Studies of GPDs at Jefferson Lab

Professor Angela Biselli
Fairfield University

CIPANP 2015
Vail, CO, May 19-24 2015

- Can we describe nucleons in terms of their constituents?
- Where does the spin of the nucleon come from?

Courtesy of A. Bacchetta Fairfield

Structure of the nucleon 50 years ago

1950
Elastic scattering $e p \rightarrow e^{\prime} p^{\prime}$ Hofstadter

Spatial distributions of electric charge and current

Form

multi-dimensional structure

Deep inelastic scattering

$$
e p \rightarrow e^{\prime} X
$$

Friedman, Kendall, Taylor

Momentum and spin
distributions of quarks

5 Dimensional Structure of the nucleon

Wigner distributions $\rho\left(x, \overrightarrow{\mathrm{~b}}_{\mathrm{T}}, \overrightarrow{\mathrm{k}}_{\mathrm{T}}\right)$

\square

Nucleon "distributions"

Deeply Virtual Compton Scattering and GPDs

$$
e p \rightarrow e p \gamma
$$

$\xi=x_{B} \frac{1+\frac{t}{Q^{2}}}{2-x_{B}+x_{B} \frac{t}{Q^{2}}}$
$t=\left(p-p^{\prime}\right)^{2}$

- x longitudinal quark momentum fraction
- 2ξ longitudinal momentum transfer to the struck quark
- t momentum transfer to the nucleon

Large $\mathrm{Q}^{2}, \mathrm{t} \ll \mathrm{Q}^{2}$ and fixed x_{B} :

- factorization
- soft part: 4 GPDs at LO

GPDs " F ": $H, \tilde{H}, E, \tilde{E}$

$$
F(x, \xi, t)
$$

4 GPDs for each quark flavor

Fourier transforms of QCD non-local and non-diagonal operator $\left\langle p^{\prime}\right| \bar{\psi}_{q}(0) \mathcal{O} \psi_{q}(y)|p\rangle$

Deeply Virtual Compton Scattering and GPDs

Average over quark helicity unpolarized GPDs

Hs conserve nucleon spin

Difference of quark helicity polarized GPDs

\tilde{H}

Es flip nucleon spin

Quark helicity is conserved
Fairfield
UNIVERSITY

Accessing GPDs via DVCS

Bethe Heitler experimentally indistinguishable from DVCS

$$
\frac{d^{4} \sigma}{d Q^{2} d x_{B} d t d \phi} \propto\left|T_{\mathrm{DVCS}}+T_{\mathrm{BH}}\right|^{2}=\left|T_{\mathrm{DVCS}}\right|^{2}\left|+\left|T_{\mathrm{BH}}\right|^{2}+I\right.
$$

@ Cross section measurement

- Polarization measurements: asymmetries and cross-section differences $\Rightarrow \sigma^{+}-\sigma^{-} \propto I=T_{\mathrm{DVCS}} T_{\mathrm{BH}}^{*}+T_{\mathrm{DVCS}}^{*} T_{\mathrm{BH}}$

$$
A=\frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}} \propto \frac{I}{\left|T_{\mathrm{DVCS}}\right|^{2}+\left|T_{\mathrm{BH}}\right|^{2}+I}
$$

$$
T_{\mathrm{DVCS}} \propto \mathcal{P} \int_{-1}^{1} d x\left[\frac{1}{x-\xi} \mp \frac{1}{x+\xi}\right] F(x, \xi, t)-i \pi[F(\xi, \xi, t) \mp F(-\xi, \xi, t)]
$$

GPDs sensitivity of DVCS spin observables

Compton Form Factors: 8 GPD-related quantities

$$
\begin{aligned}
\Re \mathrm{e} \mathcal{F} & =\mathcal{P} \int_{-1}^{1} d x\left[\frac{1}{x-\xi} \mp \frac{1}{x+\xi}\right] F(x, \xi, t) \\
\Im \mathrm{m} \mathcal{F} & =\pi[F(\xi, \xi, t) \mp F(-\xi, \xi, t)]
\end{aligned}
$$

Observable

Proton Neutron

Beam Spin Asymmetry $A_{L U}$

$$
A_{\mathrm{LU}}(\phi) \propto \Im \mathrm{m}\left[r_{1} \mathcal{H}+\xi\left(F_{1}+F_{2}\right) \tilde{\mathcal{H}}-\frac{t}{4 M^{2}} F_{2} \mathcal{E} \mathrm{~s} g \mathrm{n} \phi\right.
$$

