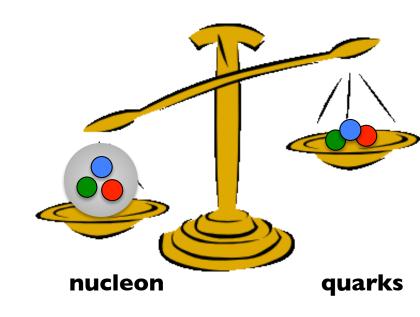


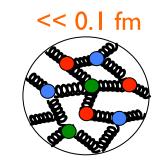
The Hadron Spectroscopy Program at Jefferson Lab

Raffaella De Vita INFN – Genova

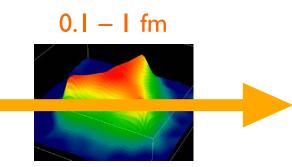

INFN Frascati National Laboratories, 21-15 September 2015

QCD and Spectroscopy

- Hadrons are one of the most relevant manifestations of the works of QCD
- Hadrons have an internal structure being made of quarks: known quark configurations are baryons, made of tree quarks and mesons, made of quark-antiquark pairs
- Quark masses account only for a small fraction of the nucleon mass: ~ 1%
 - $m_q \sim 10 \text{ MeV}$
 - m_N ~ 1000 MeV


while the remaining fraction is to to the force that binds the quarks: **QCD**

 Hadron spectroscopy is a "portal" to Quantum Chromo Dynamics



Hadrons and QCD

- Hadrons are color neutral systems made of quarks and gluons but...
 - What is the internal structure and what are the internal degrees of freedom of hadrons?
 - What is the role of gluons?
 - What is the origin of quark confinement?
 - Are 3-quarks and quark-antiquark the only possible configurations?
- <u>Spectroscopy is a key tool to investigate these issues</u>

Quarks and Gluons

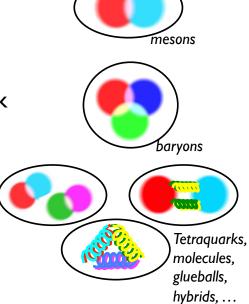
Effective Degrees of Freedom

> | fm

Mesons & Baryons

The Hadron Spectroscopy Program at Jefferson Lab

Frascati, 22 September 2015


Spectroscopy and QCD

How can we exploit spectroscopy to probe QCD?

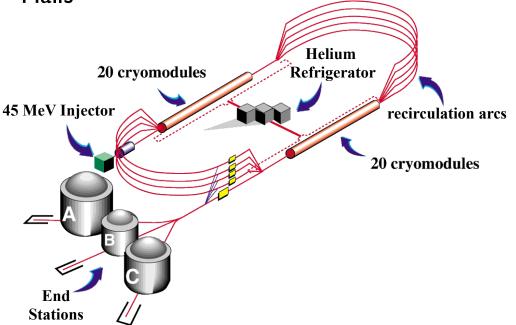
Baryons: building blocks of ordinary matter, baryon structure is most obviously related to color degrees of freedom

Mesons: the simplest quark bound states, i.e. the best benchmark to understand how quarks interact to form hadrons

