Electromagnetic Production of Strangeness at Jefferson Lab

Kei Moriya

Arizona State University
HYP2015: 12th International Conference on Hypernuclear and Strange Particle Physics
I. Jefferson Lab
II. The GlueX Experiment

- Detectors
- Commissioning results
III. Future Prospects
- GlueX
- CLAS12
IV. Conclusions

I. Jefferson Lab

Jefferson Lab

-Located in Newport News, VA

- Ran for >10 years at 6 GeV with Halls $\mathrm{A}, \mathrm{B}, \mathrm{C}$
- Upgraded to 12 GeV , new Hall D
- CEBAF accelerator provides e- beam every 2 ns

CLAS

- Experiments on hadron spectroscopy, nuclear structure functions, nuclear processes
-3-layer drift chamber with $\delta \mathrm{p} / \mathrm{p} \sim 0.5 \%$
- Start Counter around target
- Scintillator TOF paddles for PID

Strangeness Production

with CLAS

$-\mathrm{K}^{+} \Lambda$ photoproduction: differential cross sections, recoil polarizations

- Results also available for $\mathrm{K}^{+} \Sigma^{0}$, $\phi \mathrm{p}$
- Has contributed to our knowledge of production mechanisms, coupling to N^{*} states

$$
\bigcirc C L A S(2010) \triangle C L A S(2006) \diamond S A P H I R+L E P S
$$

N^{*} States

N^{*}	$J^{P}\left(L_{2 I, 2 J}\right)$	2010	2012	Δ	$J^{P}\left(L_{2 I, 2 J}\right)$	2010	2012
p	$1 / 2^{+}\left(P_{11}\right)$	****	****	Δ (1232)	$3 / 2^{+}\left(P_{33}\right)$	****	****
n	$1 / 2^{+}\left(P_{11}\right)$	****	****	$\Delta(1600)$	$3 / 2^{+}\left(P_{33}\right)$	***	***
$N(1440)$	$1 / 2^{+}\left(P_{11}\right)$	****	****	$\Delta(1620)$	$1 / 2^{-}\left(S_{31}\right)$	****	****
$N(1520)$	$3 / 2^{-}\left(D_{13}\right)$	****	****	Δ (1700)	$3 / 2^{-}\left(D_{33}\right)$	****	****
$N(1535)$	$1 / 2^{-}\left(S_{11}\right)$	****	****	Δ (1750)	$1 / 2^{+}\left(P_{31}\right)$	*	*
$N(1650)$	$1 / 2^{-}\left(S_{11}\right)$	****	****	Δ (1900)	$1 / 2^{-}\left(S_{31}\right)$	**	**
$N(1675)$	$5 / 2^{-}\left(D_{15}\right)$	****	****	Δ (1905)	$5 / 2^{+}\left(F_{35}\right)$	****	****
$N(1680)$	$5 / 2^{+}\left(F_{15}\right)$	****	****	$\Delta(1910)$	$1 / 2^{+}\left(P_{31}\right)$	****	****
$N(1685)$			*				
$N(1700)$	$3 / 2^{-}\left(D_{13}\right)$	**	***	Δ (1920)	$3 / 2^{+}\left(P_{33}\right)$	***	***
$N(1710)$	$1 / 2^{+}\left(P_{11}\right)$	**	***	Δ (1930)	$5 / 2^{-}\left(D_{35}\right)$	***	***
$N(1720)$	$3 / 2^{+}\left(P_{13}\right)$	****	****	Δ (1940)	$3 / 2^{-}\left(D_{33}\right)$	*	**
$N(1860)$	5/2+		**				
$N(1875)$	3/2-		**				
$N(1880)$	$1 / 2^{+}$		**				
$N(1895)$	1/2-		**				
$N(1900)$	$3 / 2^{+}\left(P_{13}\right)$	**	***	Δ (1950)	$7 / 2^{+}\left(F_{37}\right)$	****	****
$N(1990)$	$7 / 2^{+}\left(F_{17}\right)$	**	**	Δ (2000)	$5 / 2^{+}\left(F_{35}\right)$	**	**
N (2000)	$5 / 2^{+}\left(F_{15}\right)$	**	**	Δ (2150)	$1 / 2^{-}\left(S_{31}\right)$	*	*
- $N(2080)$	D_{13}	**		Δ (2200)	$7 / 2^{-}\left(G_{37}\right)$	*	*
- $N(2090)$	S_{11}	*		$\Delta(2300)$	$9 / 2^{+}\left(H_{39}\right)$	**	**
$N(2040)$	$3 / 2^{+}$		*				
$N(2060)$	5/2-		**				
$N(2100)$	$1 / 2^{+}\left(P_{11}\right)$	*	*	Δ (2350)	$5 / 2^{-}\left(D_{35}\right)$	*	*
$N(2120)$	3/2-		**				
$N(2190)$	$7 / 2^{-}\left(G_{17}\right)$	****	****	Δ (2390)	$7 / 2^{+}\left(F_{37}\right)$	*	*
- $N(2200)$	D_{15}	**		Δ (2400)	$9 / 2^{-}\left(G_{39}\right)$	**	**
$N(2220)$	9/2 ${ }^{+}\left(H_{19}\right)$	****	****	Δ (2420)	$11 / 2^{+}\left(H_{3,11}\right)$	****	****
$N(2250)$	9/2- (G_{19})	****	****	Δ (2750)	13/2- ${ }^{-} I_{3,13}$)	**	**
$N(2600)$	$11 / 2^{-}\left(I_{1,11}\right)$	***	***	Δ (2950)	$15 / 2^{+}\left(K_{3,15}\right)$	**	*
$N(2700)$	$13 / 2^{+}\left(K_{1,13}\right)$	**	**				