$\Im \mathrm{m}\left\{\mathcal{H}_{p}, \widetilde{\mathcal{H}_{p}}, \mathcal{E}_{p}\right\} \Im \mathrm{m}\left\{\mathcal{H}_{n}, \widetilde{\mathcal{H}_{n}}, \mathcal{E}_{n}\right\}$
Target Spin Asymmetry AuL
$A_{\mathrm{UL}}(\phi) \propto \Im \mathrm{m}=\tilde{-1} \tilde{\mathcal{H}} \xi\left(F_{1}+F\left(\mathcal{H}+\frac{x_{B}}{2} \mathcal{E}\right)-\xi\left(\frac{x_{B}}{2} F_{1}+\frac{t}{4 M^{2}} F_{2}\right) \tilde{\mathcal{E}}\right] \sin \phi \quad \Im \mathrm{sm}\left\{\mathcal{H}_{p}, \widetilde{\mathcal{H}_{p}}\right\} \operatorname{Sm}\left\{\mathcal{H}_{n}, \widetilde{\mathcal{H}_{n}}, \mathcal{E}_{n}\right\}$
Double Spin Asymmetry ALL
$A_{\mathrm{LL}}(\phi) \propto \Re \mathrm{M}=\tilde{1} \hat{\mathcal{H}}+\xi\left(F_{1}+2(\mathcal{H}-) \frac{x_{B}}{2} \mathcal{E}\right)-\xi\left(\frac{x_{B}}{2} F_{1}+\frac{t}{4 M^{2}} F_{2}\right) \tilde{\mathcal{E}}(A+B \cos \phi)$
$\Re \operatorname{Re}\left\{\mathcal{H}_{p}, \widetilde{\mathcal{H}_{p}}\right\} \quad \Re e\left\{\mathcal{H}_{n}, \widetilde{\mathcal{H}_{n}}, \mathcal{E}_{n}\right\}$
Transverse Target Spin Asymmetry Aut
$\left.A_{\mathrm{UT}}(\phi) \propto \Im \mathrm{m}\left[k\left(\mathrm{~L}_{2} \mathcal{H}\right)-\mathcal{F}_{1} \mathcal{E}\right)+\ldots\right] \sin \phi \quad 9 \quad \Im \mathrm{~m}\left\{\mathcal{H}_{p}, \mathcal{E}_{p}\right\} \quad \Im \mathrm{m}\left\{\mathcal{H}_{n}\right\}$

Overview of DVCS experiments in the world

- COMPASS
- Momentum $100-190 \mathrm{GeV}$
- p-DVCS X-sec,BSA,BCA, tTSA,ITSA,DSA
- H1 ZEUS
- p-DVCS X-sec,BCA
- HERMES
- 27 GeV beam
- p-DVCS BSA,BCA, tTSA,ITSA,DSA
- JEFFERSON LAB -
- 6 GeV e beam
- Hall A high precision X-sec pDVCS nDVCS, X-sec, ΔX-sec
- CLAS wide kinematic coverage pDVCS BSA, ITSA, DSA, X-sec, ΔX-sec

DVCS at Jefferson Lab

Continuous Electron Beam Accelerator Facility
$I_{\max }=200 \mu \mathrm{~A}$
$\mathrm{E}_{\max }=6 \mathrm{GeV}$
$\sigma_{\mathrm{E}} / \mathrm{E} \sim 2.5 \quad 10^{-5}$
Beam Pol~80\%

Electron Arm

Hall A 2HRS
$L^{\sim} 10^{37} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
High resolution

Hadron Arm

CLAS: DVCS Beam Spin Asymmetry

S. Stepanyan et al., PRL 87 (2001)

First measurement of the BSA in exclusive electro- production of real photons in the deeply inelastic regime

$$
\begin{aligned}
& <Q^{2>}=1.25 \mathrm{GeV}^{2} \\
& \left\langle x_{B}>=0.19\right. \\
& <-t>=0.19 \mathrm{GeV}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{E}=4.3 \mathrm{GeV} \\
& \mathrm{ep} \rightarrow \mathrm{e} \mathrm{p} \mathrm{X} \\
& \text { CLAS } \\
& \text { Target } \mathrm{LH}_{2}
\end{aligned}
$$

