

Deeply Virtual Compton Scattering off ⁴He

M. Hattawy

(On behalf of the CLAS collaboration)

New Directions in Nuclear Deep Inelastic Scattering

ETC*: 08 – 12 June 2015, Trento, Italy

Outline

- ☐ Physics motivations.
- ☐ CLAS-E08-24 experiment @ JLab.
- **□ DVCS analysis techniques.**
- □ Results, conclusions and perspectives.

DVCS off nuclei

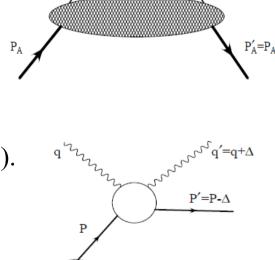
Two DVCS channels are accessible with nuclear targets:

\Diamond Coherent DVCS: e⁻A→e⁻ A γ

- → Study the partonic structure of the nucleus.
- \rightarrow One chiral-even GPD (**H**_A) is needed to parametrize the structure of the spinless nuclei (4 He, 12 C, 16 O, ...).

♦ InCoherent DVCS: e⁻A→e⁻NX γ

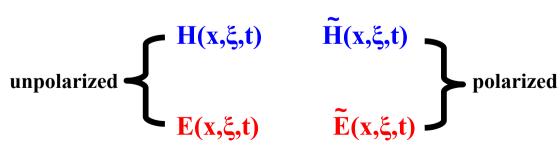
- → The nucleus breaks and the DVCS takes place on a nucleon.
- → Study the partonic structure of the bound nucleons (4 chiral-even GPDs are needed to parametrize their structure).



 P_{A-1}

P

conserve nucleon spin



flip nucleon spin

 $P'=P-\Lambda$

Nuclear spin-zero DVCS observables

The GPD H_A parametrizes the structure of the spinless nuclei (⁴He, ¹²C ...)

$$\mathcal{H}_{A}(\xi,t) = Re(\mathcal{H}_{A}(\xi,t)) - i\pi Im(\mathcal{H}_{A}(\xi,t))$$

$$Im(\mathcal{H}_{A}(\xi,t)) = H_{A}(\xi,\xi,t) - H_{A}(-\xi,\xi,t)$$

$$Re(\mathcal{H}_{A}(\xi,t)) = \mathcal{P} \int_{0}^{1} dx [H_{A}(x,\xi,t) - H_{A}(-x,\xi,t)] C^{+}(x,\xi)$$
Quark propagator
$$C^{+}(x,\xi) = \frac{1}{x-\xi} + \frac{1}{x+\xi}$$

 $\Diamond A_{LU}(\phi)$ is mostly sensitive to $Im(H_A)$: (+/- beam helicity)

$$A_{LU}(\phi) = \frac{1}{P_B} \frac{N^+ - N^-}{N^+ + N^-}$$

$$= \frac{\alpha_0(\phi) * Im(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi)Re(\mathcal{H}_A) + \alpha_3(\phi)(Im(\mathcal{H}_A)^2 + Re(\mathcal{H}_A)^2)}$$

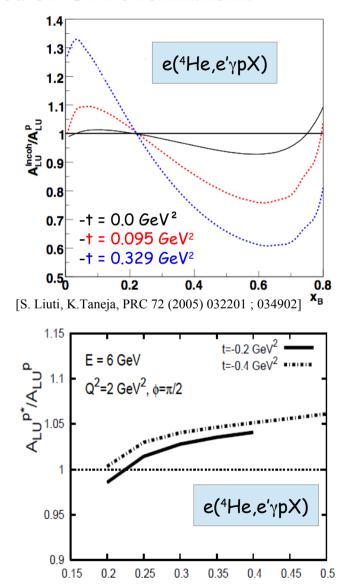
 \Diamond $A_{C}(\phi)$ is mostly sensitive to $Re(H_{A})$: (unpolarized leptons of opposite charges on unpolarized target)

$$A_C(\phi) = \frac{N^+ - N^-}{N^+ + N^-} \propto \frac{-\cos(\phi) * Re(\mathcal{H}_A)}{F_A^{e.m}(t)}$$

leptonic plane

EMC: Helium-4 (2/2)

- Theoretical predictions of the EMC in ⁴He, based on GPDs formalism.

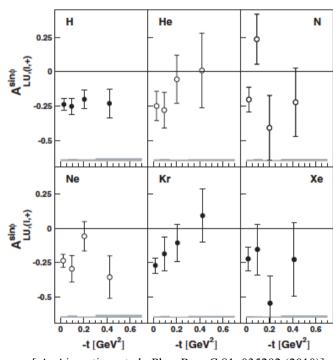


[V. Guzey, A.W. Thomas, K. Tsushima,

PLB 673 (2009) 9; PRC 79 (2009) 055205]

- Inclusive measurements of nuclear DVCS @ HERMES

$$A_{LU}^{sin} = \frac{1}{\pi} \int_0^{2\pi} d\phi \sin \phi \, A_{LU}(\phi)$$



[A. Airapetian, et al., Phys Rev. C 81, 035202 (2010)]

In CLAS- E08-024, we measure EXCLUSIVE coherent and incoherent DVCS channels off ⁴He

