

Studies of GPDs at Jefferson Lab

Professor Angela Biselli Fairfield University

Some open questions on hadronic structure

- Can we describe nucleons in terms of their constituents?
- Where does the spin of the nucleon come from?

Courtesy of A. Bacchetta

Structure of the nucleon 50 years ago 1950 1967 **Elastic scattering** Deep inelastic scattering $ep \rightarrow e'p'$ $ep \rightarrow e'X$ Q^2 Hofstadter Friedman, Kendall, Taylor e e ξ γ* (t=Q²) $\gamma * (Q^2)$ = X Momentum and spin Spatial distributions of electric distributions of quarks charge and current Longitudinal momentum Form partons **PDF** partons **Factors** q(x), Δq(x) multi-dimensional structure Fair CIPANP 2015, Vail, CO, May 19-24 2015

5 Dimensional Structure of the nucleon

both coordinate and momentum space

Deeply Virtual Compton Scattering and GPDs

Deeply Virtual Compton Scattering and GPDs

$$\begin{split} & \mathsf{Bethe}_{C}\mathsf{Heither Dexperimentally}_{\widetilde{dx} \pm i\pi GPD}(\underline{\pm}\xi, \xi, t) + \dots \\ & \widetilde{d_{-1}^{4}\sigma_{x} \pm \xi + i\varepsilon} \\ & \overline{dQ^{2}dx_{B}dtd\phi} \propto |T_{\mathrm{DVCS}} + T_{\mathrm{BH}}^{-1}|^{2} \stackrel{x \pm \xi}{=} |T_{\mathrm{DVCS}}|^{2}| + |T_{\mathrm{BH}}|^{2} + I \end{split}$$

- Cross section measurement
- Polarization measurements: asymmetries and cross-section differences ⇒ $\sigma^+ - \sigma^- \propto I = T_{\text{DVCS}}T^*_{\text{BH}} + T^*_{\text{DVCS}}T_{\text{BH}}$ $A = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} \propto \frac{I}{|T_{\text{DVCS}}|^2 + |T_{\text{BH}}|^2 + I}$

$$T_{\rm DVCS} \propto \mathcal{P} \int_{-1}^{1} dx \left[\frac{1}{x-\xi} \mp \frac{1}{x+\xi} \right] F(x,\xi,t) - i\pi [F(\xi,\xi,t) \mp F(-\xi,\xi,t)]$$

GPDs sensitivity of DVCS spin observables

Compton Form Factors: 8 GPD-related quantities

$$\Re \mathbf{e}\mathcal{F} = \mathcal{P} \int_{-1}^{1} dx \left[\frac{1}{x-\xi} \mp \frac{1}{x+\xi} \right] F(x,\xi,t)$$
$$\Im \mathbf{m}\mathcal{F} = \pi \left[F(\xi,\xi,t) \mp F(-\xi,\xi,t) \right]$$

Observable	Proton	Neutron
Beam Spin Asymmetry ALU		
$A_{\rm LU}(\phi) \propto \Im[F_1\mathcal{H} + \xi(F_1 + F_2)\widetilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E}]\sin\phi$	$\Im_{\mathbf{H}_p}, \widetilde{\mathcal{H}_p}, \mathcal{E}_p\}$	$\Im_{n} \{\mathcal{H}_{n}, \widetilde{\mathcal{H}_{n}}, \mathcal{E}_{n}\}$
Target Spin Asymmetry AUL		
$A_{\rm UL}(\phi) \propto \Im[F_1\widetilde{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + \frac{x_B}{2}\mathcal{E}) - \xi(\frac{x_B}{2}F_1 + \frac{t}{4M^2}F_2)\widetilde{\mathcal{E}}]\sin\phi$	$\mathfrak{Sm}\{\mathcal{H}_p,\widetilde{\mathcal{H}_p}\}$	$\Im_{\mathbf{H}_n} \{ oldsymbol{\mathcal{H}}_n, \widetilde{\mathcal{H}_n}, \mathcal{E}_n \}$
Double Spin Asymmetry ALL		
$A_{\rm LL}(\phi) \propto \Re[F_1 \widetilde{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + \frac{x_B}{2}\mathcal{E}) - \xi(\frac{x_B}{2}F_1 + \frac{t}{4M^2}F_2)\widetilde{\mathcal{E}}](A + B\cos\phi)$	$\Re \{ oldsymbol{\mathcal{H}}_p, \widetilde{oldsymbol{\mathcal{H}}_p} \}$	$\Re \{ oldsymbol{\mathcal{H}}_n, \widetilde{oldsymbol{\mathcal{H}}_n}, oldsymbol{\mathcal{E}}_n \}$
Transverse Target Spin Asymmetry AUT		
$A_{\rm UT}(\phi) \propto \Im [k(F_2\mathcal{H} + F_1\mathcal{E}) +] \sin \phi$ 9	$\Im_{\mathbf{H}_p}, \mathcal{E}_p\}$	$\Im \{ \boldsymbol{\mathcal{H}}_n \}$