$A=a \sin \phi+b \sin 2 \phi$ a>>b twist 2 dominance
 BSA@Hermes

A. Airapetian et al. Phys. Rev. Lett. 87, 182001 (2001)
$\underset{\text { UNIVERSITTY }}{\text { Fairfield }}$

CLAS: dedicated BSA measurement

F.X. Girod et al., PRL 100 (2008)

CLAS: Target spin asymmetry

S. Chen et al Phys. Rev. Lett. 97, 072002

$$
\begin{aligned}
& \mathrm{E}=5.75 \mathrm{GeV} \\
& \overrightarrow{\mathrm{e}} \overrightarrow{\mathrm{p}} \rightarrow \text { e } \mathrm{p} y \\
& \text { CLAS } \\
& \text { Target } \mathrm{NH}_{3}
\end{aligned}
$$

First measurement of the longitudinal TSA in exclusive electro- production of real photons in the deeply inelastic regime

- - VGG twist 3 and 3
... VGG Ḧ=0
Sensitivity to $\operatorname{Im}\{\tilde{H}\}$
$\left\langle Q^{2>}=1.82 \mathrm{GeV}^{2}\right.$
$\left\langle\mathrm{X}_{\mathrm{B}}\right\rangle=0.16$
$\langle-\mathrm{t}\rangle=0.31 \mathrm{GeV}^{2}$
$A=a \sin \phi+b \sin 2 \phi$ a>>b twist 2 dominance Handbag dominance confirmed @Hermes

TSA@Hermes
A. Airapetian et al., JHEP 1006 (2010)

Non-zero $\sin 2 \phi$

CLAS: polarized target DVCS dedicated run

- High statistics, improvement of a factor 10 over previous target asymmetry measurement (S. Chen et al)
- Complete detection of the final state ->small nuclear background
- Large kinematic range
- Simultaneous measurement of all three Beam, Target, and Double spin asymmetries in the same kinematic range
- simultaneous fit
- Compton Form Factors

Analysis work by:
Biselli
Niccolai
Pisano
Seder

Observalble	Sensitivity to CFFs	Experiment
$\Delta \sigma_{\text {beam }}(p)$	$\operatorname{Im} \#_{p}$	Hall A
$A_{\text {LU }}(p)$	$\operatorname{Im} \#_{p}$	HERMES CLAS

High statistics, limited coverage, 4 dimensional

High statistics and coverage, 4 dimensional
One ($\mathrm{Q}^{2}, \mathrm{x}_{\mathrm{b}}$ bin, 7 -t bins, low statistics, high

| $A_{U L}(p)$ | $\operatorname{Im} \#_{p}, \operatorname{Im} \#_{p}$ | HERMES CLAS |
| :---: | :---: | :---: | | Low statistics integrated |
| :---: |
| over 3/4 variables |

CLAS:Target Spin Asymmetries for DVCS

E. Seder et al Phys. Rev. Lett. 114 (2015) 032001

UNIVERSITY

CLAS:Target Spin Asymmetries for DVCS

E. Seder et al Phys. Rev. Lett. 114 (2015) 032001

CLAS: Beam Spin Asymmetries for DVCS

S. Pisano et al arXiv:1501.07052 - PRD Accepted

- Agreement with CLAS on H_{2}
- No sensitivity to nuclear effects
- Sensitivity to Im \#p
- Fast drop in -t
- Good agreement KMM12 but $\mathrm{t}<\mathrm{Q}^{2} / 4$
- Good agreement GL in some bins
- VGG \& GK
overestimate

$$
A_{L U}=\frac{\alpha_{L U} \sin \phi}{1+\beta \cos \phi}
$$

CLAS: Double Spin Asymmetries for DVCS

S. Pisano et al Phys. Rev. D. 91052014

- Constant term dominated by BH
- cosф term small and dominated by BH
- Agreement with VGG, GK, KMM

