Exclusive Single Pion off the Proton: Results from CLAS

Kijun Park Old Dominion University

October 12-16, 2015

Fento, Italy

- Non-purturbative DCSB generates more than 98% of dress quark masses as well as dynamical structure
 20% in N N* message
 - although, higgs mechanism < 2% in N, N* masses
- Quark-gluon confinement in bayrons emerges from QCD
 dressed quarks, meson-baryon cloud, dressed gluon,...

- Non-purturbative DCSB generates more than 98% of dress quark masses as well as dynamical structure

 although, higgs mechanism < 2% in N, N* masses
 - arthough, higgs mechanism < 270 m W, W masses
- Quark-gluon confinement in bayrons emerges from QCD
 dressed quarks, meson-baryon cloud, dressed gluon,...

- Non-purturbative DCSB generates more than 98% of dress quark masses as well as dynamical structure
 - although, higgs mechanism < 2% in N, N^{*} masses
- Quark-gluon confinement in bayrons emerges from QCD
 drassed guarks, meson barron cloud, drassed gluon
 - dressed quarks, meson-baryon cloud, dressed gluon,...

 Study of the excited states of the nucleon is important step in the development of a fundamental understanding of strong interaction

[N. Isgur, V. Burkert (2000)]

 The most fundamental question: "WHAT ARE THE RELEVANT DEGREE-OF-FREEDOM AT VARYING DISTANCE SCALE ? "

• Study of the excited states of the nucleon is important step in the development of a fundamental understanding of strong interaction

[N. Isgur, V. Burkert (2000)]

 The most fundamental question: "WHAT ARE THE RELEVANT DEGREE-OF-FREEDOM AT VARYING DISTANCE SCALE ? "

• Study of the excited states of the nucleon is important step in the development of a fundamental understanding of strong interaction

[N. Isgur, V. Burkert (2000)]

The most fundamental question: "WHAT ARE THE RELEVANT DEGREE-OF-FREEDOM AT VARYING DISTANCE SCALE ? "

$SU(6) \times O(3)$ Classification of Baryons

• There are questions about underlying DoF of some well known state...but still many open questions.. related with QCD, FT, CQM, LQCD ...

K. Park (ODU)

October 12-16, 2015 3 / 37

Photo-coupling Amplitudes

- Spin combination
 - Transverse
 - Longitudinal

Multipole Amplitudes

- $E_{l\pm}$, $M_{l\pm}$, and $S_{l\pm}$
 - \rightarrow *I*: the orbital angular momentum in $N\pi$ system $\rightarrow \pm$ sign: spin of proton couples to the
 - $\rightarrow \pm$ sign: spin of proton couples to the orbital momentum

Reaction

CEBAF Large Acceptance Spectrometer

Final State	W (GeV)	Q^2 (GeV ²)	Observables	
$n\pi^+$	1.1 -1.38	0.16-0.36	$d\sigma/d\Omega$	
	1.1 -1.55	0.3 -0.6	$d\sigma'/d\Omega$	
	1.1 -1.7	1.7 -4.5	$d\sigma/d\Omega, A_B$	
	1.65-2.0	1.8 -4.5	$d\sigma/d\Omega$	
$p\pi^0$	1.1 -1.38	0.16-0.36	$d\sigma/d\Omega$	
	1.1 -1.68	0.4 -1.8	$d\sigma/d\Omega, A_B, A_T, A_{BT}$	
	1.1 -1.39	3.0 -6.0	$d\sigma/d\Omega$	

 All CLAS data is available at CLAS-DB http://clasweb.jlab.org/physicsdb/

[** $K\Lambda$, $K\Sigma$ see talk by D. Carman, 2π see talk by V. Mokeev]

RunGroup	W (GeV)	Q^2 (GeV ²)	Observables	# data
e1-6	1.10 -1.15	1.8 -4.5	$d\sigma/d\Omega$	1800
e1-6	1.1 -1.7	1.7 -4.5	$d\sigma/d\Omega'$, (A _{LU})	50400 (12600)
e1-f	1.65 -2.0	1.8 -4.5	$d\sigma/d\Omega^{-1}$	32500 (
e1-6	0.16-0.58 (<i>x_{BJ}</i>)	1.6 -4.5	$d\sigma/dt$	140

Kinematic coverage of data, $E_0{=}5.5$, 5.75 GeV, $P_e\sim$ 70%

Overall kinematic range W, Q² of all γ^{*}p → nπ⁺ analyses
 From the near pion threshold to Deep Process regime

K. Park (ODU)

Kinematic coverage of data

- Kinematic range W, Q^2 of N^* analyses
- (Δ (1232)3/2⁺), N(1440)1/2⁺, N(1520)3/2⁻, N(1535)1/2⁻, N(1675)5/2⁻, N(1680)5/2⁺, and N(1710)1/2⁺

K. Park (ODU)

$ec{e} p ightarrow e' \pi^+ n\,$ near pion threshold $(1.1 < W < 1.15 \; { m GeV})$