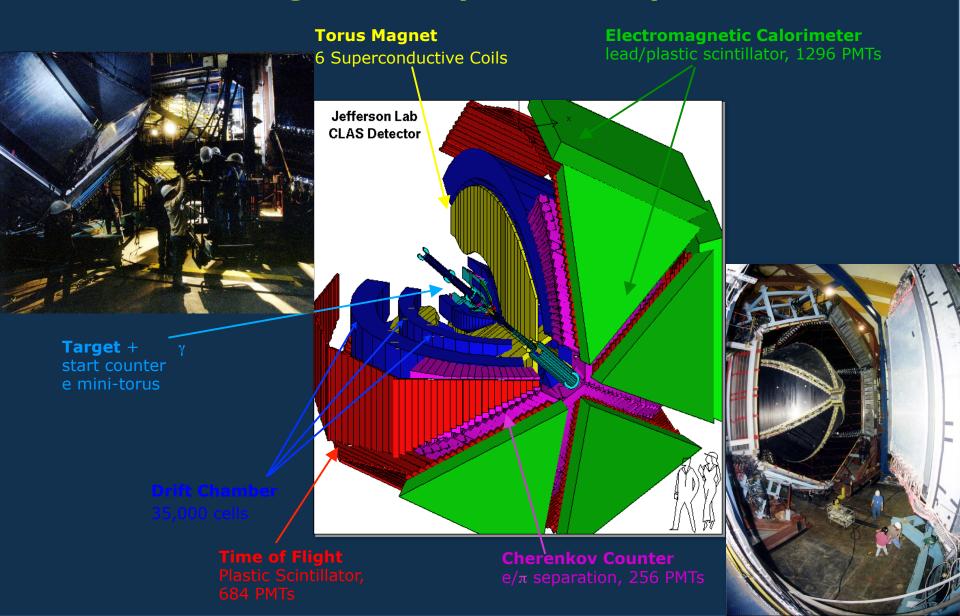
Exotics: unconventional quark-gluon configuration can reveal hidden aspects of QCD

Global effort involving experimentalists and theorists from all over the world...

- different reaction processes
- from low to high energy physics
- electro- and photo-production at Jefferson Lab



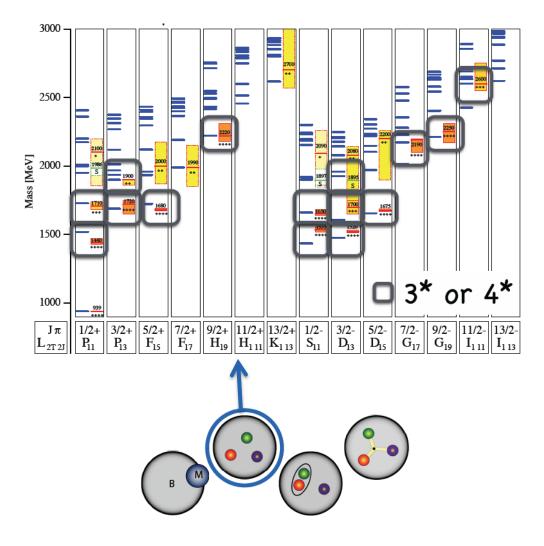
High electron polarization Beam Power: IMW Beam Current: 200 µA Max Energy: 6 GeV RF: 1499 MHz


Jefferson Laboratory

Continuous Electron Beam Accelerator Facility (CEBAF):

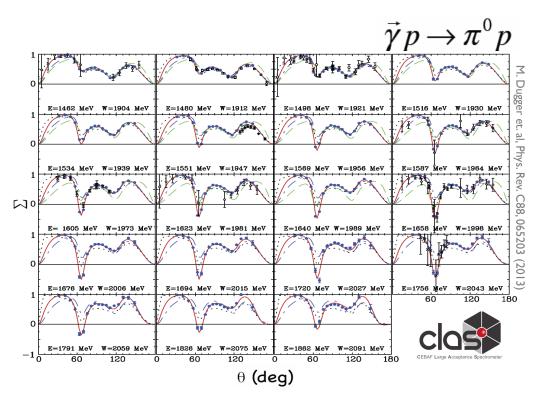
- a superconducting electron machine based on two Linacs in racetrack configuration
- Simultaneous distribution to 3 experimental Halls

CEBAF Large Acceptance Spectrometer

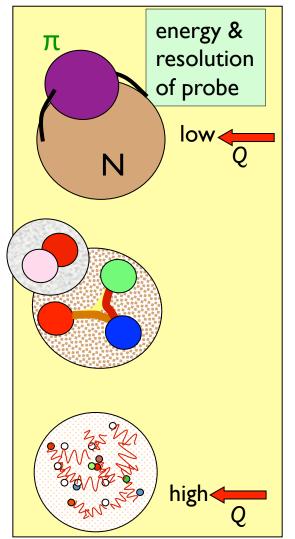

Baryon Spectroscopy

The baryon spectrum has been crucial for the development of QCD:

