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①  Physics motivations.
②  CLAS-E08-24 experiment @ JLab.
③  DVCS analysis techniques.
④  Results, conclusions and perspectives.



DVCS off nuclei

  ◊ Coherent DVCS: e- A→e- A γ
        → Study the partonic structure of the nucleus.  
        → One chiral-even GPD (HA) is needed to parametrize the structure
             of the spinless nuclei (4He, 12C, 16O, ...).  

  ◊ InCoherent DVCS: e- A→e- NX γ
     → The nucleus breaks and the DVCS takes place 
           on a nucleon.
     → Study the partonic structure of the bound nucleons 
           (4 chiral-even GPDs are needed to parametrize their structure).

Two DVCS channels are accessible with nuclear targets: 
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Nuclear spin-zero DVCS observables
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The GPD HA parametrizes the structure of the spinless nuclei (4He,12C …)

◊ ALU(φ) is mostly sensitive to Im(HA): (+/- beam helicity)

◊ AC(φ) is mostly sensitive to Re(HA): 
     (unpolarized leptons of opposite charges on unpolarized target)
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EMC: Helium-4 (2/2)
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- Theoretical predictions of the EMC in 4He, 
   based on GPDs formalism. 

[V. Guzey, A.W. Thomas, K. Tsushima, 
PLB 673 (2009) 9 ; PRC 79 (2009) 055205]

e(4He,e’γpX)

[ A. Airapetian, et al., Phys Rev. C 81, 035202 (2010)]

- Inclusive measurements of
   nuclear DVCS @ HERMES

In CLAS- E08-024, we measure
 EXCLUSIVE coherent and 

incoherent DVCS channels off 4He

-t = 0.0 GeV²
-t = 0.095 GeV2

-t = 0.329 GeV2

e(4He,e’γpX)

[S. Liuti, K.Taneja, PRC 72 (2005) 032201 ; 034902]



CLAS - E08-024 experimental setup

- CLAS: 
    → Superconducting Torus magnet.  
    → 6 independent sectors:
         → DCs track charged particles.
         → CCs separate e-/π-.
         → ECs detect γ, e- and n [8º,45º].
         → TOF Counters identify hadrons. 

- RTPC:  Detects low energy nuclear recoils.

- IC: Improves γ detection acceptance [4º,14º]. 

- Solenoid: - Shields the detectors from Møller electrons.
                      - Enables tracking in the RTPC. 

- Target: 4He gas @ 6 atm, 293 K

e-  4He → e-  (4He/pX) γ
6 GeV,

L. polarized
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Beam polarization (PB) = 83% 



RTPC
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- Design: 
    ♦ 80% azimuthal coverage
    ♦ 200 mm long , 15 mm Ø 
    ♦ 2 gas gaps to reduce the noise
    ♦ 27 μm cathode foil @ 4.3 kV
    ♦ 30 mm drift region, Ne-DME mixture (80%-20%),
          @ 1 atm, uniform |E| = 500 V/cm, |B| = 4 T 
    ♦ 3 GEMs layers, gain of 1000/layer
    ♦ 3200 readout elements 

- Work principle:
Charged particle ionizes the gas atoms
     → Under E effect, released electrons follows their drift paths at a certain drift speed
         → Amplifications via the 3 GEM layers
             → Readout board, record electrons' charges (ADCs units) in time bins (TDCs units).

- Offline reconstruction:

ADCs
Pads' gains (Gi)

TDCs Drift speed and paths
Reconstructing chains of hits Known B p/q 

PID



8

RTPC: gains calibration (2/2)

► dEdxexp. vs. p/q for all the tracks in the RTPC: 

We see separation between the different recoils 



PID @ 6 GeV beam energy

► In CLAS, the e- triggers the DAQ system to 
     record other particles in coincidence. 
     We request a set of criteria to identify the 
      electrons and to ensure their detection quality: 
        - Vertex cut.
        - Fiducial cuts.                                         
        - EC energy cut
        - Nphe in the CCs.
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    ► Proton selection:
          - Vertex cut.                                                         
          - Fiducial cuts.
          - Vertex correspondence.
          - Velocity cut (Δβ):                                              

► Photon selection (Eγ > 300 MeV):

                                                              

       EC photons θ[15°, 45°]: - EC fiducial cut.    

                                                         - Velocity cut.             
                                          
      

 IC photons θ[4°, 14°]: - IC fiducial cut. 