CLAS: Compton Form Factors

S. Pisano et al Phys. Rev. D. 91052014

CIPANP 2015, Vail, CO, May 19-24 2015

- M. Guidal, Eur. Phys. J. A 37, 319 (2008)
- Local fitting at each experimental $\mathrm{Q}^{2}, \mathrm{x}_{\mathrm{B}}, \mathrm{t}$
- Quasi model-independent: bounding the domains of variation of the CFFs ($5 x \mathrm{VGG}$)
- 8 unknowns, non linear problem, strong correlations
- Mostly sensitive to Im
- Im\# has a steeper slope than Im $\tilde{\neq}$ - axial charge more concentrated?
- Slope of Im\# decreasing as x_{b} increases fast quarks (valence) more concentrated in the nucleon's center, slow quarks (sea) more spread out
- Not enough ALl statistical precision to extract real parts $\operatorname{Re} \tilde{\tilde{H}} \operatorname{Re} \tilde{\tilde{E}}$

Hall A - cross section result (2006)

C.M. Camacho et al., PRL 97 (2006)

σ and $\Delta \sigma$
$\mathrm{Q}^{2}=1.5$
$<\mathrm{X}_{\mathrm{B}}>=0.36$
$-\mathrm{t}=0.11-0.33 \mathrm{GeV}^{2}$

$\overrightarrow{e p} \rightarrow e p X$
small Q range
...- Only BH
--- CFF twist-2
— CFF twist-2 for x-section
-.- CFF twist-3
Non zero DVCS contribution to σ
Negligible twist 3

Q^{2} independence of CFF \Rightarrow scaling

CLAS - DVCS cross section results

H. S. Jo et al arXiv:1501.07052 - PRL submitted

```
110 bins
Q}=1-4.6 GeV V 2
\mp@subsup{x}{B}{}}=0.1-0.5
-t=0.09-0.52 GeV
```


-- BH only
_ VGG Vanderhaeghen, Guidal, Guichon
.-- KMS Kroll, Moutarde, Sabati'e,
.... KM10 Kumerick Mueller
-- KM10a
σ and $\Delta \sigma$
$\Delta\left(d^{4} \sigma\right)=\frac{1}{2}\left[\frac{d^{4} \vec{\sigma}_{e p \rightarrow e^{\prime} p^{\prime} \gamma}}{d Q^{2} d x_{B} d t d \phi}-\frac{d^{4} \overleftarrow{\sigma}_{e p \rightarrow e^{\prime} p^{\prime} \gamma}}{d Q^{2} d x_{B} d t d \phi}\right]$

only H, Double dist
Double dist
4 GPDs, fit JLAB HERMES, ZEUS
no Hall A, $\tilde{H}=0$

CLAS - DVCS cross section differences

H. S. Jo et al arXiv:1501.07052 - PRL submitted

- M. Guidal, Eur. Phys. J. A 37, 319 (2008)
- Local fitting at each experimental $Q^{2}, x_{B, t}$
- Quasi model-independent: bounding the domains of variation of the CFFs ($5 x \mathrm{xGG}$)
- E and Ẽ set to zero to limit free parameters
- well-defined minimizing values for H_{Im} and $\mathrm{H}_{\text {Re }}$

- VGG model > fitted $H_{\text {Im }}$ @ the smallest values of X_{B}
- A, b decrease with increasing x_{B}
- $b \Leftrightarrow$ transverse size
- $A \Leftrightarrow$ partonic content \Rightarrow size and partonic content are bigger at smaller momentum fractions

Hall A - Recent cross section results

$\Delta 0$: Dominant twist-2 C^{\prime} term
$\triangle 0$: Small twist-3 C', large errors
CIPANP 2015, Vail, CO, May 19-24 2015

Defurne et al arXiv:1504.05453

$$
\begin{aligned}
& \sigma \text { and } \Delta \sigma \quad \overrightarrow{e p} \rightarrow e p X \\
& \text { Reanalysis of data published in } 2006
\end{aligned}
$$

$$
Q^{2} \text { dependence }
$$

$$
\mathrm{Q}^{2}=1.5-2.3 \mathrm{GeV}^{2}
$$

$$
\text { CFF extraction vs } Q^{2}
$$

$$
\left\langle x_{B}\right\rangle=0.36
$$

$$
-t=0.11-0.37 \mathrm{GeV}^{2}
$$

$$
5 \text { bins in } t
$$

o: Big twist- 2 TDVCs 2 term
o: Small twist-3 contributions

$$
\text { (also } x_{B} \text { dep.) }
$$

Hall A - Recent cross section results
 Defurne et al arXiv:1504.05453

- VGG better than KMS12 for σ
- both VGG and KMS12 overshoot $\Delta \sigma$
- KM10a good for $\Delta \sigma$
- KM10a underestimate σ at 180
- TMC (twist-4 target mass, finite t correction) on KMS12 and KM10a improves the agreement

