Using the MMSA in a Search for the Θ^{+} at CLAS

M. Camp, N. Compton, <u>K. Hicks</u> HYP2015 Conference Sendia, Japan, Sept. 8, 2015

Some History

- 2003: LEPS publishes evidence for the Θ^+ .
- 2004: Many publications seeing the Θ^+ .
- 2005: Null evidence from high-energy expts.
- 2006: Earlier CLAS results were fluctuations.
- 2007-8: Many people skeptical of Θ^+ .
- 2009: LEPS sees Θ^+ with higher statistics.
- 2015: LHCb sees "charm" pentaquark.

The "charm" pentaquark from LHCb

Quark structure: (c-bar c u u d) "non-exotic" pentaquark Is it a molecule or a spherical 5-quark bag?

The 2009 LEPS result using MMSA

Quark structure: (s-bar u d u d): "exotic" pentaquark

But could it be a statistical fluctuation?

The 2006 CLAS result

B. McKinnon et al., PRL 96, 212001 (2006).

Reaction: $\gamma d \rightarrow K^+ K^- p$ (n) exclusive. Requires proton knock-out.

This is not exactly the same as LEPS measured. Can we do better?

Re-analysis of CLAS data using MMSA

- Reaction: $\gamma d \rightarrow K^+ K^- (p n)$. Same as LEPS.
- Problem: Fermi momentum smears resolution

 Use the MMSA technique to correct for it.
- Summer project (2014) for Max Camp.
 - Refined analysis summer 2015.
 - Now under analysis review by CLAS.
- Goal: as best possible, same analysis as LEPS.
 - Exception: detection angles are not the same.

Data selection cuts

Number	Cut Type	Cut Made
Cut1	Beam Energy	$2.0 GeV < E_{\gamma}^{eff} < 2.5 GeV$
Cut2	Vertex	-36 < z - vertex < -16
Cut3	Timing	$\Delta t_{radius} < 0.54 \mathrm{ns}$
Cut4	Missing Mass	$MM(\gamma, \pi^+, \pi^-) > 1.0 GeV/c^2$
Cut5	Fiducial	Half maximum of $\phi(\theta)$
Cut6	$\phi { m meson}$	$1.01 < M(K^+, K^-) < 1.03 \text{ GeV/c}^2$
Cut7	p_{min}	$ p_{min} < 0.1$

Cuts 1, 6 & 7 are the same as for LEPS. Cuts 3 & 4 are for Particle ID. Cuts 2 & 5 are standard for CLAS.

Particle Identification

Correcting for Fermi Smearing

Reaction: $\gamma d \rightarrow K^+ X$

MM(K⁺) before the MMSA correction (vertical axis is the Minimum Momentum)

MM(K⁺) after the MMSA correction

MMSA for the $\Lambda(1520)$

Mass of the (pK-) System

The $\Lambda(1520)$ peak only becomes clear after the MMSA correction.

MMSA for the MM(K⁻)

Reaction: $\gamma d \rightarrow K^- X$

MM(K⁻) before the MMSA correction (vertical axis is the Minimum Momentum)

MM(K⁻) after the MMSA correction

Mass Spectrum fit to polynomial

No Θ^+ peak is seen. This uses the same analysis methods as LEPS.

Assume a Θ^+ peak of 12 nb.

Yields Assuming A Signal

Very Preliminary!! LEPS measured a cross section of 12 +/- 2 nb/sr in the angular range of their detector.

In Progress: Cross section upper limit

Precise numbers for the upper limit from CLAS data are currently undergoing review. Approval expected soon.

Summary

- CLAS data (g10 run) was analyzed with the goal of closely following the LEPS Θ^+ analysis.
- No peak is seen for a Θ⁺ in the CLAS results.
 A cross section upper limit is in progress.
- Future analysis of other CLAS data (e.g., g13 run) may provide more stringent upper limits.
 Deuteron target and E, range 2 ~ 2.5 GeV.
- CLAS cannot access K⁻ angle < 17 degrees.
 - Production mechanism could depend on θ_{κ} .

Backup Slides

Accepted θ^{LAB}

