

Daniel S. Carman Jefferson Laboratory

- N* Spectrum & Structure
- Relevance of KY Data
- CLAS $\gamma_v p \rightarrow KY$ Measurements
- CLAS12 N* \rightarrow KY Experiment
- Concluding Remarks

CLAS N* Program

The *N*^{*} program is one of the key physics foundations of Hall B

 \square CLAS was designed to measure γN and $\gamma_v N$ cross sections and spin observables over a broad kinematic range for exclusive reaction channels

 πN , ωN , ϕN , ηN , $\eta' N$, $\pi \pi N$

KY, K*Y, KY*

- Consistent interpretation of N* properties from different exclusive channels with different couplings and backgrounds offers model independent support for findings
- The program goal is to study the *spectrum* of states and their associated *structure* vs. distance scale through studies of the Q² evolution of the $\gamma_v NN^*$ electrocouplings
 - Probe the underlying degrees of freedom of the nucleon
 - Study the non-perturbative strong interaction that generates N* of different quantum numbers from quark and gluons

Daniel S. Carman **Jefferson Lab** Nucleon Resonances – ECT* - Oct. 12-16, 2015

Page 2

N* Spectrum

[Löring, Metsch, Petry, Eur. Phys. J. A 10, 395 (2001)]

Recent LQCD predictions support CQM

[Dudek, Edwards, PRD 85, 054016 (2012)]

Daniel S. Carman Jefferson Lab Nucleon Resonances – ECT* - Oct. 12-16, 2015

$N^*, \Delta^* \rightarrow KY$ Landscape

N* → KY			0	Old $\Delta^* \rightarrow \mathbf{K}\Sigma$			N* → KY		New		$\Lambda^* \rightarrow \mathbf{K}\Sigma$		
State	Rating	BR % (ΚΛ)	BR % (KΣ)	State	Rating	BR % (ΚΣ)	State	Rating	BR % (ΚΛ)	BR % (ΚΣ)	State	Rating	BR % (KΣ)
N*(1650)	****	3–11	-	∆*(1700)	****	-	N*(1650)	****	10±5	-	∆*(1620)	****	-
N*(1675)	****	< 1	-	∆*(1750)	*	-	N*(1675)	****	-	-	∆*(1700)	****	-
NI#(4,000)	ale ale ale ale			.*(1000)	ale ale		N*(1680)	****	-	-	∆*(1750)	*	-
N^(1680)	****	-	-	Δ^(1900)	* *	-	N*(1700)	***	-	-	∆*(1900)	**	5±3
N*(1700)	***	< 3	-	∆*(1905)	****	-	N*(1710)	***	23±7	-	∆*(1905)	****	-
N*(1710)	* * *	5–25	-	∆*(1910)	****	9	N*(1720)	****	-	-	∆*(1910)	****	9±5
N*(1720)	***	1–15	-	Δ*(1920)	***	2.1	N*(1875)	***	4±2	15±8	∆*(1920)	***	4±2
N*(1875)	***	-	-	∆*(1930)	***	-	N*(1880)	**	2±1	17±7	∆*(1930)	***	-
N*(1900)	***	0-10	5	Δ*(1940)	**	-	N*(1895)	**	18±5	13±7	∆*(1940)	***	-
N*(1990)	**	_	_	۸*(1950)	****	-	N*(1900)	**	16±5	5±2	∆*(1950)	***	0.4±0.1
N (1000)				A (1000)			N*(1990)	**	-	-	Δ*(2000)	**	-
N*(2000)	**	-	-	Δ*(2000)	**	-	N*(2000)	**	-	-			

[Beringer et al. (PDG), PRD 86, 010001 (2012)]

[Anisovich et al., EPJ A 48, 15 (2012)]

Essentially nothing is known regarding N*, Δ * states for M > 2 GeV

Daniel S. Carman

Jefferson Lab Nucleon Resonances – ECT* - Oct. 12-16, 2015

Nucleon Structure

Nucleon structure is more complex than what can be described accounting for quark degrees of freedom only π, ρ, ω ...