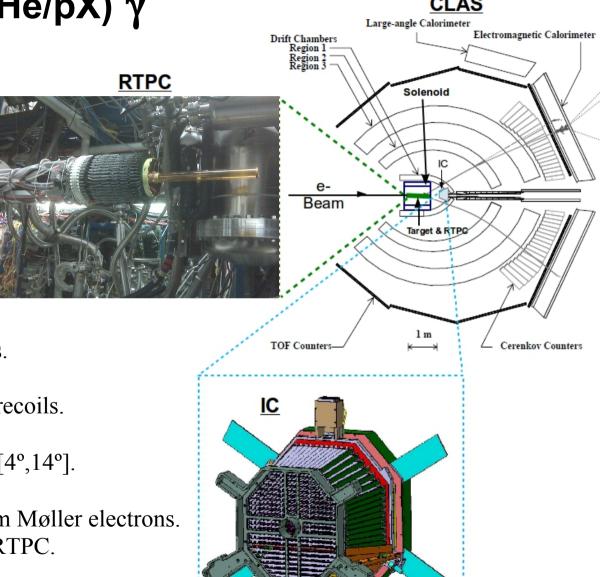
CLAS - E08-024 experimental setup

 $e^{-4}He \rightarrow e^{-} (^{4}He/pX) \gamma$

6 GeV, L. polarized

Beam polarization $(P_B) = 83\%$

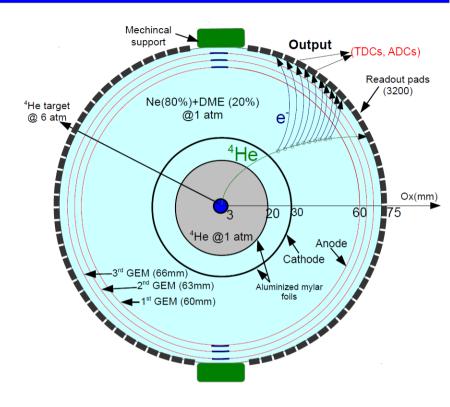
- CLAS:
 - → Superconducting Torus magnet.
 - \rightarrow 6 independent sectors:
 - → DCs track charged particles.
 - \rightarrow CCs separate e⁻/ π ⁻.
 - \rightarrow ECs detect γ , e and n [8°,45°].
 - → TOF Counters identify hadrons.
- RTPC: Detects low energy nuclear recoils.
- **IC:** Improves γ detection acceptance [4°,14°].
- Solenoid: Shields the detectors from Møller electrons.
 - Enables tracking in the RTPC.
- **Target:** ⁴He gas @ 6 atm, 293 K



RTPC

- Design:

- ♦ 80% azimuthal coverage
- ♦ 200 mm long, 15 mm Ø
- ♦ 2 gas gaps to reduce the noise
- ♦ 27 µm cathode foil @ 4.3 kV
- ♦ 30 mm drift region, Ne-DME mixture (80%-20%), ② 1 atm, uniform $|\vec{E}| = 500 \text{ V/cm}$, $|\vec{B}| = 4 \text{ T}$
- ♦ 3 GEMs layers, gain of 1000/layer
- ♦ 3200 readout elements



- Work principle:

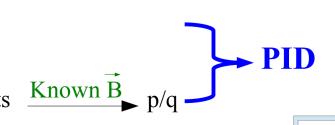
Charged particle ionizes the gas atoms

- → Under E effect, released electrons follows their drift paths at a certain drift speed
 - → Amplifications via the 3 GEM layers
 - → Readout board, record electrons' charges (ADCs units) in time bins (TDCs units).

- Offline reconstruction:

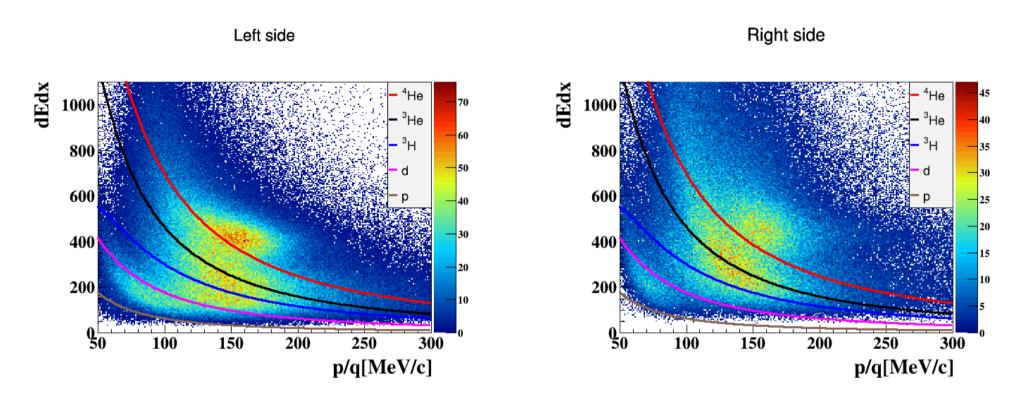
ADCs
$$\frac{\text{Pads' gains }(G_i)}{}$$
 $> \left\langle \frac{dE}{dX} \right\rangle = \frac{\sum_{i} \frac{ADC_i}{G_i}}{vtl}$

TDCs Drift speed and paths Reconstructing chains of hits Known B



RTPC: gains calibration (2/2)

ightharpoonup dEdx_{exp.} vs. p/q for all the tracks in the RTPC:

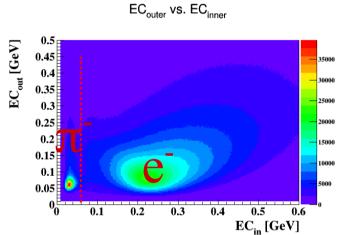


We see separation between the different recoils

PID @ 6 GeV beam energy

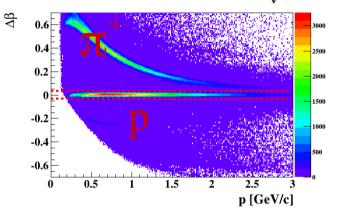
- ► In CLAS, the e⁻ triggers the DAQ system to record other particles in coincidence.

 We request a set of criteria to identify the electrons and to ensure their detection quality:
 - Vertex cut.
 - Fiducial cuts.
 - EC energy cut
 - Nphe in the CCs.



