 2φ compatible with zero

 $Au_{L} \approx h_{L}^{h_{q}^{q}}(x) H_{1}^{\tilde{r}_{q}^{q}}(z(z_{c} \delta S \theta^{\theta}, M_{h}))$

Results double spin asymmetry for ep-> $e\pi^+\pi^-X$

S Anefalos Pereira

Precision measurements of g_1 of the proton and the deuteron with 6 GeV Y. Prok et al Phys.Rev. C90 (2014) 2, 025212 $eN \rightarrow eX$

 $\frac{d\sigma^{\uparrow\Downarrow/\uparrow\uparrow}}{d\Omega dE'} = \sigma_M \left[\frac{F_2}{\nu} + 2\tan^2 \frac{\theta}{2} \frac{F_1}{M} \pm 2\tan^2 \frac{\theta}{2} \left(\frac{E_0 + E'\cos\theta}{M\nu} g_1 - \frac{Q^2}{M\nu^2} g_2 \right) \right]$

F₁, F₂ unpolarized structure functions

$$A_{||}(\nu,Q^2,y) = \frac{d\sigma^{\uparrow\Downarrow} - d\sigma^{\uparrow\Uparrow}}{d\sigma^{\uparrow\Downarrow} + d\sigma^{\uparrow\Uparrow}}$$

g₁, g₂ polarized structure functions

$$\frac{g_1}{F_1} = \frac{A_{||}}{D'} C_{g_2}$$

 $g_1 \Leftrightarrow$ quark Δq , antiquark $\Delta \bar{q}$ and gluon ΔG

$$g_1(x,Q^2)_{pQCD} = \frac{1}{2} \sum e_q^2 \left[(\Delta q + \Delta \bar{q}) \otimes \left(1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q \right) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \frac{\delta C_G}{N_f} \right]$$

Precision measurements of g₁ of the proton and the deuteron with 6 GeV

Y. Prok et al Phys.Rev. C90 (2014) 2, 025212

Spin Asymmetries in exclusive π⁺, π⁰, η, and π⁻ electro-production

topology	final state particles
$ep \to e\pi^+ n$	electron, π^+ , neutron
$ep \to e\gamma\gamma(\pi^0)p$	electron, two photons, proton
$ep \rightarrow e\gamma\gamma(\eta)p$	electron, two photons, proton
$en \to e\pi^- p$	electron, π^- , proton
$ep \to e\pi^+(n)$	electron, π^+
$ep \to e\gamma(\pi^0)p$	electron, one photon, proton
$ep \to e\gamma(\eta)p$	electron, one photon, proton
$en \to e\pi^-(p)$	electron, π^-
$ep \to e\gamma\gamma(\pi^0)(p)$	electron, two photons
$ep \to e\gamma\gamma(\eta)(p)$	electron, two photons

- Comprehensive study of exclusive meson production
- Resonance region
- Main motivation: global fit for radiative to semi-inclusive meson production
- Topologies combined to maximize statistics
- Kinematic range:
 - 1.1 < W <3 GeV
 - 1 < Q² < 6 GeV²

$\sigma = \sigma_0 (1 + P_b A_{LU} + P_t A_{UL} + P_b P_t A_{LL})$

Conclusions

- Both single and double polarization observables
- Inclusive, semi-inclusive and exclusive channels
- Large kinetic range in x,Q2, W, t
- Enough precision to extract some quantities (e.g. CFF) and to distinguish different models
- More data to come in CLAS12

CLAS experiment	physics
E12-06-112	SIDIS
E12-06-112	DVCS
E12-11-109 a	di-hadron
E12-11-003	nDVCS
E12-06-109	DIS
E12-06-119	pol target DVCS
PR12-11-109	pol target di-hadron

Thank you.

Thank you to the organizers for the invitation

Thank you to S. Anefalos Pereira , A. Bacchetta, P. Bosted, A. Kim, , S. Koirala, S. Niccolai, S. Pisano, Y. Prok, E. Seder, D. Sokhan

