

<u>Hyperon Photoproduction</u>: What Has Been Learned at Jefferson Lab?

Reinhard Schumacher Carnegie Mellon University

for the CLAS & GlueX Collaborations

May 20, 2015, CIPANP, Vail, Colorado

Outline /Overview

- Strangeness and the N* spectrum of states
 - Λ & Σ photo- and electro-production spin observables
- Dimensional scaling of $K\Lambda$ photoproduction
 - Constituent-counting rule supported
- Excited Y* cross sections measured at CLAS
 - $\Sigma^{0}(1385)$ (J^P = 3/2⁺); $\Lambda(1405)$ (J^P = 1/2⁻); $\Lambda(1520)$ (J^P = 3/2⁻)
- Structure of the $\Lambda(1405)$: $\Sigma \pi$ line shapes; J^{P}
 - Support for chiral unitary models: 2-pole structure
- Strangeness suppression in exclusive electroproduction
 - Low and high energy reactions similar behavior
- Outlook at GlueX and CLAS12

apacity

- add arc upgrade magnets and power supplies 5 new cryomodules
- Most Y, Y* publications from Hall B
 - Upgrading as CLAS12 for 12 GeV

upgrade.

existing Halls

CLAS Experiment

Photoproduction:

Targets: unpolarized LH₂, polarized p, & HD-ice Beams: unpolarized, circular, linear, to ~5 GeV • Reconstructed $K^+p\pi^-(\pi^0)$ or $K^+\pi^+\pi^-(n)$ • 20×10^9 triggers $\rightarrow 1.41 \times 10^6$ KY π events in g11a Electroproduction: Q² from ~0.5 to ~3 (GeV/c)² Structure functions from Rosenbluth and beamhelicity separations

Strangeness and the N* Spectrum of States - Photoproduction

Strangeness in N* Physics: Status

Table 8. Star rating suggested for baryon resonances and their decays. Ratings of the Particle Data Group are given as *; additional stars suggested from this analysis are represented by \star ; (*) stands for stars which should be removed.

										_
		all	πN	γN	$N\eta$	ΛK	ΣK	$\Delta \pi$	$N\sigma$	-
	$N(1440)\frac{1}{2}^+$	****	****	****	(*)			***	***	-
	$N(1710)\frac{1}{2}^+$	***	***	***	**★	***	**	*(*)		
	$N(1880)\frac{1}{2}^+$	**	*	*		**	*			
	$N(1535)\frac{1}{2}^{-}$	****	****	****	****			*		-
$S \rightarrow$	$N(1650)\frac{1}{2}^{-}$	****	****	***	***	***	**	**(*)		
J 11 ^r	$N(1895)\frac{1}{2}^{-}$	**	*	**	**	**	*			
	$N(1720)\frac{3}{2}^+$	****	****	****	****	**	**	***		-
D	$N(1900)\frac{3}{2}^+$	***	**	***	**	***	**	**		
1 3	$N(1520)\frac{3}{2}^{-}$	****	****	****	***			****		-
10	$N(1700)\frac{3}{2}^{-}$	***	**	**	*	*(*)	*	***		
	$N(1875)\frac{3}{2}^{-}$	***	*	***		***	**		***	
$U_{12} - $	$N(2150)\frac{3}{2}^{-}$	**	**	**		**		**		
15	$N(1680)\frac{5}{2}^+$	****	****	****	*			**(*)	**	-
	$N(1860)\frac{5}{2}^+$	*	*	*						
	$N(2000)\frac{5}{2}^+$	***	*(*)	**	**	**	*			
	$N(1675)\frac{5}{2}^{-}$	****	****	***(*)	*	*		***(*)	*	-
	$N(2060)\frac{5}{2}^{-}$	***	**	***	*		**			
	$N(1990)\frac{7}{2}^+$	**	*(*)	**						_
	$N(2190)\frac{7}{2}^{-}$	****	****	***		**				-
\mathbf{U}_{17}	$N(2220)\frac{9}{2}^+$	****	****							-
	$N(2250)\frac{2}{9}$	****	****							-
	$\Delta(1910)\frac{1}{2}^{+}$	****	****	**		\frown	**	**		-
	$\Delta(1620)\frac{1}{2}^{-}$	****	****	***				****		-
	$\Delta(1900)^{\frac{2}{1}}$	**	**	**			**	**		
	$\Delta(1232)\frac{3}{2}^{+}$	****	****	****						-
	$\Delta(1600)^{\frac{2}{3}+}$	***	***	***				***		
	$\Delta(1920)\frac{2}{3}^{+}$	***	***	**			***	**		
	$\Delta(1700)\frac{3}{2}^{-}$	***	***	***				**		-
	$\Delta(1940)^{\frac{2}{3}-}$	*	*	**				* fro	$m \Delta \eta$	
	$\Delta(1905)^{\frac{2}{5}+}$	****	****	****			***	**(**)		-
	$\Delta(1950)^{\frac{7}{2}+}$	****	****	***		t	***	***		Α
						_		e de la construcción de la constru		