KM10a tuned to all DVCS data but Hall A cross section
KM12 not adapted to valence region (tuned to vector meson data very low $x B$)

Hall A - Rosenbluth-like separation of DVCS

Experiment E07-007
Data taken in 2010
Analysis underway
Projected results
Analysis technique:

- Measure σ and $\Delta \sigma$ @fixed x_{B}, for $3 Q^{2}$ bins and 2 beam energies
- Extract CFF coefficients using azimuthal dependence
- Use energy dependence of the coefficients to separate DVCS from I

\triangle EOO-110 extraction of phenomenological coefficients DVCS²+1
- project results (different if DVCS ${ }^{2}$ term is large)

DVCS on the neutron

- We can extract GPDs for proton or neutron but we want GPDs for quark flavors

$$
\begin{aligned}
(H, E)_{u}(\xi, \xi, t) & =9 / 15\left[4(H, E)_{p}(\xi, \xi, t)-(H, E)_{n}(\xi, \xi, t)\right] \\
(H, E)_{d}(\xi, \xi, t) & =9 / 15\left[4(H, E)_{n}(\xi, \xi, t)-(H, E)_{p}(\xi, \xi, t)\right]
\end{aligned}
$$

- H, E for both proton and neutron are needed
- E_{n} BSA on neutron
- E_{p} TTSA on proton
- H_{n} TSA on neutron
- H_{p} BSA on proton
nDVCS important for flavor separation
- with $\mathrm{H}_{\mathrm{q}}, \mathrm{E}_{\mathrm{q}}$ can extract the quark angular momentum (Ji's sum rule)

$$
\begin{aligned}
& J_{N}=\frac{1}{2}=J^{q}+J^{g}=\frac{1}{2} \Sigma+L^{q}+\Delta g+L^{g} \\
& J^{q}=\frac{1}{2}-J^{g}=\frac{1}{2} \int_{-1}^{+1} x d x\left[H^{q}(x, \xi, 0)+E^{q}(x, \xi, 0)\right]
\end{aligned}
$$

information on quark orbital angular momentum

Hall A: DVCS neutron ${ }_{D\left(\vec{e}, e^{\prime}, \gamma\right) X}$

M. Mazouz et al., PRL 99,242501 (2007)

$$
\begin{aligned}
& \left\langle Q^{2}\right\rangle=1.9 \mathrm{GeV}^{2} \\
& \left\langle\mathrm{X}_{\mathrm{B}}\right\rangle=0.36 \\
& -\mathrm{t}=0.1-0.5 \mathrm{GeV}^{2}
\end{aligned}
$$

$$
\begin{gathered}
D\left(\vec{e}, e^{\prime}, \gamma\right) X=d\left(\vec{e}, e^{\prime}, \gamma\right) d+n\left(\vec{e}, e^{\prime}, \gamma\right) n+p\left(\vec{e}, e^{\prime}, \gamma\right) p+\ldots \\
\left.\left.\frac{d^{5} \Sigma_{D-H}}{d^{5} \Phi}=\frac{1}{2}\left(\frac{d^{5} \sigma^{+}}{d^{5} \Phi}-\frac{d^{5} \sigma^{-}}{d^{5} \Phi}\right)=\left(\Gamma_{d}^{\mathcal{I}} \mathcal{I} m \mathcal{C}_{d}^{I}\right]^{x p}+\Gamma_{n}^{\mathcal{I}} \operatorname{In} n\left[\mathcal{C}_{n}^{I}\right]\right]^{x p}\right) \sin \left(\phi_{\gamma \gamma}\right)
\end{gathered}
$$

Fit of 2520 bins in M_{x}, t and $\phi_{y y}$ to extract CFFs

CLAS: DVCS neutron

$$
e+\vec{d} \rightarrow e^{\prime}+\gamma+n+\left(p_{s}\right)
$$

eg1-dvcs run
CLAS+IC

- NH3 95 days
- ND3 33 days
$\mathrm{E}_{\mathrm{b}}=6 \mathrm{GeV}$
beam pol=80\% neutron pol 30\%

```
Non-zero BSA
```