- ▶ Proton selection:
 - Vertex cut.
 - Fiducial cuts.
 - Vertex correspondence.
 - Velocity cut $(\Delta \beta)$:

$$\Delta \beta = \beta_{SC} - \beta_{DC} = \frac{l_{track}}{t_{TOF}} - \frac{p}{\sqrt{p^2 + m_p^2}}$$



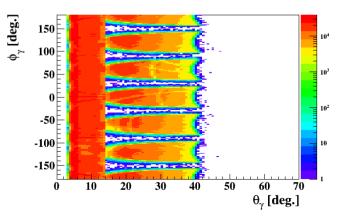
▶ Photon selection ($E\gamma > 300 \text{ MeV}$):

IC photons $\theta[4^{\circ}, 14^{\circ}]$: - IC fiducial cut.

- Møller electrons cut.

EC photons $\theta[15^{\circ}, 45^{\circ}]$: - **EC** fiducial cut.

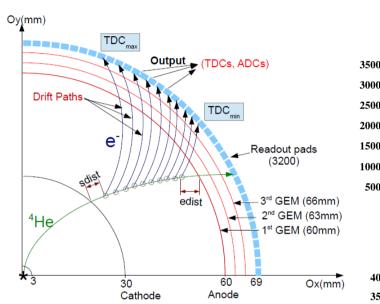
- Velocity cut.

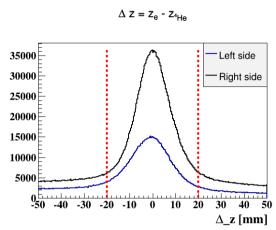


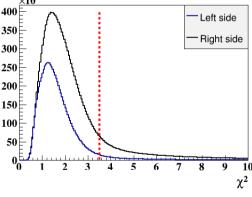
PID @ 6 GeV beam energy: Helium-4

▶ We apply a set of requirements on the RTPC tracks to select the good ones:

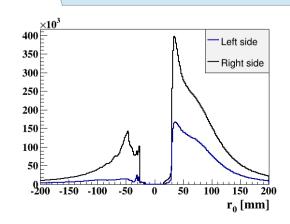
- Hits from more than 4 pads
- Positive curvature
- How far the 1st ionization (sdist)
- How far the last ionization (edist)
- Helix fit quality (χ^2)
- Vertex correspondence (Δz)

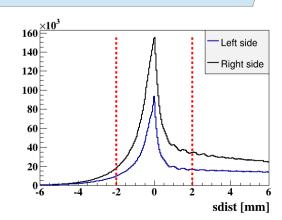


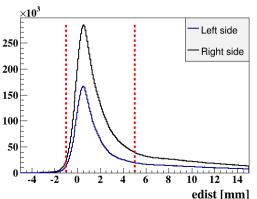




The two modules of the RTPC have different levels of performance



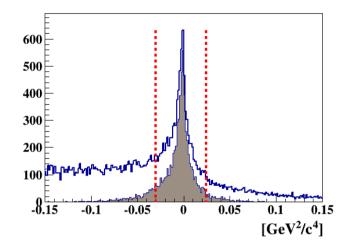




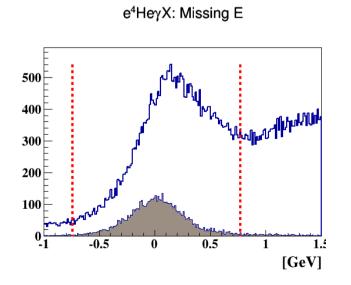
DVCS events selection (1/2)

We select **COHERENT** events which have:

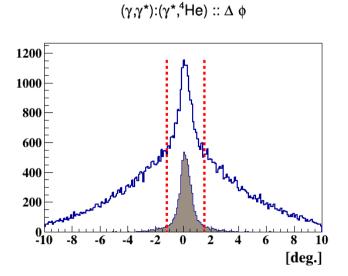
- ♦ Only one good electron, at least one photon and only one good ⁴He.
- $\Diamond E\gamma > 2 \text{ GeV}, W > 2 \text{ GeV/c}^2, (E_b-E_{e'})/E_b < 0.85 \text{ and } Q^2 > 1 \text{ GeV}^2.$
- ♦ Exclusivity cuts (3 sigmas).
 - In BLUE, coherent events before all exclusivity cuts.
 - In shaded BROWN, coherent DVCS events which pass all the other exclusivity cuts except the ONE ON the quantity itself.



e⁴HeyX: Missing M²



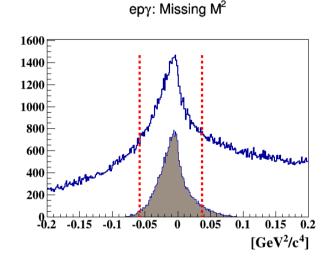


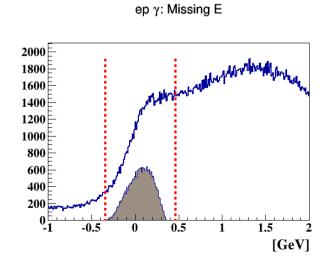


DVCS events selection (2/2)

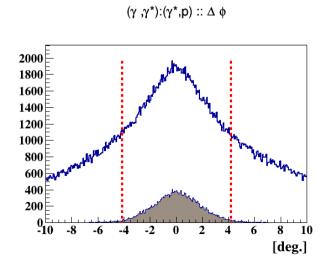
We select **INCOHERENT** events which have:

- ♦ Only one good electron, at least one photon and only one good p.
- $\Diamond E\gamma > 2 \text{ GeV}, W > 2 \text{ GeV/c}^2, (E_b-E_{e'})/E_b < 0.85 \text{ and } Q^2 > 1 \text{ GeV}^2.$
- ♦ Exclusivity cuts (3 sigmas).
 - In BLUE, incoherent events before all exclusivity cuts.
 - In shaded BROWN, incoherent DVCS events which pass all the other exclusivity cuts except the ONE ON the quantity itself.