V Crede, W Roberts, Rep. Prog. Phys. 76, 076301 (2013)

Complete Experiments

- Unpolarized beam, target \rightarrow cross section and recoil polarization only
- Polarized beam and/or target \rightarrow access to many more observables
- Allows a "complete" determination of the production amplitudes
- More observables leads to more constraints on production mechanism
see talk by Natalie Walford, Session 2b

	σ	Σ	T	P	E	F	G	H	T_{x}	T_{2}	L_{x}	L_{z}	O_{x}	O_{2}	$C_{\text {x }}$	C_{z}	$\begin{aligned} & \text { CLAS run } \\ & \text { Period } \end{aligned}$
$\mathrm{p} \pi^{0}$	\checkmark									$\begin{aligned} & \mathrm{g} 1, \mathrm{~g} 8, \\ & \mathrm{~g} 9 \end{aligned}$							
$n \pi^{+}$	\checkmark									$\underset{\mathrm{g} 9}{\mathrm{~g} 1, \mathrm{~g} 8,}$							
$\mathrm{p} \eta$	\checkmark									g1, g11, g8, g9							
p ${ }^{\prime}$	\checkmark									$\begin{aligned} & \mathrm{g} 1, \\ & \mathrm{~g} 11, \\ & \mathrm{~g} 8, \mathrm{~g} 9 \end{aligned}$							
$\mathrm{p} \omega$	\checkmark									$\begin{aligned} & \mathrm{g} 11, \\ & \mathrm{~g} 8, \mathrm{~g} 9 \end{aligned}$							
$\mathrm{K}^{+} \Lambda$	\checkmark	$\begin{aligned} & \mathrm{g} 1, \mathrm{~g} 8, \\ & \mathrm{~g} 11 \end{aligned}$															
$\mathrm{K}^{+} \Sigma^{0}$	\checkmark	$\begin{aligned} & \mathrm{g} 1, \mathrm{~g} 8, \\ & \mathrm{~g} 11 \end{aligned}$															
$\mathrm{K}^{0} \Sigma^{+}$	\checkmark										\checkmark	\checkmark			\checkmark	\checkmark	$\begin{aligned} & \text { g1, g8, } \\ & \mathrm{g} 11 \end{aligned}$

Excited Hyperons

- Differential cross sections of $\Sigma(1385), \Lambda(1405), \Lambda(1520)$
- Claims of $\mathrm{N}(2120)\left(3 / 2^{-}\right)$based on $\Lambda(1520)$ cross section ${ }^{1}$
- Line shapes of $\Lambda(1405)$ were shown to be different for each $\Sigma \pi$ channel
- Discussions by Oset, Jido ${ }^{2}$