- Low Q ² : (Q ² < 5 GeV ²)	structure well described by adding an external MB cloud to inner quark core
-High Q²: (Q ² > 5 GeV ²)	quark core dominates; transition from confinement to pQCD regime

Electroproduction at high Q² probes the quark core of the excited N* resonances through the γ_vNN* electrocoupling amplitudes

- The electrocouplings probe the mass function and structure of the dressed guarks vs. distance scale
- Comparison of theory predictions to data test our understanding of the strong interaction dynamics vs. distance scale

Daniel S. Carman

Electroproduction Data

Photoproduction data sets have been used extensively in coupled-channel fits and "advanced" single-channel models

Photoproduction allows us to identify new states but tells us little about their nature

Electroproduction data allows for:

- The Q² dependence of the data gives access to the $\gamma_{v}NN^{*}$ transition form factors - our source of information on N* structure
- Promising in the search for new baryon states, since ratio of resonant to non-resonant contributions increases with Q²
- Effective tool to explore the existence of new N* states examining the data description with Q²-independent resonance masses and hadronic decay widths

The electroproduction data provide constraints on the production amplitudes complementary to the photoproduction data

Lower-Lying N* States

- Studies of $\gamma_v NN^*$ electrocouplings for different N* states at lower Q² reveals different interplay between quark core and MB cloud
 - Important to study states of different quantum numbers vs. distance scale

Jefferson Lab

[Aznauryan et al., PRC 80, 055203 (2009)] [Mokeev et al., PRC 86, 035203 (2012)] [Park et al., PRC 91, 045203 (2015)]

Nπ

Nucleon Resonances – ECT* - Oct. 12-16, 2015 Page 7

Νππ

MB cloud + quark core

MB cloud only Quark core only

Daniel S. Carman

Lower-Lying N* States

- Good agreement of the extracted N* electrocouplings from both the Nπ and Nππ exclusive channels:
 - Compelling evidence for the reliability of the results
 - Channels have very different mechanisms for the non-resonant background
- Structure studies of low-lying N* states (M < 1.7 GeV) have advanced due to agreement of results from independent analysis of the N π and N $\pi\pi$ final states

Daniel S. Carman Jefferson Lab Nucleon Resonances – ECT* - Oct. 12-16, 2015

Nπ

Νππ

MB cloud + quark core

MB cloud only

Quark core only

Higher-Lying N* States

N $\pi\pi$ channel provided the first results on higher-lying states up to 1.7 GeV:

 $S_{31}(1620), S_{11}(1650), F_{15}(1680), D_{33}(1700), P_{33}(1720)$

[Mokeev, Aznauryan, Int. J. Mod. Phys. Conf. Ser. 26, 1460080 (2014)]

Many high-lying N* states (M > 1.6 GeV) decay mainly to Nππ with much smaller strength to Nπ

Data from the KY channels is critical to provide an independent extraction of the electrocoupling amplitudes for the high-lying N* states

Daniel S. Carman

CLAS Strangeness Program

The initial thrust of the CLAS measurement program focused on exclusive production of ground-state Λ and Σ hyperons

Measurement of hyperon polarizations: recoil, transferred

 $\bullet \Lambda$ polarization "self-analyzing" via decay frame angular distribution

- Program has grown to include studies of:
 - \triangleleft vector meson production (K*Y)
 - excited hyperon production (KY*)
 - semi-inclusive hyperon processes (YX)
 - "complete" experiments in photoproduction (γp and γn)

Daniel S. Carman Jefferson Lab Nucleon Resonances – ECT* - Oct. 12-16, 2015 Page 10

CLAS KY Data Set Overview

#	Run	E _b (GeV)	Trig. (M)
1	e1c	2.567	900
2	e1c	4.056	370
3	e1c	4.247	620
4	e1c	4.462	420
5	e1d	4.817	300
6	e1-6	5.754	4500
7	e1f	5.499	5000
8	e1g	3.178	2500

- K⁺ Λ recoil pol.
 - W=1.6-2.7 GeV, <Q^{2>}=1.9 GeV² [Gabrielyan et al., PRC 90, 035202 (2014)]

Jefferson Lab

Daniel S. Carman

Publications:

- $K^+\Lambda$ beam-recoil pol. transfer
 - W=1.6-2.15 GeV, Q²=0.3 1.5 GeV² [Carman et al., PRL 90, 131804 (2003)]
- K⁺ $\Lambda \, \sigma_{\! L} / \sigma_{\! T}$ ratio
 - W=1.72-1.98 GeV, Q²~0.7 GeV² [Raue & Carman, PRC 71, 065209 (2005)]
- $K^+\Lambda$, $K^+\Sigma^0$ separated structure functions
 - W=thr-2.4 GeV, Q²=0.5-2.8 GeV²
 - σ_U, σ_{LT}, σ_{TT}, σ_L, σ_T K⁺Λ, K⁺Σ⁰ [Ambrozewicz et al., PRC 75, 045203 (2007)]
 - W=thr-2.6 GeV, Q²=1.4-3.9 GeV²
 - σ_U, σ_{LT}, σ_{TT}, σ_{LT}, K⁺Λ, K⁺Σ⁰ [Carman et al., PRC 87, 025204 (2013)]
- K⁺ Λ fifth structure function $\sigma_{\text{LT}'}$
 - W=1.6-2.1 GeV, Q²=0.65, 1.0 GeV² [Nasseripour et al., PRC 77, 065208 (2008)]
- $K^+\Lambda$, $K^+\Sigma^0$ beam-recoil pol. transfer
- W=thr-2.6 GeV, Q²=1.6-2.6 GeV² [Carman et al., PRC 79, 065205 (2009)] Nucleon Resonances – ECT* - Oct. 12-16, 2015

Page 11

Formalism: KY Electroproduction

$$\frac{d\sigma}{d\Omega_{e'}d\Omega_K^*dE_{e'}} = \Gamma_v \frac{d\sigma_v}{d\Omega_K^*}$$

36 independent response functions

$$\frac{d\sigma_{v}}{d\Omega_{K}^{*}} = \mathcal{K}\sum_{\alpha,\beta} S_{\alpha} S_{\beta} \Big[R_{T}^{\beta\alpha} + \epsilon R_{L}^{\beta\alpha} + \sqrt{\epsilon(1+\epsilon)} ({}^{c}R_{LT}^{\beta\alpha} \cos \Phi + {}^{s}R_{LT}^{\beta\alpha} \sin \Phi) \\ + \epsilon ({}^{c}R_{TT}^{\beta\alpha} \cos 2\Phi + {}^{s}R_{TT}^{\beta\alpha} \sin 2\Phi) + h\sqrt{\epsilon(1-\epsilon)} ({}^{c}R_{LT'}^{\beta\alpha} \cos \Phi + {}^{s}R_{LT'}^{\beta\alpha} \sin \Phi) + h\sqrt{1-\epsilon^{2}} R_{TT'}^{\beta\alpha} \Big]$$

Formalism: KY Electroproduction

K⁺Λ Structure Functions

$K^+\Sigma^0$ Structure Functions

Recoil Polarization

 $ep \rightarrow e'K^{\dagger}\vec{\Lambda}$

Transferred Polarization $\vec{e}p \rightarrow e'K^{\dagger}\vec{\Lambda}$ close

KY Reaction Model

At present there is no reaction model that adequately describes the KY electroproduction data in the resonance region

A model that describes the data well is necessary to extract the electrocoupling parameters from the existing lower Q² CLAS data and the expected higher Q² CLAS12 data

[DeCruz et al., PRC 86, 015212 (2012)] W

Background:

- Exchange of K(494)/K*(892) Regge trajectories
- Parameterized by 3 coupling strengths/2 phases

Jefferson Lab

- Background tuned to high-energy data and CLAS data in resonance region

Daniel S. Carman

Work is underway to develop the RPR model

- Update RPR electrocoupling parameters
- Refit model to CLAS γp and $\gamma_v p$ data:

 $W \rightarrow 2.6 \text{ GeV}, Q^2 \rightarrow 4 \text{ GeV}^2$

- Extend model to CLAS12 kinematics:

 $W \rightarrow 3 \text{ GeV}, Q^2 \rightarrow 12 \text{ GeV}^2$

Resonances:

- Standard isobar model N* states with J=1/2, 3/2, 5/2
- EM form factors from Bonn CQM
- 11 s-channel resonance candidates with W < 2 GeV
- Fit model to world γp data over full angular range
- Model not constrained by CLAS electroproduction data

Nucleon Resonances – ECT* - Oct. 12-16, 2015

Page 18

Legendre Analysis $ep \rightarrow K^{+}Y$

Structures in W dependence of C_L moments at the same W in all Q² bins are consistent with s-channel resonance contributions. [Carman et al., PRC 87, 025204 (2013)]

Reaction model is needed for the extraction of the N^* parameters.