Analysis underway

Use NH_{3} to subtract nuclear background

CLAS: DVCS on nuclei

eg6 run
CLAS+IC+RTCP
${ }^{4} \mathrm{He}$ target
Beam: 6GeV
Analysis underway ${ }^{4} \mathrm{He}$ spin 0 , only one GPD at twist- 2 in DVCS BSA

$$
A_{L U}^{4}{ }^{H e}(\phi)=\frac{a_{0}(\phi) F_{A}(t) \mathcal{I} \mathrm{m}\left[\mathcal{H}_{A}\right]}{a_{1}(\phi) F_{A}^{2}(t)+a_{2}(\phi) F_{A}(t) \mathcal{R e}\left[\mathcal{H}_{A}\right]+a_{3}(\phi) \mathcal{R e}\left[\mathcal{H}_{A}\right]^{2}+a_{3}(\phi) \mathcal{I} \mathrm{m}\left[\mathcal{H}_{A}\right]^{2}}
$$

only stat errors
Fit ALU signals: $\mathrm{p} 0 * \sin (\phi) /(1+\mathrm{p} 1 * \cos (\phi))$

Measure of coherent and incoherent DVCS

LT: S. Liuti and S. K. Taneja.Phys. Rev., C72:032201, 2005.
GS: V. Guzey and M. Strikman. Phys. Rev., C68:015204, 2003. HERMES: F. Ellinghaus, R. Shanidze, and J. Volmer. AIP Conf. Proc., 675:303-307, 2003

CLAS: DVCS on nuclei (cont.) $)_{\text {worktrm . matarax }}$

Fit of ALU@90 vs t
Extraction of the CFF
H_{A} vs. -t

 Incoherent DVCS

Comparison coherent and incoherent A_{LU} vs. φ in x_{B} bins

The bound proton shows a lower asymmetry relative the free one in the different bins in X_{B}

Upgrade of Jefferson Lab

Beam energies: 2.2, 4.4, 6.6, 8.8, 11

Polarization >80\%

20 cryomodules

Beam Power: 1MW
Beam Current: $90 \mu \mathrm{~A}$
Max Energy/pass: 2.2 GeV
Max Energy Hall A-B-C: 11 GeV Max Energy Hall D: 12 GeV

Hall A DVCS @ 12 GeV

E12-06-114: HRS-L +PbF2 calorimeter

- Absolute cross sections
- Test of scaling: Q^{2} dependence of s for fixed x_{B}
- increased kinematic coverage

First experiment to run after the 12 GeV upgrade

CIPANP 2015, Vail, CO, May 19-24 2015

JLab @ 6 GeV

CLAS12

CLAS12 DVCS experiments

CLAS12,FT,CND,NH3,HDIce

- Large kinematic coverage
- BSA, TSA, DSA, tTSA
- cross-section
- CFF extraction

CIPANP 2015, Vail, CO, May 19-24 2015

CLAS exper.	physics	
E12-06-112	DVCS BSA TSA	Luminosity up to sa
E12-11-003	nDVCS BSA	$\mathrm{Pb}^{\sim} 85 \% \mathrm{NH}_{3} \sim 80 \%$
E12-06-119	pol target DVCS	$1<\mathrm{Q}^{2}<10 \mathrm{GeV}^{2}$
	pDVCS transverse TSA	$-\mathrm{t}_{\text {min }}<-\mathrm{t}<2.5 \mathrm{XeV}^{2}<0.65$
		Fairfield

Hall C DVCS @ 12 GeV

E12-13-010: HMS +PbWO4 calorimeter

- Energy separation of the DVCS cross-section
- Higher Q $^{2:}$ measurement oh higher twist contribution
- Low xB extension

[^0]

Conclusions

- GPD are a powerful and unique tool explore the structure of the nucleon
- GPDs are fully-correlated quark distributions in both coordinate and momentum space -> 3D imaging
- Complex extraction from data
- 4 GPD for each quark flavor
- GPDs depend on 3 variables but only two are experimentally accessible. Need models to map the x dependence
- Cross sections depend on integrals of GPDs
- Need extensive measurements of different observables for both proton and neutron over a large kinematic range for a reliable extraction of GPDs
- 6 GeV program was very successful and gave us a first look at the structure of the nucleon
- Rich experimental program planned at Jefferson Lab@12GeV in the 3 "Râlles ${ }^{1}$ to complete this study in the valence region

Thank you for the invitation.

Next time let's organize the conference during winter

Vail Feb 2007

[^0]: CIPANP 2015, Vail, CO, May 19-24 2015