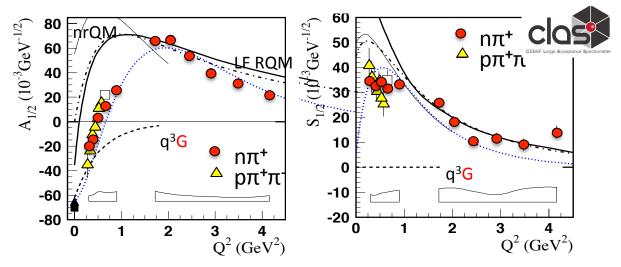
- Multiplet structure led to the proposal of the quark model
- The discovery of the Ω^{-} confirmed the path was correct
- Inner structure connected to number of colors


Many open questions (light quarks):

- Nucleon resonance spectrum and missing states
- Effective degrees of freedom and transition from partonic to hadronic description
- Hyperon spectroscopy


Search for Missing Resonances

- High precision measurement of multiple polarization observables in photoproduction off nucleons ("complete" experiments)
- Evidence of new states found in coupled-channel analyses
- Large impact of new data expected!


	N^*	$J^P(L_{2I,2J})$	2010	2012	future
resonances	p	$1/2^+(P_{11})$	* * **	* * **	
	\boldsymbol{n}	$1/2^{+}(P_{11})$	* * **	* * **	
	N(1440)	$1/2^+(P_{11})$	* * **	* * **	
č	N(1520)	$3/2^{-}(D_{13})$	* * **	* * **	
g	N(1535)	$1/2^{-}\left(S_{11} ight)$	* * **	* * **	
ō	N(1650)	$1/2^{-}\left(S_{11} ight)$	* * **	* * **	
Sa	N(1675)	$5/2^{-}(D_{15})$	* * **	* * **	
Ĕ	N(1680)	$5/2^{+}(F_{15})$	* * **	* * **	
<u>*</u>	N(1685)			*	:
Ζ	N(1700)	$3/2^{-}(D_{13})$	* * *	***	
۲ ۲	N(1710)	$1/2^{+}(P_{11})$	* * *	***	ţě
ų	N(1720)	$3/2^{+}(P_{13})$	* * **	* * **	a'
Ø	N(1860)	$5/2^{+}$		**	upcoming updates
q	N(1875)	$3/2^{-}$		* * *	2
þ	N(1880)	$1/2^+$		**	ŭ,
PDG baryon summary table for N*	N(1895)	$1/2^{-}$		**	E
	N(1900)	$3/2^{+}(P_{13})$	**	* * *	8
	N(1990)	$7/2^+(F_{17})$	**	**	d d
	N(2000)	$5/2^+(F_{15})$	**	**	:
	N(2080)	D_{13}	**		
S	N(2090)	S_{11}	*		
von	N(2040)	$3/2^+$		*	
	N(2060)	$5/2^{-}$		**	
Ľ.	N(2100)	$1/2^+ (P_{11})$	*	*	
ğ	N(2120)	3/2-		**	
(D	N(2190)	$7/2^{-}(G_{17})$	* * **	* * **	
ă	N(2200)	D_{15}	**		
đ	N(2220)	$9/2^+(H_{19})$	* * **	* * **	
	N(2250)	$9/2^{-}(G_{19})$	* * **	* * **	
	N(2600)	$11/2^{-}(I_{1,11})$	* * *	* * *	
	N(2700)	$13/2^+(K_{1,13})$	**	**	l,

