Electromagnetic Production of Strangeness at Jefferson Lab

Kei Moriya

ARIZONA STATE UNIVERSITY

HYP2015: 12th International Conference on Hypernuclear and Strange Particle Physics

September 8, 2015

OUTLINE

I. Jefferson Lab

GlueX/Hair D Der

III. Future Prospects

- II. The GlueX Experiment
 - Detectors
 - Commissioning results

- GlueX
- **–** CLAS12
- IV. Conclusions

I. Jefferson Lab

Jefferson Lab

- Located in Newport News, VA
- •Ran for >10 years at 6 GeV with Halls A, B, C
- Upgraded to 12 GeV, new Hall D
- CEBAF accelerator provides e- beam every 2 ns

CLAS

- •CLAS was in Hall B of Jefferson Lab, took data for > 10 years
- Experiments on hadron spectroscopy, nuclear structure functions, nuclear processes
 - 3-layer drift chamber with $\delta p/p \sim 0.5\%$
 - Start Counter around target
 - Scintillator TOF paddles for PID

Talks by Ken Hicks (Session 2a), Natalie Walford (Session 2b)

CEBAF Large

Strangeness Production

- K+ Λ photoproduction: differential cross sections, recoil polarizations
- •Results also available for $K^+ \Sigma^0$, φp
- Has contributed to our knowledge of production mechanisms, coupling to N* states

\bigcirc CLAS(2010) \land CLAS(2006) \diamondsuit SAPHIR +LEPS

N* States

• Recent results have lead to updates in PDG

N^*	$J^P(L_{2I,2J})$	2010	2012
p	$1/2^+(P_{11})$	* * **	* * **
n	$1/2^{+}(P_{11})$	* * **	* * **
N(1440)	$1/2^{+}(P_{11})$	* * **	* * **
N(1520)	$3/2^{-}(D_{13})$	* * **	* * **
N(1535)	$1/2^{-}(S_{11})$	* * **	* * **
N(1650)	$1/2^{-}(S_{11})$	* * **	* * **
N(1675)	$5/2^{-}(D_{15})$	* * **	* * **
N(1680)	$5/2^{+}(F_{15})$	* * **	* * **
N(1685)			*
N(1700)	$3/2^{-}(D_{13})$	* * *	* * *
N(1710)	$1/2^{+}(P_{11})$	* * *	* * *
N(1720)	$3/2^{+}(P_{13})$	* * **	* * **
N(1860)	5/2+		**
N(1875)	$3/2^{-}$		* * *
N(1880)	1/2+		**
N(1895)	$1/2^{-}$		**
N(1900)	$3/2^{+}(P_{13})$	**	* * *
N(1990)	$7/2^{+}(F_{17})$	**	**
N(2000)	$5/2^{+}(F_{15})$	**	**
- N(2080)	D_{13}	**	
- N(2090)	S_{11}	*	
N(2040)	3/2+		*
N(2060)	$5/2^{-}$		**
N(2100)	$1/2^{+}(P_{11})$	*	*
N(2120)	$3/2^{-}$		**
N(2190)	$7/2^{-}(G_{17})$	* * **	* * **
- N(2200)	D_{15}	**	
N(2220)	$9/2^{+}(H_{19})$	* * **	* * **
N(2250)	$9/2^{-}(G_{19})$	* * **	* * **
N(2600)	$11/2^{-}(I_{1,11})$	* * *	* * *
N(2700)	$13/2^+(K_{1,13})$	**	**

V Crede, W Roberts, Rep. Prog. Phys. 76, 076301 (2013)

Δ	$J^P(L_{2I,2J})$	2010	2012
Δ(1232)	$3/2^+(P_{33})$	* * **	* * **
$\Delta(1600)$	$3/2^{+}(P_{33})$	* * *	* * *
$\Delta(1620)$	$1/2^{-}(S_{31})$	* * **	* * **
$\Delta(1700)$	$3/2^{-}(D_{33})$	* * **	* * **
$\Delta(1750)$	$1/2^{+}(P_{31})$	*	*
$\Delta(1900)$	$1/2^{-}(S_{31})$	**	**
$\Delta(1905)$	$5/2^{+}(F_{35})$	* * **	* * **
$\Delta(1910)$	$1/2^+(P_{31})$	* * **	* * **
Δ(1920)	$3/2^{+}(P_{33})$	* * *	* * *
$\Delta(1930)$	$5/2^{-}(D_{35})$	* * *	* * *
$\Delta(1940)$	$3/2^{-}(D_{33})$	*	**