Overview of DVCS experiments in the world (GeV²)

- Momentum 100-190 GeV
- p-DVCS X-sec, BSA, BCA, tTSA, ITSA, DSA
- H1 ZEUS
 - p-DVCS X-sec, BCA
- HERMES
 - 27 GeV beam
 - p-DVCS BSA, BCA, tTSA, ITSA, DSA
- JEFFERSON LAB -
 - 6 GeV e beam
 - Hall A high precision X-sec pDVCS nDVCS, X-sec, Δ X-sec
 - CLAS wide kinematic coverage pDVCS BSA, ITSA, DSA, X-sec, Δ X-sec

Lab 11 GeV

 10^{-1} 0.0S

0.4

0.5

0.6

ZEUS +H1

10

3

2

DVCS at Jefferson Lab

Continuous Electron Beam Accelerator Facility

 $I_{max} = 200 \mu A$ $E_{max} = 6 \text{ GeV}$ $\sigma_{E} / E \sim 2.5 \ 10^{-5}$ Beam Pol~80%

CLAS: DVCS Beam Spin Asymmetry

S. Stepanyan et al., PRL 87 (2001)

CLAS: dedicated BSA measurement

F.X. Girod et al., PRL 100 (2008)

CLAS: Target spin asymmetry

E = 5.75 GeV $\vec{e}\,\vec{p}$ \rightarrow e p γ CLAS Target NH₃

First measurement of the longitudinal TSA in exclusive electro-production of real photons in the deeply inelastic

> A=a sin ϕ +b sin 2 ϕ a>>b twist 2 dominance Handbag dominance confirmed @Hermes

TSA@Hermes A. Airapetian et al., JHEP 1006 (2010)

CLAS: polarized target DVCS dedicated run

- High statistics, improvement of a factor 10 over previous target asymmetry measurement (S. Chen et al)
- Complete detection of the final state ->small nuclear background
- Large kinematic range
- Simultaneous measurement of all three Beam, Target, and Double spin asymmetries in the same kinematic range
 - simultaneous fit
 - Compton Form Factors

Analysis work by: Biselli Niccolai Pisano Seder

Observable	Sensitivity to CFFs	Experiment	Notes
$\Delta \sigma_{\text{beam}}(p)$	Im 🛠 p	Hall A	High statistics, limited coverage, 4 dimensiona
A _{LU} (p)	Im ઋ p	HERMES CLAS	High statistics and coverage, 4 dimensiona
$\Delta \sigma_{\text{beam}}(n)$	Im \mathcal{E}_n	Hall A	One (Q ² ,x _{b)} bin, 7 -t bins low statistics, high
A _{UL} (p)	Im ୖୣୣઋ _p ,Im ୣୣୣℋ _p	HERMES CLAS	Low statistics integrated over 3/4 variables
A _{LL} (p)	Re [~] # _p ,Re # _p	HERMES	Low statistics integrated over 3/4 variables
А _{∪т} (р)	Im $\mathscr{H}_{p,}$ Im \mathscr{E}_{p}	HERMES	Low statistics integrated over 3/4 variables