Monte Carlo simulation (1/2)

We use Monte Carlo for two goals:

- Understanding the behavior of each particle type within our detectors
- Calculate the acceptance ratio for the purpose of the DVCS background subtraction

♦ Simulation stages:

- Event generator: Events are generated in the measured phase-space $(Q^2, x_B, -t, \phi_h)$ following this parametrization of the cross section:

$$\frac{d^4\sigma}{dQ^2 dx_B dt d\phi_h} \propto \left(\frac{Q_0^2}{Q^2}\right)^{\alpha} * \frac{1}{1 + (\frac{x_B - x_c}{c})^2} * \frac{1}{(1 + bt)^{\beta}} * (1 - d(1 - \cos(\phi_h)).$$

Evolution in Q^2 , $Q^2_0 = 1 \text{ GeV}^2$

Reproduces the PDFs shape in the valence region

Corresponds to parametrization of the ⁴He(p) FFs

The dependence on A_{h} (DVCS, BH, π^{0})

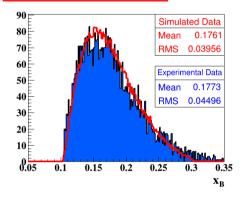
- Simulation (GSIM): GEANT3, describes the detectors' response to the different particles.
- Smearing (GPP): Makes the simulation more realistic by smearing the positions, energy and time.
- Reconstruction (RECSIS): (ADCs, TDCs) → physical quantities.

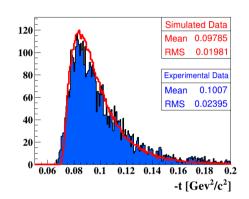
Monte Carlo simulation: Comparison with data (2/2)

- Apply the same DVCS criteria on the simulated data with an equivalent exclusive cuts.

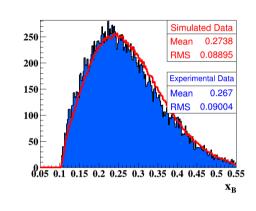
Coherent DVCS

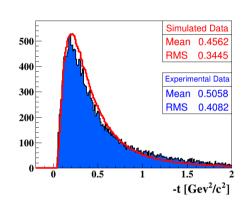
* In terms of the kinematics



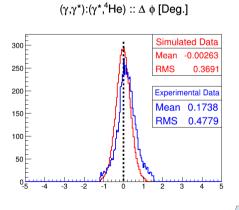


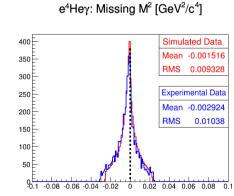
Incoherent DVCS

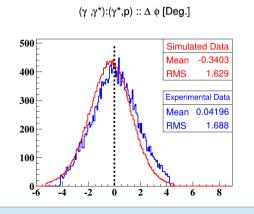


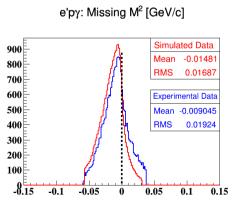


* In terms of the exclusivity variables









Adequate agreement between data and simulation

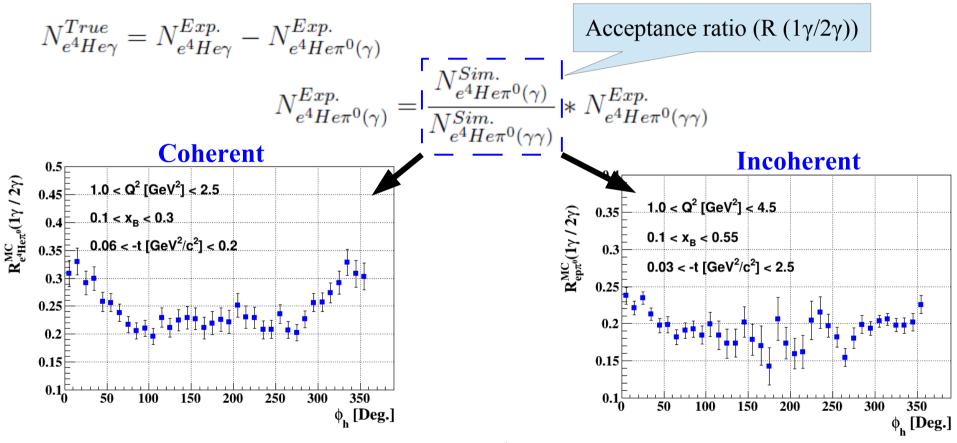
Background subtraction

 \Diamond With our kinematics, the main background comes from the exclusive π^0 channel,

$$e^4He \rightarrow e^4He\pi^0 \rightarrow e^4He\gamma\gamma$$
 $ep \rightarrow ep\pi^0 \rightarrow ep\gamma\gamma$

in which one photon from π^0 decay is detected and passes the DVCS selection.

 \diamond We combine real data with simulation to compute the contamination of π^0 to DVCS.



 \Diamond Background yield ratio \sim 2-4% (8-11%) in e^{-4} He γ (e^{-} p γ) DVCS channel.

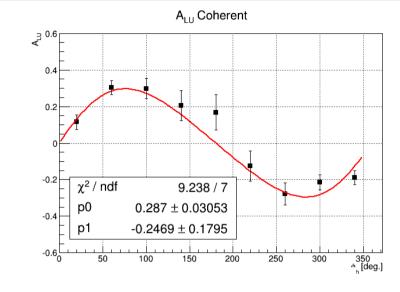
Coherent beam-spin asymmetries

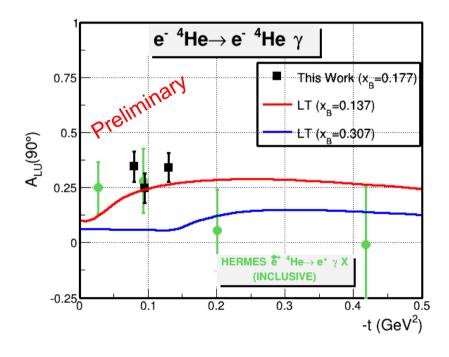
→ Probed coherent kinematical regions:

$$0.06 < -t < 0.2 \rightarrow <-t> = 0.10 [GeV^2]$$

 $1.0 < Q^2 < 2.5 \rightarrow = 1.49 [GeV^2]$
 $0.1 < x_B < 0.3 \rightarrow = 0.18$

- Due to statistical constraints, we constructed 2D bins -t or x_B or Q^2 versus φ
- Fit A_{LU} : $p_0 * \sin(\phi) / (1 + p_1 * \cos(\phi))$







- [1] LT: S. Liuti and S. K. Taneja. Phys. Rev., C72:032201, 2005.
- [2] A. Airapetian, et al., Phys Rev. C 81, 035202 (2010).