$\Delta(1950)$	$7/2^{+}(F_{37})$	* * **	* * **
$\Delta(2000)$	$5/2^{+}(F_{35})$	**	**
$\Delta(2150)$	$1/2^{-}(S_{31})$	*	*
$\Delta(2200)$	$7/2^{-}(G_{37})$	*	*
$\Delta(2300)$	$9/2^{+}(H_{39})$	**	**

 $\Delta(2350)$ $5/2^{-}(D_{35})$ * * $\Delta(2390)$ $7/2^+(F_{37})$ * * $\Delta(2400)$ $9/2^{-}(G_{39})$ ** ** $\Delta(2420)$ $11/2^+(H_{3,11})$ * * ** * * ** $\Delta(2750)$ $13/2^{-}(I_{3,13})$ ** ** $\Delta(2950)$ $15/2^+(K_{3,15})$ ** **

Complete Experiments

- Unpolarized beam, target \rightarrow cross section and recoil polarization only • Polarized beam and/or target \rightarrow access to many more observables
- Allows a "complete" determination of the production amplitudes
- More observables leads to more constraints on production mechanism

see talk by Natalie Walford, Session 2b

source: Volker Burkert

	σ	Σ	Т	Р	E	F	G	Н	T _x	Tz	L _x	Lz	O _x	Oz	C _×	C _z	CLAS run Period
$p\pi^0$	~	1	1	1	1	1	1	1									g1, g8, g9
$n\pi^+$	~	1	1	1	1	1	1	1									g1, g8, g9
քղ	~	1	1	1	1	1	1	1									g1, g11, g8, g9
քղ'	~	1	1	1	1	1	1	1									g1, g11, g8, g9
рω	~	1	1	1	1	1	1	1									g11, g8, g9
K ⁺ Λ	~	1	1	~	1	1	√	1	1	1	√	√	1	1	~	~	g1, g8, g11
$\mathrm{K}^+\Sigma^0$	~	1	1	~	1	1	1	1	1	1	1	1	1	1	~	~	g1, g8, g11
$K^{0*}\Sigma^+$	~										1	1			1	1	g1, g8, g11

Excited Hyperons

- Differential cross sections of $\Sigma(1385)$, $\Lambda(1405)$, $\Lambda(1520)$ - Claims of N(2120) (3/2⁻) based on $\Lambda(1520)$ cross section¹
- •Line shapes of $\Lambda(1405)$ were shown to be different for each $\Sigma\pi$ channel

-Discussions by Oset, Jido²

 Jun He, <u>NPA 927, 24 (2014)</u>, En Wang, Ju-Jun Xie, Juan Nieves <u>PRC 89, 015203 (2014)</u>, <u>PRC 90, 065203 (2014)</u>
 L. Roca, E. Oset, <u>PRC 88, 055206 (2013)</u>, <u>PRC 87, 055201 (2013)</u>
 S. X. Nakamura, D. Jido <u>Prog. Theor. Exp.</u> <u>Phys. 2014, 023D01</u>

K. Moriya, R. Schumacher (CLAS) PRC 87, 035206 (2013), PRC 88, 045201 (2013)

b) 1000^{1} $1000^{$

L. Guo (CLAS), PRC 76, 025208 (2007)

E Production

II. The GlueX Experiment

TE MERITARY E

New Hall D

- New Hall, will mainly run GlueX
 Approved for 120 PAC days of commissioning, 220 days of high statistics running
 Has already taken data for two
 - commissioning periods

Goals for GlueX

• Can we make a connection between the spectrum that we observe with QCD?

• Many holes in our knowledge of spectra for both mesons, baryons

First step is to systematically map out spectra of states

Comparison with models, lattice calculations, identification of groups

• Can we observe/identify specific states that tell us more about how QCD works?

Identify states excluded from $q\bar{q}$ scheme, i.e., *exotic* quantum number states

Overview of GlueX

- •Real photon beam centered at 9 GeV
- •Liquid hydrogen target

- Reconstruct charged and neutral particles over large angular range
- •Hermetic detector with solenoid magnetic field

Photon Beam

- Coherent bremsstrahlung from diamond radiator \rightarrow linearly polarized photons
- Recoil electrons detected with tagger using dipole magnet

Photon Beam Commissioning

- Ran with 5.5 GeV e⁻ beam in Spring 2015
- Photon energy spectrum shows strong coherent edge
- Estimated peak polarization of ~65%

Preliminary Triplet Polarimeter Analysis

Polarization: 0.72 ± 0.19

100200300Azimuthal Angle of Triplet Plane [deg.]