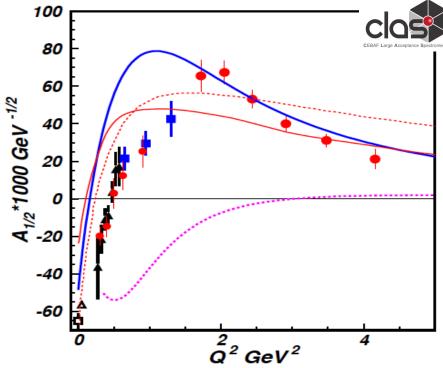
Transition Form Factors

Electro-production can be used to explore the hadron structure at different wavelengths (Q^2)

Electro-couplings of "Roper" N(1440)1/2+

- $N\pi$ and $N\pi\pi$ give consistent results
- $A_{1/2}$ changes sign and has large magnitude at high Q^2
- QM fails to reproduce low Q² behavior, LFQM better at large Q²
- Both A_{1/2}(Q²) and S_{1/2}(Q²) inconsistent with hybrid model prediction

The "Roper" resonance in 2015


Description of the $N(1440)1/2^+ A_{1/2}$ electro-coupling in LF QM that incorporate the inner core of three dressed quarks in the first radial excitation and outer meson-baryon (MB) cloud:

Nπ loops to model MB cloud; **running quark mass**, in LF RQM. I.G. Aznauryan, V.B., Phys. Rev. C85, 055202 (2012)

----- No loops to model MB cloud; frozen constituent quark mass. I.T. Obukhovsky, et al., Phys. Rev. D89, 014032 (2014).

Quark core contributions from DSE/QCD (2015), J. Segovia et al., arXiv: 1504.04386

MB cloud **inferred from the CLAS data** as the difference between the data and quark core evaluated in DSE/QCD

The structure of $N(1440)1/2^+$ resonance is determined by the interplay between a core of three dressed quarks in the 1st radial excitation and the external meson-baryon cloud

The Puzzling $\Lambda(1405)$

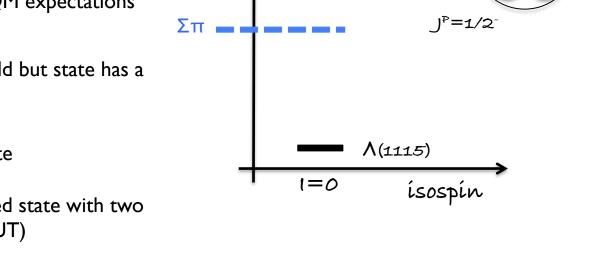
 $\Lambda(1670)$

∧(1520)

1(1405

 $|^{P}=3/2^{T}$

L=1.5=1/2


(MeV)

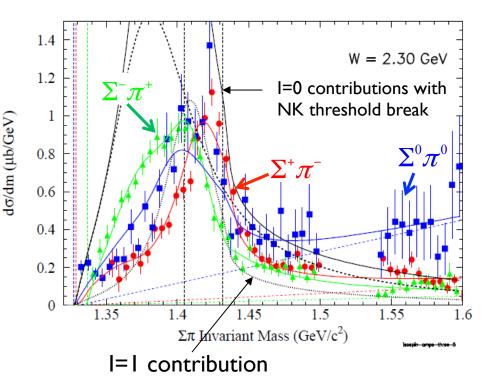
MASS

NK

First excited state of the Λ baryon:

- State known since 1950's
- PDG:
 - M=(1405±1) MeV
 - Γ=(50±2) MeV
 - J^P=1/2⁻ based on CQM assignment
- Mass inconsistent with CQM expectations
- Complex line shape
- Mass is below NK threshold but state has a strong coupling to NK
- Different interpretations:
 - Standard 3 quark state
 - Molecule or hybrid
 - Dynamically generated state with two overlapping poles (χUT)

PDG: "The nature of the $\wedge(1405)$ has been a puzzle for decades: three-quark state or hybrid; two poles or one. We cannot here survey the rather extensive literature..."