What role has JLab strangeness physics in unraveling N* and Δ properties?

- Worldwide effort to determine resonance poles, branching fractions, helicity couplings, etc.
- <u>Bottom line</u>: "Stars" & new resonances added to world database

. V. Anisovich (BoGa) et al., Eur.Phys. J. A **48**, 15 (2012),

I. S. Barker, A. Donnachie, J. K. Storrow, Nucl. Phys. B95 347 (1975).

 $2 \operatorname{Im}(b_1 b_2^* - b_3 b_4^*)$

 $2 \operatorname{Im}(b_1 b_2^* + b_3 b_4^*)$

 $2 \operatorname{Re}(b_1 b_2^* + b_3 b_4^*)$

CIPANP Vail 2015

 $T_z d\sigma/dt$

 $L_x d\sigma/dt$

 $L_r d\sigma/dt$

longitudinally polarized target

[-; x; z']

[-; z; x']

-; z; z'

0

transversely polarized target

R. A. Schumacher, Carnegie Mellon University

K⁺ Theory: Bonn Gatchina Model

(Just one of several models on the market)

Coupled channels (K-matrix) framework

- Input: from π N, K N elastic; γ N, π N inelastic to $\pi^{\pm 0}$ N, η N, η 'N, K^{± 0} Y, $\pi \pi$ N
 - Use ALL experimental channels, including the strangeness channels & spin observables

Partial Wave Analysis

- First extract each J^P wave
- \blacksquare Fit N* and Δ resonance pole parameters

Short list of References:

A. Sarantsev, V. Nikonov, A. Anisovich, E. Klempt, U. Thoma; Eur. Phys. J. A **25**, 441 (2005) A.V. Anisovich *et al.*, Eur. Phys J. A **25** 427 (2005); Eur. Phys J. A **24**, 111 (2005);

V. A. Nikonov et al., Phys Lett. B 662, 246 (2008).

A. Anisovich, E. Klempt, V. Nikonov, A. Sarantsev, U. Thoma; Eur. Phys. J. A 47, 153 (2011).

$p \rightarrow K^+ \Lambda$: cross section

R. Bradford et al., Phys.Rev. C 73, 035202 (2006)

Forward peaking indicates t-channel processes at high W

Angular dependence at lower W consistent with s- and u-channel processes.

_{R. A. Schur} M. McCracken et al, (CLAS) Phys. Rev. C **81**, 025201 (2010). 12

Bonn-Gatchina model is not predictive in newly-measured kinematics

CLAS/Glasgow Preliminary

 $\gamma p \rightarrow K^+ \Lambda$: target asymmetry T

 $\gamma + p \to K^{\!+}\,\Lambda$

W (GeV)

Bonn-Gatchina model is not predictive in newly-measured kinematics

CLAS/Glasgow Preliminary

R. A. Schumacher, Carnegie Mellon University

$\gamma_{\mathbf{K}^{\dagger}}^{\dagger} | \vec{\gamma} \mathbf{p} \rightarrow \mathbf{K}^{\dagger} \vec{\Lambda} \text{ Beam-Recoil } O_x \text{ and } O_z$

The Bonn-Gatchina model is <u>not</u> predictive at newly-measured kinematics

CLAS/Glasgow Preliminary

$\vec{\gamma} p \rightarrow K^{\dagger} \vec{\Lambda}$ Beam-Recoil C_x and C_z

Nikanov *et al.*'s refit of Bonn-Gatchina coupled-channel isobar model mix includes: S_{11} -wave, $P_{13}(1720)$, $P_{13}(1900)$, $P_{11}(1840)$ $K^{+}\Sigma^{0}$ cross sections also better described with $P_{13}(1900)$