Drift Chambers

- Central Drift Chamber (CDC) covers 6° 165° around target
 - $\sigma_{r\phi} \sim 150 \ \mu m, \sigma_z \sim 1.5 \ mm$
- Provide charged track hits, dE/dx
- Forward Drift Chamber (FDC) covers forward region
- $\sigma_{xy} \sim 200 \ \mu m, \sigma(\delta p/p) \sim 1-5\%$

Drift Chambers

- Commissioning results
- Separation of protons from π/K shown in dE/dx
- Nearing design goal for resolution (200-250 μm)

π/K shown in *dE/dx* olution (200-250 μm)

Calorimeters

- Barrel Calorimeter provides timing for charged particles and photon detection (11° - 126°)
- Pb and scintillating fibers, SiPM readout
- Forward Calorimeter provides photon detection downstream
- 2800 lead glass blocks

Calorimeters

- π^0 , η seen in 2γ decays
- Resolution near design goals, more data needed

PID

- TOF: 2 layers of scintillator paddles
- Combined resolution of 70 ps, $3\sigma K/\pi$ separation up to 2.5 GeV/*c*

- Start Counter surrounds target, 30 segments
- Helps in beam bunch selection, time resolution of 300 ps

Forward G. 4. In the computed for four difference of the second s

- DIRC bars originally for BaBar2
- Bars made of synthetic fu
- Read out with PMT plane
- Provide good π/K separat
- Approved for future high-
- Developing design, readout, etc.

angle is bigger than the critical angle,

- $\gamma + p \rightarrow p \rho^0$ is ~10% of total cross section
- Reconstruct p, π^+, π^-
- Clear asymmetry observed in angle of decay plane from photon polarization

Theory Predictions	of Ex	totic Mes	on Decays
---------------------------	-------	-----------	-----------

	Approximate	J^{PC}	Total Width	(MeV)	Relevant Decays	Final States	n
	Mass (MeV)		\mathbf{PSS}	IKP			''
π_1	1900	1^{-+}	80 - 170	120	$b_1\pi^\dagger, ho\pi^\dagger,f_1\pi^\dagger,a_1\eta,\eta^\prime\pi^\dagger$	$\omega\pi\pi^{\dagger},3\pi^{\dagger},5\pi,\eta3\pi^{\dagger},\eta'\pi^{\dagger}$	
η_1	2100	1^{-+}	60 - 160	110	$a_1\pi,f_1\eta^{\dagger},\pi(1300)\pi$	$4\pi,\eta4\pi,\eta\eta\pi\pi^{\dagger}$	
η_1'	2300	1^{-+}	100 - 220	170	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K^*K^{\dagger}$	$KK\pi\pi^{\dagger}, KK\pi^{\dagger}, KK\omega^{\dagger}$	
b_0	2400	0^{+-}	250 - 430	670	$\pi(1300)\pi, h_1\pi$	4π	
h_0	2400	0^{+-}	60 - 260	90	$b_1 \pi^{\dagger}, h_1 \eta, K(1460) K$	$\omega\pi\pi^{\dagger},\eta3\pi,KK\pi\pi$	
h_0'	2500	0^{+-}	260 - 490	430	$K(1460)K, K_1(1270)K^{\dagger}, h_1\eta$	$KK\pi\pi^{\dagger}, \ \eta 3\pi$	
b_2	2500	2^{+-}	10	250	$a_2\pi^\dagger,a_1\pi,h_1\pi$	$4\pi,~\eta\pi\pi^{\dagger}$	
h_2	2500	2^{+-}	10	170	$b_1\pi^\dagger,\ ho\pi^\dagger$	$\omega\pi\pi^{\dagger},\ 3\pi^{\dagger}$	
h'_2	2600	2^{+-}	10 - 20	80	$K_1(1400)K^{\dagger}, K_1(1270)K^{\dagger}, K_2^*K^{\dagger}$	$KK\pi\pi^{\dagger}, \ KK\pi^{\dagger}$	