Helium-4 Compton form factor

$$A_{LU}(\phi) = \frac{\alpha_0(\phi) * Im(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi)Re(\mathcal{H}_A) + \alpha_3(\phi)(Im(\mathcal{H}_A)^2 + Re(\mathcal{H}_A)^2)}$$

$$\alpha_0 \sim 10^{-2}, \ \alpha_1 \sim 1, \ \alpha_2 \sim 10^{-2}, \ |\alpha_3 \sim 10^{-4}|$$
 Suppressed by 2 orders of magnitude

$$\alpha_0(\phi) = a \sin(\phi)$$

$$\alpha_1(\phi) = b + c \cos(\phi) + d \cos(2\phi)$$

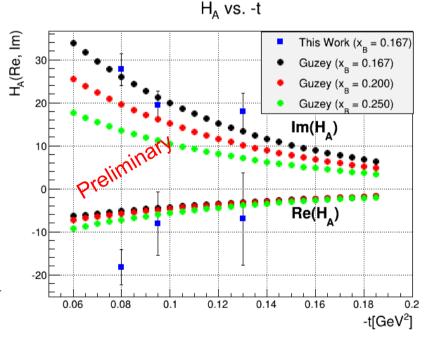
$$\alpha_2(\phi) = h + f \cos(\phi)$$

- Using the kinematical calculable factors (a, b, c, h and f) and the fitted coherent ALU @ 90° vs. <-t>

$$p_0*\sin(\phi)/(1+p_1*\cos(\phi))$$

→ Extracted the real and the imaginary parts of the Compton form factor.

Expected to be small magnitude



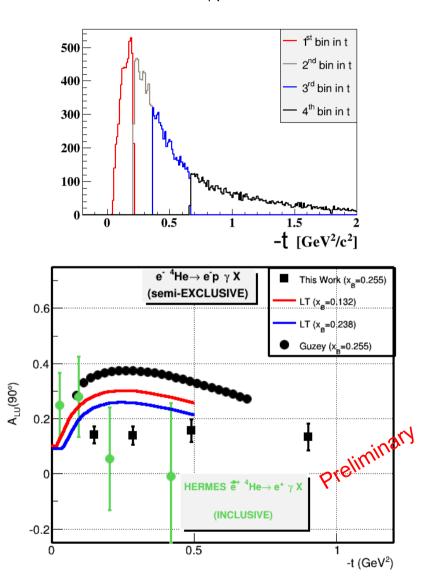
- We have "significant" trends with t and xB as well.

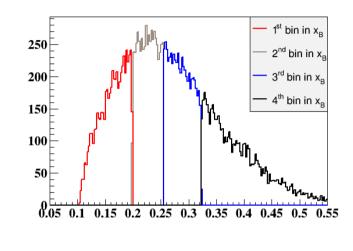
Incoherent beam-spin asymmetries

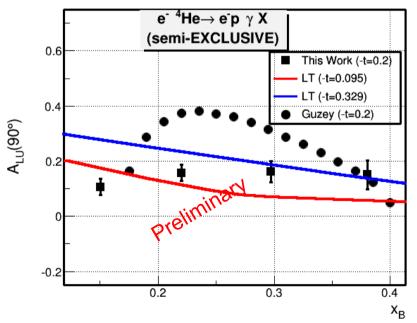
 \Diamond Probed kinematical regions: $1.0 < Q^2 < 4.5 \text{ [GeV}^2\text{]} \rightarrow <Q^2 > = 2.20 \text{ [GeV}^2\text{]}$

-t of epy events

 x_B of epy events



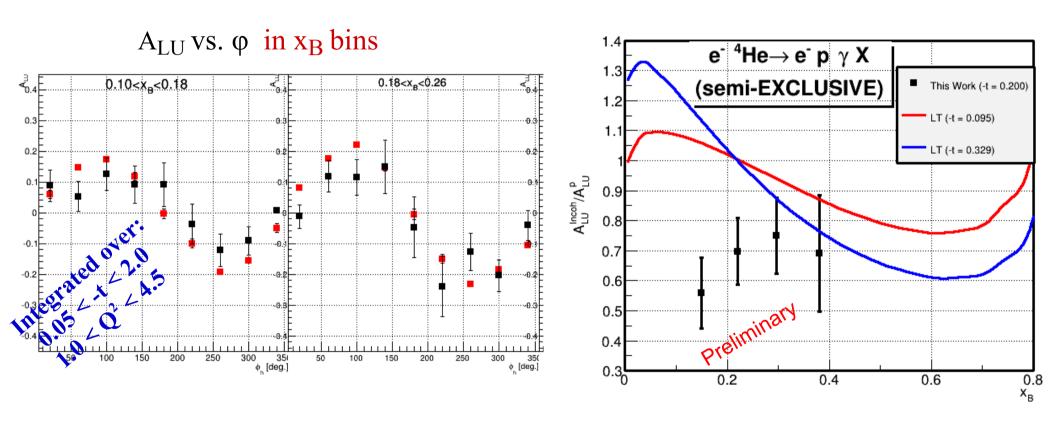




- [1] LT: S. Liuti and S. K. Taneja. Phys. Rev., C72:032201, 2005.
- [2] A. Airapetian, et al., Phys Rev. C 81, 035202 (2010).