R. Bradford *et al.*, (CLAS Collaboration) Phys. Rev. C **75**, 035205 (2007).
V. A. Nikanov *et al.*, Phys Lett. B **662**, 246 (2008).
see also: A.V. Anisovich *et al.*, Eur. Phys J. A **25** 427 (2005). Ion University

Seeking New S=O Baryons via Mesons off the <u>Proton</u>: published, acquired, FroST(g9b)

	σ	Σ	Т	Ρ	E	F	G	н	T _x	Tz	L _×	Lz	O _x	Oz	C _×	C _z	CLAS run Period
$p\pi^0$	~	1	1	1	1	1	1	1									g1, g8, g9
$n\pi^+$	~	1	1	1	1	1	1	1									g1, g8, g9
քղ	~	1	1	1	1	1	1	1									g1, g11, g8, g9
pŋ'	~	1	1	1	1	1	1	1									g1, g11, g8, g9
рω	~	1	1	1	1	1	1	1									g11, g8, g9
K ⁺ Λ	~	1	1	~	1	1	1	1	1	1	1	1	1	1	~	~	g1, g8, g11
$K^+\Sigma^0$	~	1	1	~	1	1	1	1	1	1	1	1	1	~	~	~	g1, g8, g11
$\mathrm{K}^{0*}\Sigma^+$	~										1	1			1	1	g1, g8, g11

- Omit results for Σ photoproduction
- Omit discussion of reactions on the neutron (deuteron), which accesses photon coupling isospin dependence.
- Overall goal: measure enough observables for "complete" determination of amplitudes ⇒ extract N* and ∆ content

Strangeness and the N* Spectrum of States - Electroproduction

Structure Functions

For unpolarized target & polarized e⁻ beam:

$\gamma \sum_{k=1}^{*} | K^+ \Lambda$ Structure Functions

$\gamma_{\mathbf{k}^{\dagger}}$ CLAS e p Data Set Overview

#	Period	E _b (GeV)	Events (M)
1	e1c	2.567	900
2	e1c	4.056	370
3	e1c	4.247	620
4	e1c	4.462	420
5	e1d	4.817	300
6	e1-6	5.754	4500
7	e1f	5.499	5000
8	e1g	3.178	2500

- $\mathbf{K}^{\scriptscriptstyle +}\Lambda$ recoil polariazation
 - W=1.6-2.7 GeV, <Q^{2>}=1.9 GeV²
 [Gabrielyan et al., PR C 90, 035202 (2014)]

Publications:

- $K^{+}\Lambda$ beam-recoil pol. transfer
 - *W=1.6-2.15 GeV, Q²=0.3 1.5 GeV²* [Carman *et al.*, PRL **90**, 131804 (2003)]
- K⁺ $\Lambda \sigma_L / \sigma_T$ ratio from pol. transfer data
 - W=1.72-1.98 GeV, Q²~0.7 GeV²
 [Raue & Carman, PR C 71, 065209 (2005)]
- $K^+\Lambda$, $K^+\Sigma^0$ separated structure functions
 - W=thr-2.4 GeV, Q²=0.5-2.8 GeV²
 - $\sigma_{U}, \sigma_{LT}, \sigma_{TT}, \sigma_{L}, \sigma_{T} K^{+}\Lambda, K^{+}\Sigma^{0}$ [Ambrozewicz *et al.*, PR *C* **75**, 045203 (2007)]
 - W=thr-2.6 GeV, Q²=1.4-3.9 GeV²
 - σ_U, σ_{LT}, σ_{TT}, σ_{LT} K⁺Λ , K⁺Σ⁰
 [Carman *et al.*, PRC 87, 025204 (2013)]
- K⁺ Λ fifth structure function $\sigma_{\text{LT}'}$
 - *W=1.6-2.1 GeV, Q²=0.65, 1.0 GeV²* [Nasseripour *et al.,* PR C **77**, 065208 (2008)]
- K⁺ Λ , K⁺ Σ^0 beam-recoil pol. transfer
 - W=thr-2.6 GeV, Q²=1.6-2.6 GeV²
 - [Carman et al., PR C 79, 065205 (2009)]

CIPANP Vail 2015

R. A. Schumacher, Carnegie Mellon University

Dimensional Scaling of KA

Publication: Scaling and Resonances in Elementary K⁺Λ Photoproduction, R.A.Sch. and M.M. Sargsian Phys.Rev.C83 025207 (2011).