Expected reconstructed yields

	Cross	Proposed
Final	Section	Phase IV
State	(μb)	$(\times 10^6 \text{ events})$
$\pi^+\pi^-\pi^+$	10	3000
$\pi^+\pi^-\pi^0$	2	600
$KK\pi\pi$	0.5	40
$KK\pi$	0.1	10
$\omega_{3\pi}\pi\pi$	0.2	40
$\omega_{\gamma\pi}\pi\pi$	0.2	6
$\eta_{\gamma\gamma}\pi\pi$	0.2	30
$\eta_{\gamma\gamma}\pi\pi\pi$	0.2	20
$\eta'_{\gamma\gamma}\pi$	0.1	1
$\eta'_{\eta\pi\pi}\pi$	0.1	3

 $\sigma_{tot} = 126 \ \mu b$ PAC proposals:
http://arxiv.org/abs/1305.1523
http://arxiv.org/abs/1408.0215

Y* Spectroscopy

- Augment and extend previous
 CLAS results
- Knowledge of Y* states very limited

		E _γ = 12.0 GeV
Ε _γ = 11.0	GeV	
10.0 GeV		
		_
		_
		_
		_
		_
		_
		K ⁺ K ⁰ Ξ ⁰ (2030) —
		$K^{+} K^{0} \Xi^{0}$ (1820) –
		K ⁺ K ⁰ Ξ ⁰ (1530)
<pre>K⁺ Σ⁰(1750) K⁺ Σ⁰(1670)</pre>		K ⁺ K ⁰ Ξ ⁰ /K ⁺ K ⁺ Ξ ⁻
Κ ⁺ Σ ⁰ (1385)		
Κ ⁺ Σ ⁰		_
Σ	<u> </u>	Ξ

Y* Spectroscopy

- Augment and extend previous
 CLAS results
- Knowledge of Y* states very limited

	5		
gy (GeV)	4	– Ε _γ = 9.0 GeV	Ε _γ = 1(
threshold c.m. energ	3 1 2	- κ ⁺ Δ(1690) κ ⁺ Δ(1600) κ ⁺ Δ(1600) κ ⁺ Δ(1520) κ ⁺ Δ(1405)	
		— К + Л	

• Knowled

Y* Spectroscopy

- Augment and extend previous
 CLAS results
- Knowledge of Y* states very limited

V* Snectrosconv

- Only 11 Ξ (*) states listed in PDG
- Spectrum of Ξ^* largely unexplored since bubble chamber experiments
- Known states have narrow widths $\Gamma < 20 60 \text{ MeV}$
- GlueX will make a large contribution to our knowledge of Ξ^* states
- Largest uncertainties are cross sections (≤10 nb), production mechanisms

CLAS12

- New detectors for a wide range of experiments
- Under construction, commissioning in 2016
- Hadronic experiments to look for exotic mesons and strange baryons approved

PAC proposals:

http://www.jlab.org/exp_prog/proposals/11/PR12-11-005.pdf

http://www.jlab.org/exp_prog/proposals/12/PR12-12-008.pdf

IV. Conclusion

- The Jefferson Lab 12 GeV upgrade is almost complete
- GlueX is a dedicated hadron spectroscopy experiment
 - Commissioning has started, data taking to continue for several years
 - Mapping out the spectrum of mesons will be the primary goal
 - The spectrum of strange baryons will also be very interesting
- Please consider joining the Jefferson Lab 12 GeV program

Backup

GlueX References

- Jefferson Lab https://www.jlab.org/
- Hall D https://www.jlab.org/Hall-D/
- GlueX portal

http://gluex.org/GlueX/Home.html

- Current Physics Proposal: <u>http://arxiv.org/abs/1305.1523</u>
- PID Upgrade Proposal: http://arxiv.org/abs/1408.0215

GlueX Institutions

- Arizona State University
- University of Athens
- Carnegie Mellon University
- Catholic University
- University of Connecticut
- Florida International University
- Florida State University
- George Washington University

- North Carolina A&T State University of Glasgow
- Indiana University
- **ITEP Moscow**
- Jefferson Lab
- University of ${}^{\bullet}$ Massachusetts, Amherst
- Massachusetts Institute of Technology
- MePhi
- Norfolk State University