1. Jun He, NPA 927, 24 (2014), En Wang, JuJun Xie, Juan Nieves PRC 89, 015203 (2014), PRC 90, 065203 (2014)
2. L. Roca, E. Oset, PRC 88, 055206 (2013), PRC 87, 055201 (2013)
S. X. Nakamura, D. Jido Prog. Theor. Exp. Phys. 2014, 023D01

Ξ Production

$\bullet \Xi$ photoproduction: $\gamma+\mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{K}^{+} \mathrm{X}^{-}$

- Max $_{\gamma}=4 \mathrm{GeV}$
- Observation of $\Xi\left(1 / 2^{+}\right)$and $\Xi(1530)\left(3 / 2^{+}\right)$

- $\Xi \sigma_{\text {tot }} \sim 10 \mathrm{nb}$ at $\mathrm{E}_{\gamma}=4 \mathrm{GeV}$

Ξ Production

- Dataset with max $\mathrm{E}_{\gamma}=5.4 \mathrm{GeV}$
- Results are still preliminary

J. Goetz (CLAS), presented at HADRON2013
http://pos.sissa.it/archive/conferences/205/097/Hadron\ 2013 097.pdf

- Upper limit of 1.1 nb for $\Xi(1820)$

II. The GlueX Experiment

New Hall D

- New Hall, will mainly run GlueX
- Approved for 120 PAC days of commissioning, 220 days of high statistics running
-Has already taken data for two commissioning periods

Goals for GlueX

- Can we make a connection between the spectrum that we observe with QCD?
- Many holes in our knowledge of spectra for both mesons, baryons

First step is to systematically map out spectra of states
Comparison with models, lattice calculations, identification of groups

- Can we observe/identify specific states that tell us more about how QCD works?

$$
\text { Identify states excluded from } q \bar{q} \text { scheme, i.e., exotic quantum number states }
$$

Overview of GlueX

- Real photon beam centered at 9 GeV
- Liquid hydrogen target

- Reconstruct charged and neutral particles over large angular range
- Hermetic detector with solenoid magnetic field

Photon Beam

- Coherent bremsstrahlung from diamond radiator \rightarrow linearly polarized photons
- Recoil electrons detected with tagger using dipole magnet

Photon Beam Commissioning

- Ran with 5.5 GeV e- beam in Spring 2015
- Photon energy spectrum shows strong coherent edge
- Estimated peak polarization of $\sim 65 \%$

Preliminary Triplet Polarimeter Analysis

Drift Chambers

- Central Drift Chamber (CDC) covers $6^{\circ}-165^{\circ}$ around target
- $\sigma_{\mathrm{r} \phi} \sim 150 \mu \mathrm{~m}, \sigma_{\mathrm{z}} \sim 1.5 \mathrm{~mm}$
- Provide charged track hits, $d E / d x$
- Forward Drift Chamber (FDC) covers forward region
- $\sigma_{\mathrm{xy}} \sim 200 \mu \mathrm{~m}, \sigma(\delta p / p) \sim 1-5 \%$

Drift Chambers

- Commissioning results
- Separation of protons from π / K shown in $d E / d x$
- Nearing design goal for resolution (200-250 $\mu \mathrm{m}$)

Positively Charged Particles

Calorimeters

- Barrel Calorimeter provides timing for charged particles and photon detection $\left(11^{\circ}-126^{\circ}\right)$
- Pb and scintillating fibers, SiPM readout
- Forward Calorimeter provides photon detection downstream
- 2800 lead glass blocks

Calorimeters

- π^{0}, η seen in 2γ decays
- Resolution near design goals, more data needed

PID

- TOF: 2 layers of scintillator paddles
- Combined resolution of $70 \mathrm{ps}, 3 \sigma \mathrm{~K} / \pi$ separation up to $2.5 \mathrm{GeV} / \mathrm{c}$

- Start Counter surrounds target, 30 segments
- Helps in beam bunch selection, time resolution of 300 ps

PID

Positively Charged Particles

- $d E / d x$ measurements from Start Counter

- Already reached design goal of 90 ps

Forward DIRC

- DIRC bars originally for BaBar2
- Bars made of synthetic fused silica
- Read out with PMT plane
- Provide good π / K separation up to $4 \mathrm{GeV} / \mathrm{c}$
- Approved for future high-statistics running
- Developing design, readout, etc.