CLAS:Target Spin Asymmetries for DVCS

E. Seder et al Phys. Rev. Lett. 114 (2015) 032001

5 (Q^2 , x_b) bins x 4 -t bins

CLAS:Target Spin Asymmetries for DVCS

E. Seder et al Phys. Rev. Lett. 114 (2015) 032001

CLAS: Beam Spin Asymmetries for DVCS

S. Pisano et al arXiv:1501.07052 - PRD Accepted

- Agreement with CLAS on H₂
- No sensitivity to nuclear effects
- Sensitivity to Im 7/_p
- Fast drop in -t
- Good agreement KMM12 but t<Q²/4
- Good agreement GL in some bins

• VGG & GK overestimate

Fairfield

 $(\alpha_{LU})\sin\phi$

CLAS: Double Spin Asymmetries for DVCS

- Constant term dominated by BH
- cosφ term small and dominated by BH
- Agreement with VGG, GK, KMM

CLAS: Compton Form Factors

S. Pisano et al Phys. Rev. D.91 052014

• M. Guidal, Eur. Phys. J. A 37, 319 (2008)

- Local fitting at each experimental Q²,x_B,t
- Quasi model-independent: bounding the domains of variation of the CFFs (5xVGG)
- 8 unknowns, non linear problem, strong correlations
- Mostly sensitive to Im²/₄
- Im# has a steeper slope than Im# axial charge more concentrated?
- Slope of Im# decreasing as xb increases fast quarks (valence) more concentrated in the nucleon's center, slow quarks (sea) more spread out
- Not enough A_{LL} statistical precision to extract real parts $\operatorname{Re}\tilde{\mathscr{A}}$ $\operatorname{Re}\tilde{\mathscr{E}}$

Hall A - cross section result (2006)

C.M. Camacho et al., PRL 97 (2006)

CLAS - DVCS cross section results

H. S. Jo et al arXiv:1501.07052 - PRL submitted

CIPANP 2015, Vail, CO, May 19-24 2015

Cross-section favors H=0 KM10a

CLAS - DVCS cross section differences

H. S. Jo et al arXiv:1501.07052 - PRL submitted

- M. Guidal, Eur. Phys. J. A 37, 319 (2008)
- Local fitting at each experimental Q^2 , x_B, t
- Quasi model-independent: bounding the domains of variation of the CFFs (5xVGG)
- E and \tilde{E} set to zero to limit free $\frac{\pi^2}{2}$ parameters
- well-defined minimizing values for H_{Im} and H_{Re}

- VGG model > fitted H_{Im} @ the smallest values of x_B
- A, b decrease with increasing x_B
 - b⇔transverse size
 - \Rightarrow size and partonic content are bigger A ⇔partonic content at smaller momentum fractions

CIPANP 2015, Vail, CO, May 19-24 2015

VGG - - fit Ae^{-bt}

Hall A - Recent cross section results

- \bullet VGG better than KMS12 for σ
- both VGG and KMS12 overshoot Δσ
- KM10a good for $\Delta\sigma$
- KM10a underestimate σ at 180
- TMC (twist-4 target mass, finite t correction) on KMS12 and KM10a improves the agreement

KM10a tuned to all DVCS data but Hall A cross section

KM12 not adapted to valence region (tuned to vector meson data very low xB)

Hall A - Rosenbluth-like separation of DVCS

Experiment E07-007 Data taken in 2010 Analysis underway

Analysis technique:

- Measure σ and $\Delta \sigma$ @fixed x_B , for 3 Q² bins and 2 beam energies
- Extract CFF coefficients using azimuthal dependence
- Use energy dependence of the coefficients to separate DVCS from I

- E00-110 extraction of phenomenological coefficients DVCS²+I
- project results (different if DVCS² term is large)

DVCS on the neutron

• We can extract GPDs for proton or neutron but we want GPDs for quark flavors

 $(H, E)_u(\xi, \xi, t) = 9/15[4(H, E)_p(\xi, \xi, t) - (H, E)_n(\xi, \xi, t)]$ $(H, E)_d(\xi, \xi, t) = 9/15[4(H, E)_n(\xi, \xi, t) - (H, E)_p(\xi, \xi, t)]$

- H,E for both proton and neutron are needed
 - E_n BSA on neutron
 - E_p TTSA on proton