- University of North Carolina, Wilmington
- Northwestern University
- Santa Maria University
- University of Regina
- Yerevan Physics Institute

http://gluex.org/GlueX/Collaboration.html

Other Hall D Experiments

- Charged pion polarizability
 - approved for 25 days
 - measure polarizability of π from $\gamma + \gamma \rightarrow \pi^+ + \pi^-$
 - determine α_{π} β_{π} to ~10%
- η decay width via Primakoff effect
 - approved for 79 days
 - determine $\Gamma_{\gamma\gamma}$ to 3%
- Rare η proposal
 - conditionally approved
 - search for rare η decays
- rightarrow mass distribution of M(γ,γ) in η → γγπ⁰

A Precision Measurement of the η Radiative Decay Width via the Primakoff Effect

Measuring the Charged Pion Polarizability in the $\gamma\gamma \rightarrow \pi^+\pi^-$ Reaction

- Approved for 25 PAC days at PAC40 (Jun 2013)
- Goal: measure α_{π} β_{π} (electric and magnetic polarizabilities) to 10%
- Test of chiral perturbation theory
- PAC proposal:

http://www.jlab.org/exp_prog/proposals/13/PR12-13-008.pdf

$$\frac{d^2\sigma}{d\Omega_{\pi\pi}dW_{\pi\pi}} = \frac{2\alpha Z^2}{\pi^2} \frac{E_{\gamma}^4 \beta^2}{W_{\pi\pi}} \frac{\sin^2 \theta_{\pi\pi}}{Q^4} |F(Q^2)|^2 \sigma(\gamma\gamma \to \pi\pi) (1 + P_{\gamma}\cos 2\phi_{\pi\pi})$$

related to α_{π} - β_{π} , calculate from χPT and other theories

Linear Polarization

•Linear polarization: coherent superposition of circular

polarizations

- \rightarrow Decay distributions with azimuthal dependence around γ polarization plane
- \rightarrow Access to more physics observables
- \rightarrow Helps constrain production mechanisms

example : cross section for pseudoscalar meson production

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{pol}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{unpol}} \left[1 + \Sigma P_{\gamma} \cos 2\theta\right]$$
$$P_{\gamma}: \text{ photon polarization } \Sigma$$

can be measured in K⁺ Λ , K⁺ Σ^0 , ...

2ϕ

Σ : beam asymmetry

Experimental Results for Exotics

- Some reports on states with $J^{PC} = 1^{-+}$
- $\pi_1(1600)$ thought to be most established state
- Most recently COMPASS reported $\pi_1(1600)$ in $\pi^- + Pb \rightarrow \pi^+\pi^-\pi^- + Pb$

See C. Meyer, Y. Van Haarlem, PRC 82, 025208 (2010) for review of exotic mesons

M. G. Alekseev et al.(COMPASS), PRL 104, 241803 (2010)

- Lattice QCD can give predictions on spectrum of mesons

- Lattice QCD can give predictions on spectrum of mesons

- Lattice QCD can predict spectrum of baryons
- Most states not identified by experiment yet

- Lattice QCD can predict spectrum of baryons
- Most states not identified by experiment yet

Baryons with S = -3

- Only 4 known $\Omega^{(*)}$ states
- Never detected in photoproduction need $\gamma + p \rightarrow K^+ K^+ K^0 \Omega^-$
- First excited state in PDG is $\Omega(2250)$ excitation of >550 MeV/c²
- Rates, acceptance expected to be extremely small at GlueX
- If we can tag vertices of $\Xi^- \rightarrow \Lambda \pi^-$ and $\Lambda \rightarrow p \pi^-$, we can discriminate most backgrounds

Charm Production

- Charm production requires much more energy
- Threshold for $\gamma + p \rightarrow J/\psi + p$ is $E_{\gamma} = 8.2 \text{ GeV}$
- Open charm: $\gamma + p \rightarrow D^0 \Lambda_c^+$ at $E_{\gamma} = 8.7 \text{ GeV}$
- Rates will be very small
- Current estimates are ~400 J/ψ events in 2 months of running (study by Kamal Seth, Northwestern University)

P_c+ States

- Discovered by LCHb in $\Lambda_b \rightarrow K^- + J/\psi + p^1$
- Final state of $J/\psi + p$, masses are above open charm threshold
- Photoproduction cross section, branching fraction to J/ψ + p unknown
- Photon flux, polarization will be small at these energies for GlueX

P_c+ States

- Discovered by LCHb in $\Lambda_b \rightarrow K^- + J/\psi + p^1$
- Final state of $J/\psi + p$, masses are above open charm threshold
- Photoproduction cross section, branching fraction to J/ψ + p unknown
- Photon flux, polarization will be small at these energies for GlueX