EMC ratio (1/3)

♦ We compared our measured incoherent asymmetries (Black points) with the asymmetries measured in CLAS DVCS experiment on the proton (Red Points).

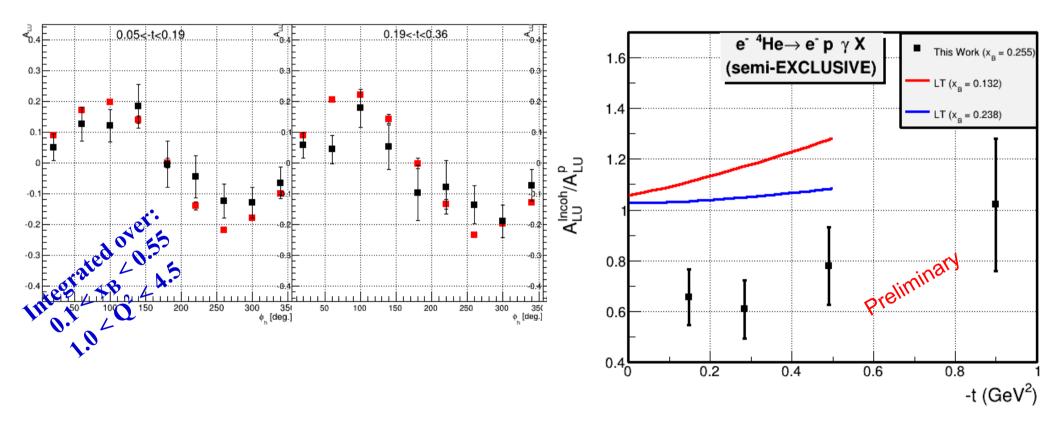


 \Diamond The bound proton shows a lower asymmetry relative the free one in the different bins in $x_{_{\rm R}}$.

EMC ratio (2/3)

♦ Black points: Our measured incoherent asymmetries

Red Points: The asymmetries measured in CLAS DVCS experiment on the proton (e1-dvcs)



- ♦ At small -t, the bound proton shows lower asymmetry than the free one.
- ♦ At high -t, the two asymmetries are compatible.

EMC ratio (3/3)

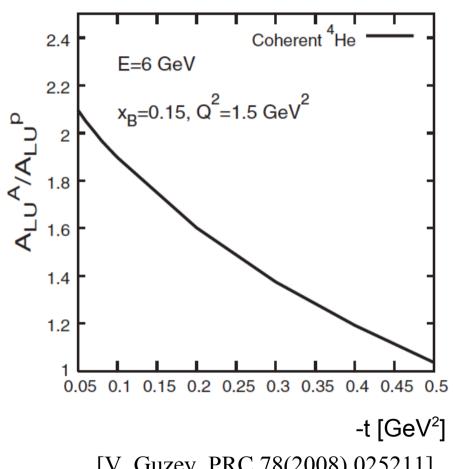
♦ Comparing the coherent asymmetry to the free proton's asymmetry:

$$<-t> = 0.13 [GeV^2]$$

 $= 1.49 [GeV^2]$
 $= 0.16$

$$< A_{LU}^{4He}/A_{LU}^{p}> = 0.34/0.21 = 1.6$$

Consistent with the enhancement suggested by the Impulse Approximation Model of Vadim Guzey



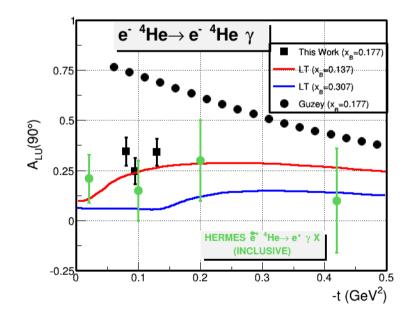
[V. Guzey, PRC 78(2008) 025211]

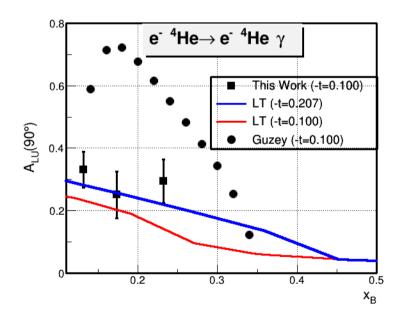
Conclusions

- ♦ The exclusive DVCS off ⁴He was measured for the first time with our experiment
- ♦ Preliminary asymmetries were extracted and compared with theoretical predictions
- ♦ With our available statistics, the bound proton has shown a different trend compared to the free one
- ♦ Perspectives:
 - → Final results soon
 - → Proposing a new ⁴He DVCS experiment with JLab upgrade.

Thanks for your attention

Backup slides



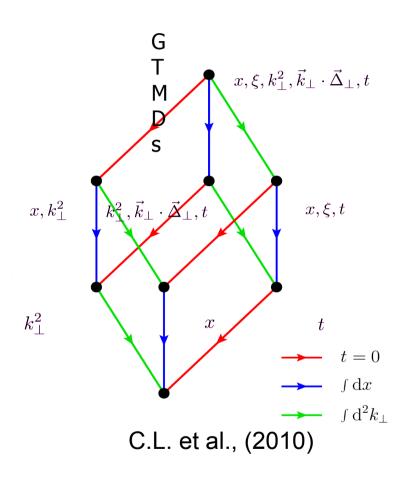


Hadronic structure functions (3/3)

Structure functions that quantify the properties of the partons in a hadron:

- Form Factors (FFs)
- Parton Distribution Functions (PDFs)
- Transverse Momentum Distributions (TMDs)
- Generalized Parton Distributions (GPDs)
- Generalized Transverse Momentum Distributions (GTMDs)
 - → Most general functions that describe the proton structure in 5 dimensions.
 - \rightarrow Connected to the so-called Wigner distributions via 2D Fourier transform over Δ .