Generalized form factor (G₁) and Axial Form Factor (G_A) near pion threshold
 Multipole fit vs. LCSR, Both are consistent result in lowest W

• Transverse *s*-wave multipole (E_{0+}) is dominated

$ec{e} p ightarrow e' \pi^+ n$ for low lying $\Delta~(1.15 < W < 1.69~{ m GeV})$

• Two different approaches: UIM, DR

UIM

- BG UIM is built from nucleon exchange in s-, u- and π, ω, ρ exchange in t- channel
- Unitarization of multipole amplitudes in the K-matrix approximation
- Resonance contributions are parameterized in the unified BW form with energy dependence $\ensuremath{\textbf{DR}}$
- Fixed-t dispersion relation for the invariant amplitude
- Re-Amplitude to Born-term (s,u, channel nucleon exchange, π exchange in t-
- Integral Im-Amplitude with the isospin structure

$ec{e} p ightarrow e' \pi^+ n$ for low lying N^* (1.15 < W < 1.69 GeV)

$ec{e} p ightarrow e' \pi^+ n$ for low lying $N^*~(1.15 < W < 1.69~{ m GeV})$

NR-Quark VM(thin-solid)/Rule out a hybrid baryon model(gluon Excite)

- LFRQ model needs a MB interaction at large distance
- A complex interplay btw inner core of quarks in the first radial excitation and external MB cloud

$ec{e} p ightarrow e' \pi^+ n$ for low lying $N^*~(1.15 < W < 1.69~{ m GeV})$

- Quark core in DSEQCD (thick blue curve), MB cloud contribution (purple band)
- $N\pi$ loops MB, running quark mass (red solid curve)
- $N\sigma$ loops MB, fixed constituent quark mass (red dashed curve) [\Downarrow including single π and 2π data]

$ec{e} p ightarrow e' \pi^+ n$ for low lying N^* (1.15 < W < 1.69 GeV)

$\vec{e}p \rightarrow e'\pi^+ n$ for low lying N^* (1.15 < W < 1.69 GeV)

Transition Form Factors for $N(1520)3/2^-$ (old conv: $D_{13}(1520)$) ۰ • $A_{1/2}$ is large at high Q^2 , $A_{3/2}$ is small at high Q^2

K. Park (ODU)

ECT*2015

October 12-16, 2015

$ec{e} p ightarrow e' \pi^+ n$ for low lying $N^*~(1.15 < W < 1.69~{ m GeV})$

• Helicity Asymmetry for $N(1520)3/2^-$ (old conv: $D_{13}(1520)$)

$$\begin{split} \frac{A_{1/2}^{D13}}{A_{3/2}^{D13}} &= \frac{-1}{\sqrt{3}} \big(\frac{Q^2}{\alpha} - 1 \big) \\ A_{hel} &= \frac{A_{1/2}^2 - A_{3/2}^2}{A_{1/2}^2 + A_{3/2}^2} \end{split}$$

Asymptotic Q² behavior of A_{hel} vs. Q²
 NRQ simple harmonic oscillator model (solid line) with spin, orbit flip amplitudes

• $A_{1/2} \ll A_{3/2}$ at low Q^2 , $A_{3/2} \ll A_{1/2}$ at high Q^2

K. Park (ODU)

ECT*2015

October 12-16, 2015 19 / 37

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* $(1.65 < W < 2.0 \; { m GeV})$

K. Park (ODU)

ECT*2015

October 12-16, 2015 20 / 37

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* (1.65 < W < 2.0 GeV)

• Two different approaches: UIM, DR UIM

- BG UIM is built from nucleon exchange in s-, u- and π, ω, ρ exchange in t- channel

- Unitarization of multipole amplitudes in the K-matrix approximation

- Resonance contributions are parameterized in the unified BW form with energy dependence $\ensuremath{\textbf{DR}}$

- Fixed-t dispersion relation for the invariant amplitude

- Re-Amplitude to Born-term (s,u, channel nucleon exchange, π exchange in t-

- Integral Im-Amplitude with the isospin structure

Two model-uncertainties

1/ BG determination in the UIM and Born term in DR

2/ A width and mass of resonances from PDG

Take into account...

- 1/ All(13) **** and *** states in the 1st,2nd,3rd
- $2/\Delta(1905)F_{35}$, $\Delta(1950)F_{37}$ in 4th resonance region

Same BR from PDG2012

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* $(1.65 < W < 2.0 \; { m GeV})$

- Transition Form Factors for $N(1675)5/2^-$ (old conv: $D_{15}(1675)$)
- SQTM, Moorhouseselection rule: suppression Transverse Amplitudes
- Solid: M.M.Gianini/E.Santopinto (hQCM) dash: D.Merten& U.Loring(2003), Solid-dot(Q² =0): I.G.Aznauryan(LFRQ)

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* $(1.65 < W < 2.0 \; { m GeV})$

• Non-quark contributions dominance, A strong coupling $A_{1/2}$ for $Q^2 < 4 \text{ GeV}^2$

