Using the MMSA in a Search for the Θ^{+}at CLAS

M. Camp, N. Compton, K. Hicks HYP2015 Conference Sendia, Japan, Sept. 8, 2015

Some History

- 2003: LEPS publishes evidence for the Θ^{+}.
- 2004: Many publications seeing the Θ^{+}.
- 2005: Null evidence from high-energy expts.
- 2006: Earlier CLAS results were fluctuations.
- 2007-8: Many people skeptical of Θ^{+}.
- 2009: LEPS sees Θ^{+}with higher statistics.
- 2015: LHCb sees "charm" pentaquark.

The "charm" pentaquark from LHCb

Quark structure:
(c-barcuud)
"non-exotic" pentaquark
Is it a molecule or a spherical
5-quark bag?

The 2009 LEPS result using MMSA

Quark structure: (s-bar u d u d): "exotic" pentaquark

But could it be a statistical fluctuation?

The 2006 CLAS result

B. McKinnon et al., PRL 96, 212001 (2006).

Reaction: $\gamma \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{p}(\mathrm{n})$ exclusive. Requires proton knock-out.

This is not exactly the same as LEPS measured. Can we do better?

Re-analysis of CLAS data using MMSA

- Reaction: $\gamma \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}(\mathrm{p} n)$. Same as LEPS.
- Problem: Fermi momentum smears resolution - Use the MMSA technique to correct for it.
- Summer project (2014) for Max Camp. - Refined analysis summer 2015. - Now under analysis review by CLAS.
- Goal: as best possible, same analysis as LEPS.
- Exception: detection angles are not the same.

Data selection cuts

Number	Cut Type	Cut Made
Cut1	Beam Energy	$2.0 G e V<E_{\gamma}^{e f f}<2.5 \mathrm{GeV}$
Cut2	Vertex	$-36<z-v e r t e x<-16$
Cut3	Timing	$\Delta t_{\text {radius }}<0.54 \mathrm{~ns}$
Cut4	Missing Mass	$\mathrm{MM}\left(\gamma, \pi^{+}, \pi^{-}\right)>1.0 \mathrm{GeV} / c^{2}$
Cut5	Fiducial	Half maximum of $\phi(\theta)$
Cut6	ϕ meson	$1.01<M\left(K^{+}, K^{-}\right)<1.03 \mathrm{GeV} / \mathrm{c}^{2}$
Cut7	$p_{\text {min }}$	$\left\|p_{\text {min }}\right\|<0.1$

Cuts 1, 6 \& 7 are the same as for LEPS.
Cuts $3 \& 4$ are for Particle ID.
Cuts $2 \& 5$ are standard for CLAS.

Particle Identification

Correcting for Fermi Smearing

Reaction: $\gamma \mathrm{d} \rightarrow \mathrm{K}^{+} \mathrm{X}$
$\mathrm{MM}\left(\mathrm{K}^{+}\right)$before the MMSA correction (vertical axis is the Minimum Momentum)

MMSA for the $\Lambda(1520)$

Mass of the (pK -) System
The Λ (1520) peak only becomes clear after the MMSA correction.

MMSA for the $\mathrm{MM}\left(\mathrm{K}^{-}\right)$

Reaction: $\gamma \mathrm{d} \rightarrow \mathrm{K}^{-} \mathrm{X}$
$\mathrm{MM}\left(\mathrm{K}^{-}\right)$before the MMSA correction (vertical axis is the Minimum Momentum)

Mass Spectrum fit to polynomial

No Θ^{+}peak is seen. This uses the same analysis methods as LEPS.

Assume a Θ^{+}peak of 12 nb .

Yields Assuming A Signal

Very Preliminary!! LEPS measured a cross section of $12+/-2 \mathrm{nb} / \mathrm{sr}$ in the angular range of their detector.

In Progress: Cross section upper limit

Precise numbers for the upper limit from CLAS data are currently undergoing review. Approval expected soon.

Summary

- CLAS data (g10 run) was analyzed with the goal of closely following the LEPS Θ^{+}analysis.
- No peak is seen for a Θ^{+}in the CLAS results.
- A cross section upper limit is in progress.
- Future analysis of other CLAS data (e.g., g13 run) may provide more stringent upper limits.
- Deuteron target and E_{γ} range $2 \sim 2.5 \mathrm{GeV}$.
- CLAS cannot access K^{-}angle <17 degrees.
- Production mechanism could depend on θ_{K}.

Backup Slides

Accepted $\theta^{\text {LAB }}$