Daniel S. Carman Jefferson Lab Nucleon Resonances – ECT* - Oct. 12-16, 2015 Page 19

Legendre Analysis $ep \rightarrow K^{+}Y$

Consistency of dominant N* → K⁺Λ couplings with advanced models
... again a complete reaction model is needed for a proper analysis
Daniel S. Carman _____ Jefferson Lab _____ Nucleon Resonances – ECT* - Oct. 12-16, 2015 _____

CLAS12 N* Program

E12-09-003

Nucleon Resonance Studies with CLAS12 Burkert, Mokeev, Stoler, Joo, Gothe, Cole

E12-06-108A

KY Electroproduction with CLAS12 Carman, Mokeev, Gothe

Measure exclusive electroproduction cross sections from an unpolarized proton target with polarized electron beam for $N\pi$, $N\eta$, $N\pi\pi$, KY:

 $E_b = 11 \text{ GeV}, Q^2 = 3 \rightarrow 12 \text{ GeV}^2, W \rightarrow 3.0 \text{ GeV}, \cos \theta_m^* = [-1:1]$

Key Motivations:

 \square Study spectrum and structure of all prominent N* states vs. Q² up to 12 GeV².

A unique opportunity to explore the nature of confinement that is responsible for >98% of resonance masses and the emergence of N^{*} states from QCD

 \square KY data complement the N $\pi\pi$ data as independent information for high-mass states inaccessible with $N\pi$ final states

Urgent need: Develop reaction models to extract electrocouplings that incorporate the transition from M-B to q-G degrees of freedom

Daniel S. Carman Jefferson Lab Nucleon Resonances – ECT* - Oct. 12-16, 2015 Page 21

CLAS12 KY Experiment Details

 $e + p \rightarrow e' + K^+ + Y \quad @ 11 \text{ GeV}$

KY Yield Estimates

CLAS12 Spectrometer

Daniel S. Carman

CLAS12 Specifications

	Forward	Central	
Angular coverage	5° – 35°	35º – 135º	
Momentum resolution	δp/p < 1%	δp/p < 5%	
θ resolution	1 mrad	5 – 10 mrad	
$\boldsymbol{\phi}$ resolution	1 mrad/sinθ	$5 \text{ mrad/sin}\theta$	
PID:			
π/K	4σ to 2.8 GeV	3σ to 0.6 GeV	
K/p	4σ to 4.8 GeV	3σ to 1.0 GeV	
π/p	4σ to 5.4 GeV	3σ to 1.2 GeV	
Calorimeter resolution	σ _E ~ 0.1√E		
Luminosity	10 ³⁵ cm ⁻² s ⁻¹		

Jefferson Lab Nucleon Resonances – ECT* - Oct. 12-16, 2015

CLAS12 Photographs

CLAS12 Photographs

Concluding Remarks

The study of N* states is one of the key foundations of the Hall B physics program with CLAS:

- CLAS has provided a dominant amount of precision data (cross sections and pol. observables) for the Nπ, Nη, KY, and Nππ channels Q² from 0 to 4.5 GeV²
- Electrocouplings of most N* states < 1.7 GeV were extracted from these data for the first time for the non-strange MB final states

Solution The CLAS12 N* program will extend these studies to Q² up to 12 GeV²:

- These studies will allow for insight into the strong interaction dynamics of dressed quarks and their confinement in baryons over a broad Q² range
- These data will address the most challenging and open problems of the Standard Model on the nature of hadron mass, quark-gluon confinement, and the emergence of the N* states from QCD

Exciting time as CLAS12 begins its physics program in early 2017