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QCD and its shortcomings. Need different models for the
resonant region.

Spin of final state particles affected by resonances.
Polarization of initial spin states increase sensitivity.
7t~ channel why? stronger coupling?

Preceeding analyses dominated by single pion channels
and 1.7GeV two pion channel becomes dominant.
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Theory
F = (q v | T | kA\q) (1)
(@A 2| TIkAX1) <> Hay, (0) (2)

» a=1,...,4and \y = £1,0: X\ = 0 describes pseudo-scalar
photoproduction and results in the standard four

amplitudes.
4
[ Ha1 Hit Haoqy —Haq]
» The vector meson Hy  Hsi —Hi 1 Ho g
amplitude cI:an bg . ~ | Ho Hig —Hso Hao
expressed in helicity = | Hiw Hsy Hip  —Hag
space by the following Ho_1 Hi_1  Hs —Haq
matrix: |Hat Hs—y  —Hun Hay |




Generally spin observables,Q2 can be expressed as:
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Where the trace is over the helicity quantum numbers.
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Usually seen expressed as an asymmetry.
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So much for the beam asymmetry.



SDMEs

The helicity state is dependent on the spin-helicity relationship
and we need the SDM for the decaying vector meson which is
associated with the SDM of the photon:

p(V) = Tp() T (7)
o) =gl Py ®

Using the above relations.and the helicity-amplitude formalism
we can show the dependence of the polarisation vector P., of
the density matrix p(V):

3
p(V)=p°+ Y P3p° (©)
i=1

Where Pg are the components of the polarisation vector, P.,
and the p® are hermitian matrices.



SDMEs Resonance Dependency
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Angular Decay Distribution
The density matrix is related to the decay angular distribution:

W(cos 6, ¢) = Mp(V)MT (10)

M is the decay amplitude and 6 and ¢ are the polar and azimuthal
angles of the detected # in the helicity.frame. And so we get the
following for p°-meson decay distribution:

W(cos 0, ¢, p) = W°(cos b, ¢, p)— P, cos 20 W (cos 0, ¢, p)— P, sin 2d W?(cos 0, ¢, )

(11)
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WO(cos 8, ¢, p) = %(%(1 — ) + %(3;)80 “<1)cos? 0 — V2RepY, sin 20 cos ¢

—p9_,sin®dcos2¢

3 . . .
W'(cos 6, ¢, p) = 4—(;»]1 sin? ¢ + plocos? 0= v2plsin20 cos ¢ — pl_; sin® f cos 2¢)
™

W3(cos 6, ¢, p) = %(\@Impfo sin26'sin ¢ + Imp?_, sin® 9 sin 2¢)



To simplify our task we integrate over two of the angles to leave
us with a single angle function. We are left with the five
following equations:

W(cos0) = 11— o+ (s — 1)c0s®0] (12)
1
W(#) = 5-[1 — 2Rep} ycos2¢] (13)

W6~ @) = 5 [14Pylpl_y — Imf_y)c0s2(6— @) (14)

]
W(o+) = =1+ Py(pi_y + Imp3_y)cos2(¢ + @) (15)

’
W(®) = 5_[1 - P, (2p11 + pdo) COS 29 (16)



And what these distributions look like.
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Distributions for photoproduced ¢. T. Mibe et al, 2005
from Salamanca-Bernal thesis.



Experimental Details

v

Linearly polarized beam using the bremsstrahlung tagging
facility in Hall B: 70 -80%.

g8b data. Photon energy runs at
1300,1500,1700,1900,2100MeV.

Unpolarized 40cm hydrogen target: simplifies analysis.
Exclusive detection of all final state particles.
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Jefferson Lab and CEBAF

Continuous
Electron
Beam
Accelerator
Facility

E: 0.75 -6 GeV

1. 200RA

RF: 1499 MHz

Duty Cycle: 100%
(E)/E: 2.5x10%

Polarization: 80%

Simultaneous

distribution to 3
experimental Halls
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Photon Tagging Facility

tagged photon facility simulated coherent brem. spectrum - Beam energies of

1.3,1.5,1.71.9,2.1
GeV.

50um diamond
8 =12 rmrad
0, =117 mrad
Beam Energy = 4.4GeV

chamber  tagger collimator

goniometer, polarised photon peak

diamond

* Polarization ~70-
80%

collimated
uncollimated

coherent % incoherent

photon energy (GeV)



CEBAF Large Acceptance Detector

Torus Magnet Electromagnetic Calorimeter
6 Superconductive Coils lead/plastic scintillator, 1296 PMTs

Jefferson Lab
CLAS Detector

Target +
vy start

counter e
mini-torus

Drift Chamber

35,000 cells Cherenkov Counter

Time of Flight 548/ separation, 256 PMTs

Plastic Scintillator, 6
PMTs




Particle Identification Stage

v

First stage is to identify charged particles and remove all
events with less than two charged particles.

This means we can have more than one topology: e.g. 7™ p
Fudicial cuts around the regions near the torus coils.
Momentum and energy loss corrections.

Then apply cuts such as missing mass cuts.
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Z Vertex and Production Angle Cuts
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Timing Cuts: Momentum Dependent

ProtonMom_TgammaCut
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Missing mass for exclusive topology
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Then we split the events into kinematic bins: W and cos 6.
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P> Cantry and
separate other
contributions to
the final state.

> Eg attis
produced with a
negative pion.

P Reconstruct it
the same as with
the two pions for
the p0.

P Separate using
Dalitz plots. Not
necessarily
viable for every
kinematic bin.
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Delta dalitz plots for different W ranges
DELTA++
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p° Signal Extraction
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Currently using a binned fit but it isn’t robust enough over all
kinematic bins.
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p° Signal Extraction
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W (2.07 to 2.23GeV).




Asymmetry Extraction
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» Systematics of detector acceptance cancel out.
» Only need to know Pj,.



PI_PI_INVM_W_2p150_2p160_CTheta_0p67_0p48
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> Yield not
equal for
PARA and
PERP.

» Photon
polarization
not equal.

» Small
offset left
as free
parameter.






Dilution Factor
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Checking what is considered background doesn’t have a
contribution to the asymmetry.



Dilution Factor
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Checking what is considered background doesn’t have a
contribution to the asymmetry.
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Extracted ©
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Summary

» Managed to extract beam asymmetry for one beam energy
setting with a non-trivail form.

» Fitting for extracting the p° signal still needs work.

» Hope to use simulated data to describe the shape of the
bcg contribution to aid fit (phase space and deltas
projection).

» Need to finish acceptance correction in order to extract the
SDMEs.

» Also working on the simulation for that purpose.
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