- Constituent counting rules for exclusive scattering
- Valid for s→∞ and t/s fixed
 - $t/s \sim \cos(\theta_{\rm cm})$ as $s \rightarrow \infty$
- n = number of pointlike constituents
- Follows from pQCD...
 but also other models
- Does it work for $K\Lambda$?

R.A. Schumacher and M.M. Sargsian Phys. Rev. C83 025207 (2011). 26

Excited Y* Cross Sections

Publication: Differential Photoproduction Cross Sections of $\Sigma^0(1385)$, $\Lambda(1405)$ and $\Lambda(1520)$, K. Moriya *et al.* (CLAS Collaboration), Phys. Rev. C **88**, 045201 (2013).

Detect $K^+ p \pi^-(\pi^0)$ or $K^+ \pi^+ \pi^-(n)$

Differential $\Sigma^{0}(1385)$ Cross Section

$\gamma + p \rightarrow K^+ + \Sigma^0$ (1385)

- Experiment: see tchannel-like forward peaking & u-channel backward rise
 - Agreement with LEPS
- Theory by Oh et al.¹: contact term dominant; included four high-mass N^* and Δ resonances
 - Prediction was fitted to preliminary CLAS total cross section (years ago)

1. Y. Oh, C. M. Ko, K. Nakayama, Phys. Rev. C 77, 045204 (2008)

R. A. Schi K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013). 29

Differential $\Lambda(1520)$ Cross Section

$\gamma + p \rightarrow \mathrm{K}^{+} + \Lambda \,(1520)$

Experiment: see *t*channel-like forward peaking & *u*-channel backward rise

- Agreement with LEPS^{1,2}
 Theories:
 - Nam & Kao³: contact term dominant; no K* or uchannel exchanges
 - He & Chen⁴: K* and $N(2080)D_{13} J^P=3/2^-$ added

H. Kohri et al. (LEPS) Phys Rev Lett **104**, 172001 (2010)
 N. Muramatsu et al. (LEPS) Phys Rev **103**, 012001 (2009)
 S.I. Nam & C.W. Kao, Phys. Rev. **C 81**, 055206 (2010)
 J. He & X.R. Chen, Phys. Rev. **C 86**, 035204 (2012)

R. A. Schi K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013). 30

Differential $\Lambda(1405)$ Cross Section

- $\gamma + p \rightarrow K^+ + \Lambda (1405)$
- Experiment: first-ever measurements
 - Low W: See strong isospin dependence
 - Charge channels differ WHY?!?
 - High W: See *t*-channellike forward peaking & u-channel backward rise at high W
- Channels merge together at high W

•
$$\gamma + p \rightarrow K^+ + Y^{(*)}$$

- All three Y*s have similar total cross sections
- Ground state Λ and Σ^0 are comparable to Y^* in size¹

1. R. Bradford et al. (CLAS) Phys. Rev. C 73, 035202 (2006)

K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013).

$\Lambda(1405)$ Structure

Publications: Measurement of the $\Sigma\pi$ Photo-production Line Shapes Near the $\Lambda(1405)$, K. Moriya *et al.* (CLAS Collaboration), Phys. Rev. C **87**, 035206 (2013); Isospin Decomposition of the Photoproduced $\Sigma\pi$ System near the $\Lambda(1405)$, R. A. Sch. & K. Moriya, Nucl. Phys A **914**, 51 (2013).

What "is" the $\Lambda(1405)$?

A'n issue since its prediction/discovery

- Dynamically generated resonance, via unitary meson-baryon channel coupling
 - R. Dalitz & S.F. Tuan, Phys. Rev. Lett. 2, 425 (1959), Ann. Phys. 10, 307 (1960).
 - Chiral unitary models (present-day theoretical industry!)
 - SU(3) singlet 3q state, I=0, $J^{\pi} = \frac{1}{2}^{-1}$

*K*N sub-threshold state

- Recent first Lattice QCD result: J. Hall *et al.*, Phys Rev Lett **114**, 132002 (2015)
- Signal may be an overlay of I=0 and I=1 states

Chiral Unitary Models

- SU(3) baryons irreps 1+8_s+8_a combine with 0⁻ Goldstone bosons to generate:
- Two octets and a singlet of ½⁻ baryons generated dynamically in SU(3) limit
- SU(3) breaking leads to $\underline{two} S = -1$ I = 0 poles near 1405 MeV
 - ~1420 mostly KN
 - ~1390 mostly $\pi\Sigma$
- Possible weak I=1 pole also predicted

D. Jido, J.A. Oller, E. Oset, A. Ramos, U-G Meissner Nucl. Phys. A **725,** 181 (2003) J.A. Oller, U.-G. Meissner Phys. Lett B **500**, 263 (2001).