See A. V. Belitsky, X. Ji, F. Yuan; Phys. Rev. D 69 (2004) 074014.

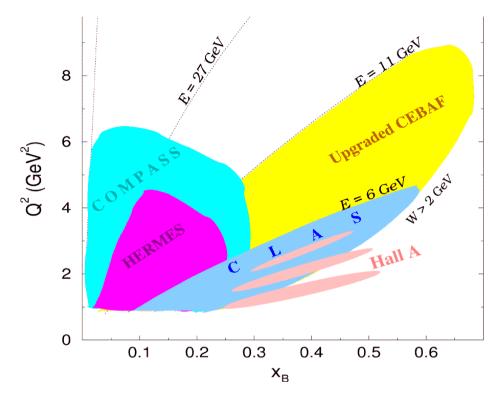


x : Parton's longitudinal momentum

k_L: Parton's transverse momentum

 Δ : Momentum transfer to the nucleon

DVCS experiments worldwide



JLAB			
Hall A Hall B			
p,n-DVCS: (pol.) X-sec	p-DVCS: BSA,LTSA, DSA, X-sec Helium-4: BSA		

CERN		
COMPASS		
p-DVCS: X-sec,BSA,BCA, tTSA,lTSA,DSA		

DESY				
HERMES	H1/ZEUS			
p-DVCS BSA,BCA, TTSA, LTSA,DSA	p-DVCS X-sec,BCA			

Promising future experiments with JLab upgrade and COMPASSII

Nucleon DVCS spin observables

$$Re\mathcal{H}(\xi,t) = \mathcal{P} \int_{-1}^{1} dx [H(x,\xi,t) - H(-x,\xi,t)] [C^{+}(x,\xi)]$$

$$Im\mathcal{H}(\xi,t) = H(\xi,\xi,t) - H(-\xi,\xi,t)$$

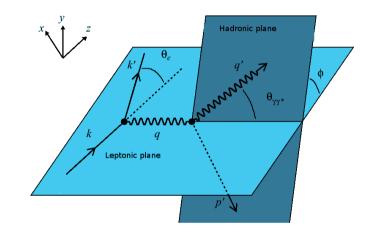
$$\mathcal{H}(\xi,t) = Re\mathcal{H}(\xi,t) - i\pi Im\mathcal{H}(\xi,t)$$

$$\sigma(x_{B},Q^{2},t,\phi_{h}) \sim |\mathcal{T}_{DVCS} + \mathcal{T}_{BH}|^{2}$$

$$\Delta\sigma(x_{B},Q^{2},t,\phi_{h}) = \sigma^{+} - \sigma^{-}$$

$$A(x_{B},Q^{2},t,\phi_{h}) = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}$$

$$C^{+}(x,\xi) = \frac{1}{x-\xi} + \frac{1}{x+\xi}$$



- L polarized beam, Unpolarized target
- Unpolarized beam, L polarized target
- Unpolarized beam, T polarized target
- L polarized beam, L polarized target

Observable	proton	neutron
$\Delta \sigma_{LU}$	$Im\left\{\mathcal{H}_p,\widetilde{\mathcal{H}}_p,\mathcal{E}_p ight\}$	$Im\left\{\mathcal{H}_n,\widetilde{\mathcal{H}}_n,\mathcal{E}_n\right\}$
$\Delta \sigma_{UL}$	$Im\left\{\mathcal{H}_p,\widetilde{\mathcal{H}}_p ight\}$	$Im\left\{\mathcal{H}_n,\mathcal{E}_n,\widetilde{\mathcal{E}}_n\right\}$
$\Delta \sigma_{UT}$	$Im\left\{\mathcal{H}_p,\mathcal{E}_p\right\}$	$Im\left\{\mathcal{H}_{n}\right\}$
$\Delta \sigma_{LL}$	$Re\left\{\mathcal{H}_{p},\widetilde{\mathcal{H}}_{p}\right\}$	$Re\left\{\mathcal{H}_n, \mathcal{E}_n, \widetilde{\mathcal{E}}_n\right\}$

$\alpha_i(\varphi)$ coefficients appearing in the BSA expression

$$\alpha_{0}(\phi) = 8 K x_{A} (1 + \epsilon^{2})^{2} (2 - y) F_{A} \sin(\phi)$$

$$\alpha_{1}(\phi) = c_{0}^{BH} + c_{1}^{BH} \cos(\phi) + c_{2}^{BH} \cos(2\phi)$$

$$\alpha_{2}(\phi) = 8 \frac{x_{A}}{y} (1 + \epsilon^{2})^{2} F_{A} \left[K(2y - y^{2} - 2) \cos(\phi) - (2 - y) (\frac{t}{Q^{2}}) \left((2 - x_{A})(1 - y) - (1 - x_{A})(2 - y)^{2} (1 - \frac{t_{min}}{Q^{2}}) \right) \right]$$

$$\alpha_{3}(\phi) = 2 \frac{x_{A}^{2} t}{Q^{2}} (2 - 2y + y^{2}) (1 + \epsilon^{2})^{2} \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)$$

♦ The Fourier coefficients of the BH amplitude for a spin-0 target can be expressed as:

$$\begin{split} c_0^{BH} &= \left[\left\{ (2-y)^2 + y^2 (1+\epsilon^2)^2 \right\} \left\{ \frac{\epsilon^2 Q^2}{t} + 4(1-x_A) + (4x_A + \epsilon^2) \frac{t}{Q^2} \right\} \right. \\ &\quad + 2\epsilon^2 \left\{ 4(1-y)(3+2\epsilon^2) + y^2 (2-\epsilon^4) \right\} - 4x_A^2 (2-y)^2 (2+\epsilon^2) \frac{t}{Q^2} \\ &\quad + 8K^2 \frac{\epsilon^2 Q^2}{t} \right] F_A^2, \\ c_1^{BH} &= -8(2-y)K \left\{ 2x_A + \epsilon^2 - \frac{\epsilon^2 Q^2}{t} \right\} F_A^2, \\ c_2^{BH} &= 8K^2 \frac{\epsilon^2 Q^2}{t} F_A^2, \end{split}$$