                                              - Møller electrons cut.        
 

               

 e- π- π+

 p



PID @ 6 GeV beam energy: Helium-4

► We apply a set of requirements on the RTPC tracks to select the good ones:
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- Hits from more than 4 pads
- Positive curvature
- How far the 1st ionization (sdist)
- How far the last ionization (edist)
- Helix fit quality (χ²)
- Vertex correspondence (Δz)

The two modules of the RTPC have
  different levels of performance 



 DVCS events selection (1/2)

We select COHERENT events which have:
   ◊ Only one good electron, at least one photon and only one good 4He.
   ◊ Eγ > 2 GeV, W > 2 GeV/c2,  (Eb-Ee')/Eb < 0.85 and Q² > 1 GeV². 
   ◊ Exclusivity cuts (3 sigmas).

- In BLUE, coherent events before all exclusivity cuts. 
- In shaded BROWN, coherent DVCS events which pass all the other
   exclusivity cuts except the ONE ON the quantity itself.

11



 DVCS events selection (2/2)

We select INCOHERENT events which have:
   ◊ Only one good electron, at least one photon and only one good p.
   ◊ Eγ > 2 GeV, W > 2 GeV/c2,  (Eb-Ee')/Eb < 0.85 and Q² > 1 GeV². 
   ◊ Exclusivity cuts (3 sigmas).

- In BLUE, incoherent events before all exclusivity cuts. 
- In shaded BROWN, incoherent DVCS events which
   pass all the other exclusivity cuts except the ONE ON the quantity itself.
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Monte Carlo simulation (1/2)
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 ◊ We use Monte Carlo for two goals:
       - Understanding the behavior of each particle type within our detectors
       - Calculate the acceptance ratio for the purpose of the DVCS background subtraction

  ◊ Simulation stages:

      - Event generator: Events are generated in the measured phase-space (Q², xB, -t, φh) following
                                                this parametrization of the cross section:

 
     - Simulation (GSIM): GEANT3, describes the detectors' response to the different particles.

     - Smearing (GPP): Makes the simulation more realistic by smearing the positions, energy and time.
 

     - Reconstruction (RECSIS): (ADCs, TDCs) → physical quantities.

Evolution in Q², 
Q²0= 1 GeV²

Reproduces the PDFs 
shape in the valence 

region

Corresponds to 
parametrization of

 the 4He(p) FFs

The dependence on fh 
(DVCS, BH, π0) 



Monte Carlo simulation: Comparison with data (2/2)
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- Apply the same DVCS criteria on the simulated data with an equivalent exclusive cuts.

Coherent DVCS Incoherent DVCS
* In terms of
the kinematics

* In terms of the
exclusivity variables

Adequate agreement between data and simulation



Background subtraction

◊ With our kinematics, the main background comes from the exclusive π0 channel,

   in which one photon from π0 decay is detected and passes the DVCS selection.

◊ We combine real data with simulation to compute the contamination of п0 to DVCS.

◊ Background yield ratio ~ 2-4%  (8-11%) in  e- 4Heγ (e- pγ) DVCS channel. 
15

Acceptance ratio (R (1γ/2γ))

Coherent Incoherent



Coherent beam-spin asymmetries

[1] LT: S. Liuti and S. K. Taneja.Phys. Rev., C72:032201, 2005.
[2]  A. Airapetian, et al., Phys Rev. C 81, 035202 (2010).

● Due to statistical constraints, we constructed 2D 
bins -t or xB or Q2 versus φ

● Fit ALU :   p0∗sin(ϕ)/(1+ p1∗cos(ϕ))

→ Probed coherent kinematical regions:
              0.06 < -t < 0.2  →  <-t>  =  0.10 [GeV²]
              1.0 < Q² < 2.5  →  <Q²> = 1.49 [GeV²]
              0.1 < xB < 0.3  →  <xB> = 0.18 
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Helium-4 Compton form factor

Expected to be small magnitude

p0∗sin (ϕ )/(1+p1∗cos(ϕ ))

- Using the kinematical calculable factors
   (a, b, c, h and f) and the fitted coherent 
             ALU @ 90º  vs. <-t>   

     → Extracted the real and the imaginary 
          parts of the Compton form factor.