Example at W=2.30 GeV

36

dơ/dm (μb/GeV)

Isospin Interference

 $\begin{array}{c} & \stackrel{\bullet}{} & \stackrel{\bullet}{} & \stackrel{\bullet}{} & \stackrel{\bullet}{} \\ & \stackrel{\bullet}{} & \stackrel{\bullet}{} & \stackrel{\bullet}{} \\ & \stackrel{\bullet}{} & \stackrel{\bullet}{} \\ & \stackrel{$

Three charge combinations:

$$|T_{\pi^{-}\Sigma^{+}}|^{2} = \frac{1}{3}|t_{0}|^{2} + \frac{1}{2}|t_{1}|^{2} - \frac{2}{\sqrt{6}}|t_{0}||t_{1}|\cos\phi_{01},$$

$$|T_{\pi^{0}\Sigma^{0}}|^{2} = \frac{1}{3}|t_{0}|^{2},$$

$$|T_{\pi^{+}\Sigma^{-}}|^{2} = \frac{1}{3}|t_{0}|^{2} + \frac{1}{2}|t_{1}|^{2} + \frac{2}{\sqrt{6}}|t_{0}||t_{1}|\cos\phi_{01}.$$

• No model calculation has computed cross section and line shapes together.

What "is" the I=1 piece?

- I=1 resonance? I=1 continuum amplitude?
- L. Roca and E. Oset model¹:
 - Possible I=1 resonance in vicinity of NK threshold
- B.-S. Zou et al. model²: $\Sigma\left(\frac{1}{2}\right)^{-}$ is a $|[ud][us]\overline{s}\rangle$ state: part of a new nonet
- No interference seen in A(1520) mass range: therefore it's not a continuum amplitude
- More investigation needed !
- 1. L. Roca, E. Oset "On the isospin 0 and 1 resonances from $\pi\Sigma$ photoproduction data" Phys. Rev. C **88** 055206 (2013).
- 2. Bing-Song Zou "Five-quark components in baryons", Nucl Phys A 835 199 (2010).

Spin and Parity of $\Lambda(1405)$

Publication: Spin and Parity of the $\Lambda(1405)$ Baryon, K. Moriya *et al.* (CLAS Collaboration), Phys. Rev. Lett. **112**, 082004 (2014).

Parity and Spin of $\Lambda(1405)$

- How does one measure these things?
 - Find a reaction wherein Λ^* is created <u>polarized</u>
 - Decay angular distribution to $\Sigma \ \pi$ relates to J
 - J = 1/2 : <u>flat</u> distribution is the <u>best possible</u> evidence
 - J = 3/2: "smile or frown" distribution, where p is the $m = \pm 3/2$ fraction

$$I(\theta_{Y}) \propto 1 + \frac{3(1-2p)}{2p+1} \cos^{2} \theta_{Y}$$

Parity given by polarization <u>transfer</u> to daughter
 No model dependence: pure kinematics

 $\frac{J^{P} = \frac{1}{2} - \text{ confirms quark}}{\text{model expectation}}$

• Weak decay asymmetry for Σ^+ is $\alpha = -0.98$ (big!)

• Decay is s-wave,

$$\Rightarrow P = "negative"$$

and $\Lambda(1405)$ is produced ~ +45% polarized

$\Lambda(1405)$ Electroproduction

Publication: First Observation of the $\Lambda(1405)$ Line Shape in Electroproduction, H. Lu *et al.* (CLAS Collaboration), Phys. Rev. C **88**, 045202 (2013).

$K^+_{K^+}$ Electroproduction of $\Lambda(1405)$

Strangeness Suppression of qq Creation in Exclusive Reactions

Publication: M. D. Mestayer, K. Park *et al.* (CLAS Collaboration), Phys. Rev. Lett. **113**, 152004 (2014).

K⁺Λ: π^+ **n** : π^0 **p** Electroproduction Ratios

Motivation:

 Quark model picture of quark-pair creation and flux-tube breaking: does it apply in the low energy exclusive limit?