The correlation matrix between coherent fit parameters

-t bin:

EXT	PARAMETER		STEP	FIRST
NO.	NAME VALUE	ERROR	R SIZE	DERIVATIVE
1 p0	3.44813e-01	5.62771e-02	6.48807e-05	-4.44260e-04
2 p1	-3.50787e-02	3.29259e-01	3.79811e-04	5.27253e-05
1 p0		5.76178e-02		
2 p1	-4.63055e-01	2.50428e-01	1.73172e-04	-6.46587e-05
1 p0	3.41273e-01	5.44831e-02	7.49783e-05	-9.17018e-04
2 p1	-1.65254e-02	2.87350e-01	3.95405e-04	1.63433e-04

x_B bins:

EXT PARA	METER		STEP	FIRST
NO. NAM	ME VALUE	ERROI	R SIZE	DERIVATIVE
1 p0	3.31482e-01	4.67747e-02	7.80803e-05	-5.92762e-03
2 p1	1.30716e-01	2.73364e-01	4.55543e-04	4.38945e-04
•				
1 p0	2.51482e-01	6.59560e-02	3.80359e-05	-1.00104e-02
2 p1	-5.38260e-01	2.61527e-01	1.50322e-04	1.58311e-03
1				
1 p0	2.95191e-01	6.66935e-02	5.95809e-05	4.84575e-04
2 p1	-2.47236e-01	2.96955e-01	2.65219e-04	-2.07350e-05

The correlation matrix between incoherent fit parameters

-t bin:

EXT I	PARAME	ΓER		STEP	FIRST
NO.	NAME	VALUE	ERROI	R SIZE	DERIVATIVE
1 p() 1.4	41307e-01	2.68771e-02	2.33962e-05	6.11524e-06
2 p1	-4 .	59316e-02	4.33266e-01	3.77153e-04	-4.67165e-08
1 p(-5.69892e-03
2 p1	-5.	99352e-02	3.98839e-01	4.96849e-04	5.21778e-04
1 p0 2 p1					-8.89337e-03 7.28503e-04

x_B bins:

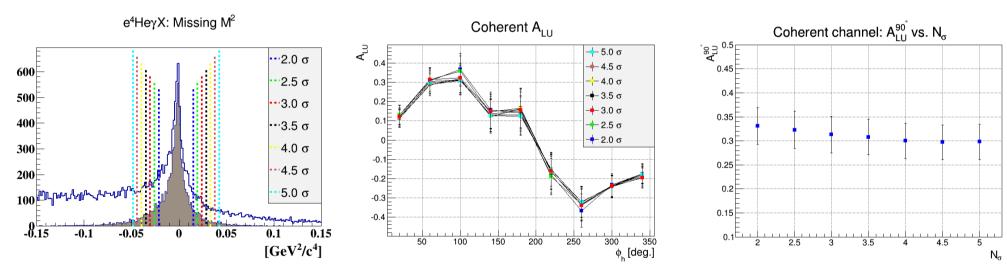
1 p0	IE VALUE 1.06571e-01	2.46824e-02	2.79274e-05	
2 p1 1 p0 2 p1		2.84421e-02 4.35838e-01	3.91407e-05	3.14828e-02
1 p0 2 p1		3.24642e-02 3.34978e-01		
1 p0 2 p1	1.50467e-01 -4.29531e-01	4.84699e-02 3.13659e-01		

Beam-spin asymmetry uncertainties (1/2)

$$\Diamond$$
 Statistical uncertainty: $\Delta A_{LU}^{stat} = \frac{1}{P_B} \sqrt{\frac{1 - (P_B A_{LU})^2}{N^+ - N^-}}$

♦ Systematic uncertainties: Most of the experimental systematic uncertainties, such as efficiences and normalizations, cancel in the asymmetry ratio. Nevertheless, some sources still induce some uncertainties:

→ DVCS selection cuts: Fix all the exclusivity cuts except one



- \Rightarrow ..he maximum variation in the coherent (incoherent) A_{LU} is 3.7% (4.0%)
- \rightarrow Background subtraction: Use two generating models to calculate R(1 γ /2 γ)
 - Repeat the analysis by $\pm 20\%$ on R($1\gamma/2\gamma$)
 - \Rightarrow Coherent (Incoherent) uncertainty is 0.6% (2.0%)

Beam-spin asymmetry uncertainties (2/2)

- Beam polarization: The precision of the Hall-B Møller polarimeter is 3.5 % [1] which is induced as systematic uncertainty on the measured A_{LU} . $\left(\frac{\Delta A_{LU}^{sys.p}}{A_{LU}} = \frac{\Delta p}{p}\right)$
- \rightarrow Radiative corrections: Anderi Afanasev and his collaborators performed one-loop electromagnetic corrections on the outgoing DVCS electron [2]. As a result, they found that the induced A_{LU} does not exceed 0.1% at 4.25 GeV electron beam energy and $Q^2=1.25$ GeV².

☐ Total relative systematic uncertainities:

Systematic source	Coherent channel	Incoherent channel
DVCS cuts	4 %	3.7 %
Beam polarization	3.5%	3.5%
π^0 subtraction	0.6%	2.0%
Radiative corrections	0.1%	0.1%
Total	5.3%	5.5%

These experimental uncertainties are involved in our asymmetries and will propagate into the extracted CFFs

^[1] J. M. Grames et al., Phys. Rev. Spec. TOPICS - Accelerators and Beams, Vol.7, 042802, 2004.

^[2] A.V. Afanasev, M.I. Konchatnij, and N.P. Merenkov, arXiv:hep-ph/050709v1, 2005.