ρ Production

- $\gamma+p \rightarrow p \rho^{0}$ is $\sim 10 \%$ of total cross section
- Reconstruct p, π^{+}, π^{-}
- Clear asymmetry observed in angle of decay plane from photon polarization

$$
\gamma p \rightarrow \pi^{+} \pi^{-} p
$$

III. Future Prospects

Meson Spectroscopy

- For reactions with large cross sections, very high statistics
- Likely targets for exotic mesons are $\pi_{1}(1600), \pi_{1}(1900)$

Theory Predictions of Exotic Meson Decays

Approximate $J^{P C}$				Total Width (MeV)	Relevant Decays	Final States
Mass (MeV)		PSS	IKP			
π_{1}	1900	1^{-+}	$80-170$	120	$b_{1} \pi^{\dagger}, \rho \pi^{\dagger}, f_{1} \pi^{\dagger}, a_{1} \eta, \eta^{\prime} \pi^{\dagger}$	$\omega \pi \pi^{\dagger}, 3 \pi^{\dagger}, 5 \pi, \eta 3 \pi^{\dagger}, \eta^{\prime} \pi^{\dagger}$
η_{1}	2100	1^{-+}	$60-160$	110	$a_{1} \pi, f_{1} \eta^{\dagger}, \pi(1300) \pi$	$4 \pi, \eta 4 \pi, \eta \eta \pi \pi^{\dagger}$
η_{1}^{\prime}	2300	1^{-+}	$100-220$	170	$K_{1}(1400) K^{\dagger}, K_{1}(1270) K^{\dagger}, K^{*} K^{\dagger}$	$K K \pi \pi^{\dagger}, K K \pi^{\dagger}, K K \omega^{\dagger}$
b_{0}	2400	0^{+-}	$250-430$	670	$\pi(1300) \pi, h_{1} \pi$	4π
h_{0}	2400	0^{+-}	$60-260$	90	$b_{1} \pi^{\dagger}, h_{1} \eta, K(1460) K$	$\omega \pi \pi^{\dagger}, \eta 3 \pi, K K \pi \pi$
h_{0}^{\prime}	2500	0^{+-}	$260-490$	430	$K(1460) K, K_{1}(1270) K^{\dagger}, h_{1} \eta$	$K K \pi \pi^{\dagger}, \eta 3 \pi$
b_{2}	2500	2^{+-}	10	250	$a_{2} \pi^{\dagger}, a_{1} \pi, h_{1} \pi$	$4 \pi, \eta \pi \pi^{\dagger}$
h_{2}	2500	2^{+-}	10	170	$b_{1} \pi^{\dagger}, \rho \pi^{\dagger}$	$\omega \pi \pi^{\dagger}, 3 \pi^{\dagger}$
h_{2}^{\prime}	2600	2^{+-}	$10-20$	80	$K_{1}(1400) K^{\dagger}, K_{1}(1270) K^{\dagger}, K_{2}^{*} K^{\dagger}$	$K K \pi \pi^{\dagger}, K K \pi^{\dagger}$

Expected reconstructed yields

	Cross	Proposed
Final	Section	Phase IV
State	$(\mu \mathrm{b})$	$\left(\times 10^{6}\right.$ events $)$
$\pi^{+} \pi^{-} \pi^{+}$	10	3000
$\pi^{+} \pi^{-} \pi^{0}$	2	600
$K K \pi \pi$	0.5	40
$K K \pi$	0.1	10
$\omega_{3 \pi} \pi \pi$	0.2	40
$\omega_{\gamma \pi} \pi \pi$	0.2	6
$\eta_{\gamma \gamma} \pi \pi$	0.2	30
$\eta_{\gamma \gamma} \pi \pi \pi$	0.2	20
$\eta_{\gamma \gamma}^{\prime} \pi$	0.1	1
$\eta_{\eta \pi \pi}^{\prime} \pi$	0.1	3

PAC proposals:
http://arxiv.org/abs/1305.1523
http://arxiv.org/abs/1408.0215

Y* Spectroscopy

- Augment and extend previous

CLAS results

- Knowledge of Y* states very limited

Y* Spectroscopy

- Augment and extend previous

CLAS results

- Knowledge of Y* states very limited

Y* Snectrosconv

- Extrapolation of CLAS results shows cross sections of $\sim 0.1 \mu \mathrm{~b}$
- Augment CLAS re
- Knowled limited
- For $S=-1$ baryons, kinematic reach is $M_{Y^{*}} \sim 3.5 \mathrm{GeV} / \mathrm{c}^{2}$
- Decay modes are $\Lambda \pi, \Sigma \pi, N \bar{K}, \Lambda \eta, \cdots$