Measurements:

- Ratio of processes in which only one q\u00e7 pair is produced: an s\u00e7, d\u00e7, or u\u00fc, respectively
- In quark model picture, ratios are proportional to the relative production rates of ss, dd, or uu

Physics conclusion:

- Ratio of $s\bar{s}$ pair creation relative to $u\bar{u}$ or $d\bar{d}$ is suppressed; $\approx 0.2 - 0.3$
- Consistent with high-energy results when 100's of particles are produced

The Future: Outlook at GlueX and CLAS12

+ Lattice QCD Predictions

- Lattice QCD now predicts rich baryon families
- Most states not identified by experiment yet

flavor singlet flavor octet flavor decouplet

R. Edwards et al., PRD 87, 054506 (2013)

Baryon Spectroscopy

- JLab at 12 GeV will surpass many Y* thresholds
- S = -1, -2, -3
 - Many Λ*, Σ*, Ξ*, Ω*
 states remain
 undiscovered
- Charm threshold

(K. Moriya, priv. comm.) CIPANP Vail 2015

R. A. Schumacher, Carnegie Mellon University

- New hall, finished construction
- Commissioning in progress now
- Approved for 220 days of high statistics running

K⁺ Jlab Hall D/GlueX

- Real photon beam centered at 9 GeV
- Liquid hydrogen target
- Reconstruct <u>both</u> charged and neutral particles over large angular range
- Hermetic detector within solenoid magnetic field
- Meson & Baryon spectroscopy: search for new and exotic states

GlueX Study of $\Xi^{-}(1820)$

- Use simulated data to study
 - $$\begin{split} \gamma + p &\rightarrow K^+ + K^+ + \Xi^-(1820) \\ \Xi^-(1820) &\rightarrow \Lambda + K^- \end{split}$$
- Final state is 5 charged particles, K^+ , K^- , μ , π^-
- Can GlueX reconstruct this?
- Reconstruction efficiency
 - 10 MeV mass resolution
 - Secondary vertex resolution: ~1 cm along beam line (z-direction)

(K. Moriya, priv. comm.)

 $c\tau = 7.89 \text{ cm}$

shown: 29734

1.7

1.8

1.9

3500

3000

2500

2000

1500

1000

500

 2 MM(γ , K⁺K⁺) (GeV/c²)

Fit with Voigt function

 $\Gamma: 19.3 \pm 0.4 \text{ MeV}$ $\sigma: 10.6 \pm 0.3 \text{ MeV}$

JLab Hall B / CLAS12

Baseline equipment

Forward Detector (FD)

- TORUS magnet (6 coils)
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Pre-shower calorimeter
- E.M. calorimeter

Central Detector (CD)

- SOLENOID magnet
- Barrel Silicon Tracker
- Central Time-of-Flight

<u>Beamline</u>

- Polarized target (transv.)
- Moller polarimeter
- Photon Tagger

Upgrades to the baseline

Under construction

- MicroMegas
- Central Neutron Detector
- Forward Tagger
- RICH detector (1 sector)
 Polarized target (long.)

$\gamma_{K^{+}}^{\gamma}$ CLAS12: Very Strange Baryons

Study of the Ω^- and Ξ^* are among the main goals of the CLASI2 spectroscopy program:

- Ω⁻ discovered in 1964: after 50 years, indication on J^P from Babar and others but full determination not yet achieved
- =* spectrum still poorly known: many states missing and spin/parity undetermined

Photoproduction mechanism implies creation of three s quarks

- Models indicate $\sigma(\Omega^-) \sim 0.3-2$ nb at E $\sim 7GeV$
- Expected production rates in CLASI2:
 - Ω⁻ : 90 /h
 - Ξ-(1690)/Ξ-(1820):0.2/0.9 k/h
- Ω⁻: measurement of the cross section and investigation of production mechanisms

V. E. Barnes et al., Phys. Rev. Let. 12 (1964) 204

Summary/Conclusions

- Hyperon photo- and electro-production used to pin down N* spectrum above 1.6 GeV
- Y* cross sections compared; $\Lambda(1405)$ "weird"
- \blacksquare Interference effects in $\Lambda(1405)$ line shapes demonstrated
- Direct J^P measurement for $\Lambda(1405)$ made: $\frac{1}{2}^-$
- Cross section scaling demonstrated and strangeness suppression seen
- JLab at 12 GeV with CLAS12 and GlueX will explore Y* and meson spectra