   - We have “significant” trends with t and xB as well.
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Suppressed by 2 orders of magnitude

Prelim
inary



Incoherent beam-spin asymmetries

[1] LT: S. Liuti and S. K. Taneja.Phys. Rev., C72:032201, 2005.
[2]  A. Airapetian, et al., Phys Rev. C 81, 035202 (2010).

◊ Probed kinematical regions:  1.0 < Q² < 4.5 [GeV²]  →  <Q²>  = 2.20   [GeV²]  
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EMC ratio (1/3)

◊ We compared our measured incoherent asymmetries (Black points) with the asymmetries
measured in CLAS DVCS experiment on the proton (Red Points).

 

Prelim
inary
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 over
:

   0
.05 < -t

 < 2.0

   1
.0 < Q

2  < 4.5

 ALU vs. φ  in xB bins

-t = 0.095 GeV2

-t = 0.329 GeV

S. Liuti and K.Taneja

 This work

◊ The bound proton shows a lower asymmetry relative the free one in the different 
    bins in x

B
. 

 ALU vs. φ  in xB bins

Prelim
inary



EMC ratio (2/3)

◊ Black points: Our measured incoherent asymmetries
   Red Points: The asymmetries measured in CLAS DVCS experiment on the proton (e1-dvcs)

◊ At small -t, the bound proton shows lower asymmetry than the free one.
◊ At high -t, the two asymmetries are compatible. 
 

Prelim
inary
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EMC ratio (3/3)

◊ Comparing the coherent asymmetry to the free proton's asymmetry:

 

21

-t [GeV2]

[V. Guzey, PRC 78(2008) 025211]

              <-t>  =  0.13 [GeV²]
              <Q²> = 1.49 [GeV²]
              <xB> = 0.16

      <A
LU

4He/A
LU

p > = 0.34/0.21 = 1.6 

Consistent with the enhancement 
suggested by the Impulse
 Approximation Model 

of Vadim Guzey 



Conclusions

◊ The exclusive DVCS off 4He was measured for the first time
   with our experiment 
◊ Preliminary asymmetries were extracted and compared with
   theoretical predictions
◊ With our available statistics, the bound proton has shown 
    a different trend compared to the free one

◊  Perspectives:
    → Final results soon
    → Proposing a new 4He DVCS experiment with JLab upgrade.
  

Thanks for your attention
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Hadronic structure functions (3/3)

Structure functions that quantify the properties  of the partons in a hadron: 

● Form Factors (FFs)
● Parton Distribution Functions (PDFs)
● Transverse Momentum Distributions (TMDs)
● Generalized Parton Distributions (GPDs)
● Generalized Transverse Momentum Distributions 
    (GTMDs)
  

x : Parton's longitudinal momentum
k : Parton's transverse momentum
Δ : Momentum transfer to the nucleon
┴

      → Most general functions that describe the proton
           structure in 5 dimensions.
      → Connected to the so-called Wigner distributions
             via 2D Fourier transform over ∆.  
            [See A. V. Belitsky, X. Ji, F. Yuan; Phys. Rev. D 69 (2004) 074014.] 
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C.L. et al., (2010)



DVCS experiments worldwide

JLAB

p,n-DVCS:

(pol.) X-sec

Hall B

p-DVCS: BSA,LTSA,
DSA, X-sec

Helium-4: BSA

Hall A

CERN
COMPASS

p-DVCS: X-sec,BSA,BCA,
tTSA,lTSA,DSA 

p-DVCS

X-sec,BCA

p-DVCS

BSA,BCA, TTSA,

LTSA,DSA

H1/ZEUSHERMES

DESY

Promising future experiments with
 JLab upgrade and COMPASSII 



Nucleon DVCS spin observables

Quark propagator

● L polarized beam, Unpolarized target

● Unpolarized beam, L polarized target

● Unpolarized beam, T polarized target

● L polarized beam, L polarized target



α
i
(φ) coefficients appearing in the BSA expression

◊ The Fourier coefficients of the BH amplitude for a spin-0 target can be expressed as:



The correlation matrix between coherent fit parameters

-t bin:
  EXT PARAMETER                                                 STEP         FIRST 
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  p0           3.44813e-01   5.62771e-02   6.48807e-05  -4.44260e-04
   2  p1          -3.50787e-02   3.29259e-01   3.79811e-04   5.27253e-05
 
   1  p0           2.46885e-01   5.76178e-02   3.98343e-05   5.35585e-04
   2  p1          -4.63055e-01   2.50428e-01   1.73172e-04  -6.46587e-05