 Significant MB contribution from the dynamical coupled-channel model (dash-dot:B.Julia-Diaz,T-S.H.Lee,A.Matsuyama)

• A strong suppression of $A_{3/2}$ for $Q^2 > 1.8 \text{ GeV}^2$

$\vec{e}p \rightarrow e'\pi^+ n$ for high lying N^* (1.65 < W < 2.0 GeV)

Transition Form Factors for $N(1680)5/2^+$ (old conv: $F_{15}(1680)$) ۲

- ۲ ▲ RPP(PDG:2014), △ V.Mokeev& I.G.Aznauryan(2013), □ I.G.Aznauryan(2005)
- ۰ Solid: M.M.Gianini/E.Santopinto (hQCM), dash-dot: Z.Lee& F.Close(1990), dash: D.Merten& U.Loring(2003)

K. Park (ODU)

October 12-16, 2015

$\vec{e}p \rightarrow e'\pi^+ n$ for high lying N^* (1.65 < W < 2.0 GeV)

- Transition Form Factors for $N(1680)5/2^+$ (old conv: $F_{15}(1680)$) ٩
- All models estimates amplitudes larger $A_{1/2}$ (lower $A_{3/2}$) than data ٥
- MB contribution should be taken into account ? ٩

K. Park (ODU)

October 12-16, 2015

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* $(1.65 < W < 2.0 \; { m GeV})$

• Helicity asymmetry shows a very slow rise at $Q^2 > 2 \text{GeV}^2$

• Interesting of helicity asymmetry $Q^2 > 5 \text{ GeV}^2$? $\rightarrow \text{CLAS12}$

$$A_{hel} = \frac{A_{1/2}^2 - A_{3/2}^2}{A_{1/2}^2 + A_{3/2}^2}$$

- CLAS single- π and 2π electroproduction
- ARPP2014 at Q² = 0
- Solid: M.M.Gianini/E.Santopinto (hQCM), dash-dot: Z.Lee& F.Close(1990), dash: D.Merten& U.Loring(2003)

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* $(1.65 < W < 2.0 \; { m GeV})$

• Transition Form Factors for $N(1710)1/2^+$ (old conv: $P_{11}(1710)$) • Finite size of $A_{1/2}$ for $Q^2 < 2.5 \text{ GeV}^2$

• Finite size and negative of $S_{1/2}$ for all given Q^2 GeV²

$\vec{e}p \rightarrow e'\pi^+ \overline{n}$ for Deep Process (W > 2.0 GeV)

۲

ECT*2015

$\vec{e}p ightarrow e' \pi^+ \overline{n}$ for Deep Process (W > 2.0 GeV)

K. Park (ODU)

October 12-16, 2015 30 / 37

More single pion data are coming from CLAS6!

$ec{e} ho ightarrow e' \pi^+ n$, beam asymmetry $(A_{LU})^{PRELIMINARY}$ el-6, eglb

 $ec{e}
ho o e'\pi^0 p$ for (low Q^2)

 $E_0 = 2 \text{ GeV}, W = 1.1-1.8 \text{ GeV}, Q^2 = 0.4-1.0 \text{ GeV}^2$

[analysis by N. Markov]

Figure: (PRELIMINARY) $\sigma_T + \epsilon \sigma_L$, σ_{TT} , and σ_{LT} , red(MAID07), blue(SAID08) curves

Figure: (PRELIMINARY) $\sigma_{LT'}$ blue(MAID07) curve

K. Park (ODU)

ECT*2015

• CLAS6 \rightarrow CLAS12 N^* Physics Program

- E12-09-003, Nucleon Resonance Studies with CLAS12
- E12-06-108A, KY electroproduction with CLAS12
- LOI12-15-004, Search for Hybrid Baryons with CLAS12

LOI12-15-004, + Additional interesting aspect

- Understanding of physics between $Q^2 = 0$ and $Q^2 > 0$ GeV²
- Already saw in some resonance states in previous presentation
- Another example K⁺Λ induced polarization [Phy.Rev.C90, 035202 (2014).]

LOI12-15-004, + Additional interesting aspect

- Hadronization in high energy by color flux-tube model
- Strangeness suppression factor shows consistent with high energy results
 [Phys.Rev.Lett.113, 152004 (2014).]
- Q² independence is universal down to phton point ?

- We have obtained the differential cross-sections/asymmetries using an exclusive single pion electroproduction data for very wide range of kinematics, near threshold < W < DIS regime, Q² =1.6-4.5 GeV².
- Precision of single pion data from CLAS allows to extract the helicity amplitudes for various resonance states N(1440)1/2⁺, N(1520)3/2⁻, N(1535)1/2⁻, N(1675)5/2⁻, N(1680)5/2⁺, and N(1710)1/2⁺
- Combined analysis with available and future data on all exclusive meson electroproduction channels at W > 1.2 GeV at $Q^2 > 2$ GeV² within the framework of coupled channel approaches will improve considerably our knowledge on N^* -state electro-couplings.