Jefferson Lab

Deeply Virtual Compton Scattering off ⁴He

Mohammad Hattawy (hattawy@ipno.in2p3.fr), Raphaël Dupré, Michel Guidal

IPN Orsay, CNRS-IN2P3, Université Paris-Sud, 91406 Orsay, France On behalf of the CLAS Collaboration

Physics Motivations

♦ Form Factors: → The quarks transverse spatial distributions

Jefferson National Accelerator Facility

- ♦ Parton Distribution Functions: → The quarks longitudinal momentum distributions
- **♦** Generalized Parton Distributions (GPDs):
 - Contain information on:
 - → Partons correlation
 - → Correlation between longitudinal momentum and transverse spatial position of partons
 - Accessed via exclusive processes:
 - → Deeply Virtual Compton Scattering (DVCS)
 - → Deeply Virtual Meson Production (DVMP)

From the theoretical point of view, the DVCS is considered the easiest way to access the GPDs

Deeply Virtual Compton Scattering

- → DVCS amplitude can be accessed in the Beam Spin Asymmetry (BSA) because it interfers with Bethe-Heitler (BH) process, where the real photon is emitted by the incoming or the outgoing electron.
- $\rightarrow d\sigma \propto |\tau_{\rm BH}|^2 + (\tau_{
 m DVCS}^* \tau_{
 m BH} + \tau_{
 m BH}^* \tau_{
 m DVCS}) + |\tau_{
 m DVCS}|^2$

DVCS off Nuclei

- ♦ Coherent DVCS: e A→e Aγ
- → Study the partonic structure of the nucleus.
- → 1 GPD is needed to parametrize the structure of the spinless nuclei (⁴He, ¹²C ...).
- ♦ InCoherent DVCS: e⁻A→e⁻NX γ
 - → The nucleus breaks and the DVCS takes place on a nucleon.
 - → Study the partonic structure of the bound nucleons (4 GPDs are needed).
 - → Study the medium modifications of the nucleons in terms of GPDs

E08-024 experiment, Hall B, JLab (Virginia, USA), 2009

- CLAS (4π detector):
 - - \rightarrow ECs detect γ , e and n [8°,45°].
 - → TOF Counters identify hadrons.
- RTPC: Detects low energy nuclei.
- IC: Improves γ detection acceptance [4°,14°]
- Solenoid: Shields the detectors from Moller electrons.
- Target: ⁴He gas @ 6 atm, 293 K

Particles identification and events selection

- DVCS events selection:

- → The good final state particles are identified: epy or e⁴Hey
- \rightarrow Reaction occured at the parton level (Q² > 1GeV²)
- \rightarrow Avoid the baryon resonances (W > 2 GeV/c²)
- \rightarrow High energetic real photon (E $\dot{\gamma} > 2$ GeV)
- \rightarrow Impose the conservation laws (3 σ exclusivity cuts)
 - In BLUE, events before all the exclusivity cuts.
 - In shaded BROWN, DVCS events which pass all the other exclusivity cuts except the ONE on the quantity itself.

Background subtraction and beam-spin asymmetry

- \Diamond The main background comes from the exclusive π^0 channel (e(4 He/p) π^0) in which one photon from π^0 decay is detected and passed the DVCS exclusivity cuts.
- \diamond We use Monte Carlo simulation to compute the contamination of π^0 .

Beam polarization $(P_B) = 83\%$ N⁺/N⁻: Number of events

with +/- beam helicity.

- Due to statistical constraints, we constructed 2D bins -t or x_B or Q^2 versus ϕ Fit A_{LU} signals: $p_0 * \sin(\phi) / (1 + p_1 * \cos(\phi))$
- Statistical errors ONLY are shown

Results, conclusions and perspectives

- ♦ The exclusive DVCS off ⁴He was measured for the first time with our experiment
- ♦ Preliminary asymmetries were extracted and compared with theoretical predictions
- ♦ With our available statistics, the bound proton has shown a different trend compared to the free one
- ♦ Perspectives:
 - → Final results soon
 - → Proposing a new ⁴He DVCS experiment with JLab upgrade.
- $e^{-4}He \rightarrow e^{-4}He \gamma$ This Work (x_B=0.177 — LT (x_B=0.137) — LT (x_B=0.307) -t (GeV²)

- [1] LT: S. Liuti and S. K. Taneia. Phys. Rev., C72:032201, 2005
- [2] GS: V. Guzey and M. Strikman. Phys. Rev., C68:015204, 2003.
 [3] HERMES: F. Ellinghaus, R. Shanidze, and J. Volmer. AIP Conf. Proc., 675:303–307, 2003.