Y* Spectroscopy

- Augment and extend previous

CLAS results

- Knowledge of Y* states very limited

Y* Snectrocconv

$$
5
$$

$$
5
$$

- Only $11 \Xi(*)$ states listed in PDG
- Spectrum of Ξ^{*} largely unexplored since bubble chamber experiments
- Known states have narrow widths $\Gamma<20-60 \mathrm{MeV}$
- GlueX will make a large contribution to our knowledge of Ξ^{*} states
- Largest uncertainties are cross sections ($\$ 10 \mathrm{nb}$), production mechanisms

CLAS12

- New detectors for a wide range of experiments
- Under construction, commissioning in 2016
- Hadronic experiments to look for exotic mesons and strange baryons approved

PAC proposals:

IV. Conclusion

- The Jefferson Lab 12 GeV upgrade is almost complete
- GlueX is a dedicated hadron spectroscopy experiment
- Commissioning has started, data taking to continue for several years
- Mapping out the spectrum of mesons will be the primary goal
- The spectrum of strange baryons will also be very interesting
- Please consider joining the Jefferson Lab 12 GeV program

Backup

GlueX References

- Jefferson Lab
- Hall D
- GlueX portal

https://www.jlab.org/

https://www.jlab.org/Hall-D/
http://gluex.org/GlueX/Home.html

- Current Physics Proposal: http://arxiv.org/abs/1305.1523
- PID Upgrade Proposal: http://arxiv.org/abs/1408.0215

GlueX Institutions

- Arizona State University
- University of Athens
- Carnegie Mellon University
- Catholic University
- University of Connecticut
- Florida International

University

- Florida State University
- George Washington University
- University of Glasgow
- Indiana University
- ITEP Moscow
- Jefferson Lab
- University of

Massachusetts, Amherst

- Massachusetts Institute of Technology
- MePhi
- Norfolk State University
- North Carolina A\&T State
- University of North Carolina, Wilmington
- Northwestern University
- Santa Maria University
- University of Regina
- Yerevan Physics Institute

Other Hall D Experiments

- Charged pion polarizability
- approved for 25 days
- measure polarizability of π from $\gamma+\gamma \rightarrow \pi^{+}+\pi^{-}$
- determine $\alpha_{\pi}-\beta_{\pi}$ to $\sim 10 \%$
- η decay width via Primakoff effect
- approved for 79 days
- determine $\Gamma_{\gamma \gamma}$ to 3%
- Rare η proposal
- conditionally approved
- search for rare η decays
- mass distribution of $\mathrm{M}(\gamma, \gamma)$ in $\eta \rightarrow \gamma \gamma \pi^{0}$

A Precision Measurement of the η Radiative Decay Width via the Primakoff Effect

- Approved for 79 PAC days at PAC37 (Jan 2011)
- Goal: determination of η width $\Gamma_{\gamma \gamma}$ to 3%
- Test of chiral perturbation theory
- PAC proposal:
http://www.jlab.org/exp_prog/proposals/10/PR12-10-011.pdf

Measuring the Charged Pion Polarizability in the $\gamma \gamma \rightarrow \pi^{+} \pi$-Reaction

- Approved for 25 PAC days at PAC40 (Jun 2013)
- Goal: measure $\alpha_{\pi}-\beta_{\pi}$ (electric and magnetic polarizabilities) to 10%
- Test of chiral perturbation theory
- PAC proposal:
http://www.jlab.org/exp prog/proposals/13/PR12-13-008.pdf
$\frac{d^{2} \sigma}{d \Omega_{\pi \pi} d W_{\pi \pi}}=\frac{2 \alpha Z^{2}}{\pi^{2}} \frac{E_{\gamma}^{4} \beta^{2}}{W_{\pi \pi}} \frac{\sin ^{2} \theta_{\pi \pi}}{Q^{4}}\left|F\left(Q^{2}\right)\right|^{2} \underline{\sigma(\gamma \gamma \rightarrow \pi \pi)\left(1+P_{\gamma} \cos 2 \phi_{\pi \pi}\right)}$ related to $\alpha_{\pi}-\beta_{\pi}$, calculate from $\chi \mathrm{PT}$ and other theories