- H_nTSA on neutron
- H_p BSA on proton

nDVCS important for flavor separation

with H_q, E_q can extract the quark angular momentum (Ji's sum rule)

$$J_N = \frac{1}{2} = J^q + J^g = \frac{1}{2}\Sigma + L^q + \Delta g + L^g$$
$$J^q = \frac{1}{2} - J^g = \frac{1}{2} \int_{-1}^{+1} x dx [H^q(x,\xi,0) + E^q(x,\xi,0)]$$

information on quark orbital angular momentum

 $\frac{1}{2}\Sigma$

 Δg

UNIVERS

Hall A: DVCS neutron $D(\vec{e}, e', \gamma)X$

M. Mazouz et al., PRL 99,242501 (2007)

CLAS: DVCS neutron

 $e + \vec{d} \rightarrow e' + \gamma + n + (p_s)$

Work by D. Sokhan

eg1-dvcs run CLAS+IC

- NH3 95 days
- ND3 33 days

Analysis underway

Use NH₃ to subtract nuclear background

CLAS: DVCS on nuclei

Work by M. Hattawy

 Image: Window Structure
 Image: Window Structure

eg6 run CLAS+IC+RTCP ⁴He target Beam: 6GeV Analysis underway 4He spin 0, only one GPD at twist-2 in DVCS BSA

 $A_{LU}^{^{4}He}(\phi) = \frac{a_{0}(\phi)F_{A}(t)\mathcal{I}m[\mathcal{H}_{A}]}{a_{0}(\phi)F_{A}(t)\mathcal{I}m[\mathcal{H}_{A}] + a_{0}(\phi)\mathcal{R}e[\mathcal{H}_{A}] + a_{3}(\phi)\mathcal{R}e[\mathcal{H}_{A}]^{2} + a_{3}(\phi)\mathcal{I}m[\mathcal{H}_{A}]^{2}}$

Fit ALU signals: $p0 * sin(\phi)/(1 + p1 * cos(\phi))$

LT: S. Liuti and S. K. Taneja.Phys. Rev., C72:032201, 2005.
GS: V. Guzey and M. Strikman. Phys. Rev., C68:015204, 2003.
HERMES: F. Ellinghaus, R. Shanidze, and J. Volmer. AIP Conf. Proc., 675:303–307, 2003

CLAS: DVCS on nuclei (cont.) Work by M. Hattawy

Upgrade of Jefferson Lab

Hall A DVCS @ 12 GeV

E12-06-114: HRS-L +PbF2 calorimeter

- Absolute cross sections
- Test of scaling: Q² dependence of s for fixed x_B
- increased kinematic coverage

First experiment to run after the 12 GeV upgrade

CLAS12

CLAS12 DVCS experiments

CLAS12,FT,CND,NH3,HDIce

- Large kinematic coverage
- BSA, TSA, DSA, tTSA
- cross-section
- CFF extraction

CLAS exper.	physics
12-06-112	DVCS BSA TSA
12-11-003	nDVCS BSA
12-06-119	pol target DVCS
	pDVCS transverse TSA

Luminosity up to saf10 Pb~85% NH₃ ~80% $1 < Q^2 < 10 \text{ GeV}^2$ $0.1 < x_B < 0.65$ $-t_{min} < -t < 2.5 \text{ GeV}^2$

Hall C DVCS @ 12 GeV

E12-13-010: HMS +PbWO4 calorimeter

- Energy separation of the DVCS cross-section
- Higher Q^{2:} measurement oh higher twist contribution
- Low xB extension

Conclusions

- GPD are a powerful and unique tool explore the structure of the nucleon
- GPDs are fully-correlated quark distributions in both coordinate and momentum space -> 3D imaging
- Complex extraction from data
 - 4 GPD for each quark flavor
 - GPDs depend on 3 variables but only two are experimentally accessible. Need models to map the x dependence
 - Cross sections depend on integrals of GPDs
- Need extensive measurements of different observables for both proton and neutron over a large kinematic range for a reliable extraction of GPDs
- 6 GeV program was very successful and gave us a first look at the structure of the nucleon
- Rich experimental program planned at Jefferson Lab@12GeV in the 3 Challs to complete this study in the valence region

Thank you for the invitation.

Next time let's organize the conference during winter

Vail Feb 2007