   1  p0           3.41273e-01   5.44831e-02   7.49783e-05  -9.17018e-04
   2  p1          -1.65254e-02   2.87350e-01   3.95405e-04   1.63433e-04

------------------------------------------------------------------------------

xB bins:

  EXT PARAMETER                                                STEP         FIRST 
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  p0           3.31482e-01   4.67747e-02   7.80803e-05  -5.92762e-03
   2  p1           1.30716e-01   2.73364e-01   4.55543e-04   4.38945e-04

   1  p0           2.51482e-01   6.59560e-02   3.80359e-05  -1.00104e-02
   2  p1          -5.38260e-01   2.61527e-01   1.50322e-04   1.58311e-03
  
   1  p0           2.95191e-01   6.66935e-02   5.95809e-05   4.84575e-04
   2  p1          -2.47236e-01   2.96955e-01   2.65219e-04  -2.07350e-05



The correlation matrix between incoherent fit parameters

-t bin:
 EXT PARAMETER                                           STEP         FIRST 
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  p0           1.41307e-01   2.68771e-02   2.33962e-05   6.11524e-06
   2  p1          -4.59316e-02   4.33266e-01   3.77153e-04  -4.67165e-08

   1  p0           1.38396e-01   2.90665e-02   3.62930e-05  -5.69892e-03
   2  p1          -5.99352e-02   3.98839e-01   4.96849e-04   5.21778e-04
 
   1  p0           1.56694e-01   3.61020e-02   4.43406e-05  -8.89337e-03
   2  p1          -2.56722e-01   3.86908e-01   4.76556e-04   7.28503e-04

------------------------------------------------------------------------------

xB bins:

  EXT PARAMETER                                           STEP         FIRST   
  NO.   NAME      VALUE            ERROR          SIZE      DERIVATIVE 
   1  p0           1.06571e-01   2.46824e-02   2.79274e-05   3.21506e-04
   2  p1           1.67206e-01   4.32436e-01   4.89767e-04   6.19943e-04

   1  p0           1.56996e-01   2.84421e-02   3.91407e-05   3.14828e-02
   2  p1           4.01100e-01   4.35838e-01   6.05845e-04  -1.74217e-04

   1  p0           1.62795e-01   3.24642e-02   4.72162e-05  -1.68329e-03
   2  p1           6.73701e-02   3.34978e-01   4.87360e-04   1.54408e-04
 
   1  p0           1.50467e-01   4.84699e-02   2.15941e-05   1.36698e-02
   2  p1          -4.29531e-01   3.13659e-01   1.38203e-04  -4.00935e-03



Beam-spin asymmetry uncertainties (1/2) 

◊ Statistical uncertainty: 

◊ Systematic uncertainties: Most of the experimental systematic uncertainties, such as efficiences and
                                                normalizations, cancel in the asymmetry ratio. Nevertheless, some 
                                                sources still induce some uncertainties:

       → DVCS selection cuts: Fix all the exclusivity cuts except one

       → Background subtraction: - Use two generating models to calculate R(1γ/2γ) 
                                                    - Repeat the analysis by ±20% on R(1γ/2γ)
                                                 
                                                       ⇒   Coherent (Incoherent) uncertainty is 0.6% (2.0%)
                                 
                                             

⇒ The maximum variation in the coherent (incoherent) ALU is 3.7% (4.0%)   



Beam-spin asymmetry uncertainties (2/2) 

       → Beam polarization: The precision of the Hall-B Møller polarimeter is 3.5 % [1] which is induced
                                            as systematic uncertainty on the measured ALU. 

       → Radiative corrections: Anderi Afanasev and his collaborators performed one-loop
                                                electromagnetic corrections on the outgoing DVCS electron [2]. 
                                                As a result, they found that the induced ALU does not exceed 0.1%
                                                at 4.25 GeV electron beam energy and Q²=1.25 GeV².

                                 
                                             

[1] J. M. Grames et al., Phys. Rev. Spec. TOPICS - Accelerators and Beams, Vol.7 , 042802, 2004.
[2] A.V. Afanasev, M.I. Konchatnij, and N.P. Merenkov, . arXiv:hep-ph/050709v1, 2005.

Þ  Total relative systematic uncertainities: 

These experimental uncertainties are involved 
in our asymmetries and will propagate into the extracted CFFs
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