Linear Polarization

- Linear polarization: coherent superposition of circular

polarizations

\rightarrow Decay distributions with azimuthal dependence around γ polarization plane
\rightarrow Access to more physics observables
\rightarrow Helps constrain production mechanisms
example : cross section for pseudoscalar meson production

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{pol}}=\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{unpol}}\left[1+\Sigma P_{\gamma} \cos 2 \phi\right]
$$

$$
\mathrm{P}_{\gamma}: \text { photon polarization } \Sigma \text { : beam asymmetry }
$$

Further Results From Commissioning

Experimental Results for Exotics

- Some reports on states with $J^{P C}=1^{-+}$
- $\pi_{1}(1600)$ thought to be most established state
- Most recently COMPASS reported $\pi_{1}(1600)$ in $\pi^{-}+\mathrm{Pb} \rightarrow \pi^{+} \pi^{-} \pi^{-}+\mathrm{Pb}$

See C. Meyer, Y. Van Haarlem, PRC 82, 025208 (2010)
for review of exotic mesons

M. G. Alekseev et al.(COMPASS), PRL 104, 241803 (2010)

Lattice QCD Predictions

- Lattice QCD can give predictions on spectrum of mesons
- States that have strong overlap with exotic quantum numbers are predicted

Lattice QCD Predictions

- Lattice QCD can give predictions on spectrum of mesons
- States that have strong overlap with exotic quantum numbers are predicted

- Identifying exotic quantum number states will show existence of non- $q \bar{q}$ states

- To understand the spectrum, we need to systematically map out all states

\square

Lattice QCD Predictions

- Lattice QCD can predict spectrum of baryons
- Most states not identified by experiment yet

Lattice QCD Predictions

- Lattice QCD can predict spectrum of baryons
- Most states not identified by experiment yet

Baryons with $S=-3$

- Only 4 known $\Omega^{(*)}$ states
- Never detected in photoproduction - need $\gamma+\mathrm{p} \rightarrow \underline{\mathrm{K}^{+}} \mathrm{K}^{+} \mathrm{K}^{0} \Omega^{-}$
- First excited state in PDG is $\Omega(2250)$ - excitation of $>550 \mathrm{MeV} / \mathrm{c}^{2}$
- Rates, acceptance expected to be extremely small at GlueX
- If we can tag vertices of $\Xi^{-} \rightarrow \Lambda \pi^{-}$and $\Lambda \rightarrow p \pi$, we can discriminate most backgrounds

Charm Production

- Charm production requires much more energy
- Threshold for $\gamma+\mathrm{p} \rightarrow \mathrm{J} / \psi+\mathrm{p}$ is $\mathrm{E}_{\gamma}=8.2 \mathrm{GeV}$
- Open charm: $\gamma+\mathrm{p} \rightarrow \mathrm{D}^{0} \Lambda_{\mathrm{c}}{ }^{+}$at $\mathrm{E}_{\gamma}=8.7 \mathrm{GeV}$
- Rates will be very small
- Current estimates are $\sim 400 \mathrm{~J} / \psi$ events in 2 months of running (study by Kamal Seth, Northwestern University)

$\mathrm{P}_{\mathrm{c}^{+}}$States

- Discovered by LCHb in $\Lambda_{\mathrm{b}} \rightarrow \mathrm{K}^{-}+\mathrm{J} / \psi+\mathrm{p}^{1}$
- Final state of $J / \psi+p$, masses are above open charm threshold
- Photoproduction cross section, branching fraction to $\mathrm{J} / \psi+\mathrm{p}$ unknown
- Photon flux, polarization will be small at these energies for GlueX

$\mathrm{P}_{\mathrm{c}^{+}}$States

- Discovered by LCHb in $\Lambda_{\mathrm{b}} \rightarrow \mathrm{K}^{-}+\mathrm{J} / \psi+\mathrm{p}^{1}$
- Final state of $J / \psi+p$, masses are above open charm threshold
- Photoproduction cross section, branching fraction to $\mathrm{J} / \psi+\mathrm{p}$ unknown
- Photon flux, polarization will be small at these energies for GlueX