The Puzzling $\bigwedge(1405)$

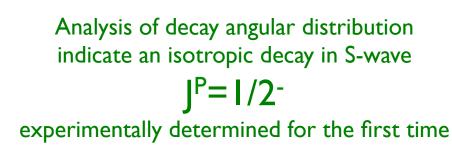
An issue since its prediction/discovery:

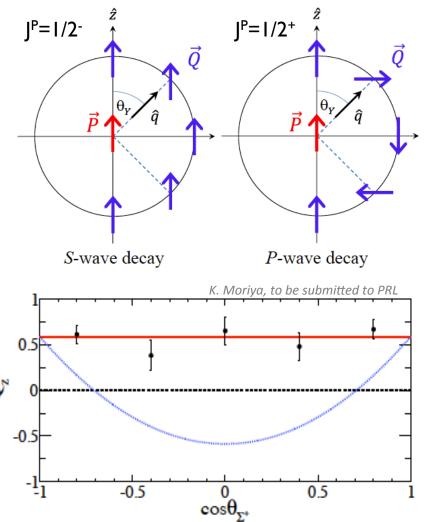
- CQM: SU(3) singlet 3q state, $I=0, J^{p} = \frac{1}{2}$
- Unusual mass, line shape and couplings
- Proposed as dynamically generated state, molecule, ...

CLAS at **JLAB**:

- Measured in photoproduction off proton
- Analysis of lines shape from Σπ decay consistent with I=I contribution (resonance or continuum?)
- J^P=1/2⁻ experimentally determined for the first time from decay angular distribution

Phys. Rev. C 87, 035206 (2013) Nucl. Phys A 914, 51 (2013) Phys. Rev. Lett. 112, 082004 (2014)

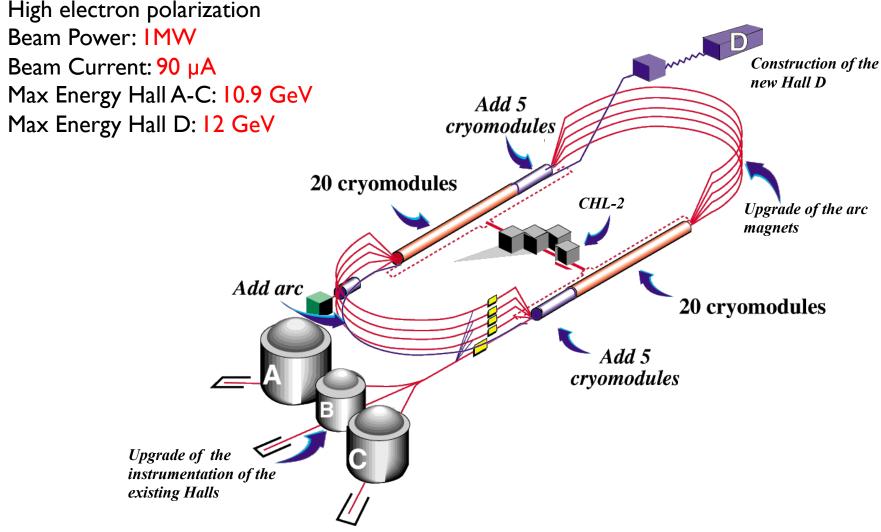

A(1405) Spin and Parity


Parity and spin of the state were never measured before and PDG J^P assignment is based on the CQM expectation

 J and P can be inferred finding a reaction where A(1405) is created polarized and studying the decay:

∧(I405) → Σ π

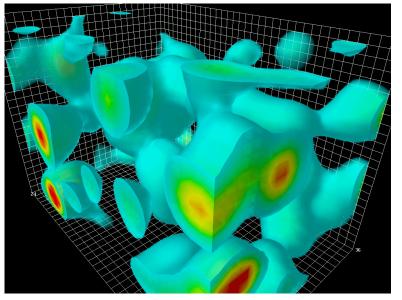
- Decay angular distribution relates to J:
 - J=1/2: flat distribution
 - J=3/2: "smile" or "frown" distribution
- Parity is given by polarization transfer to daughter

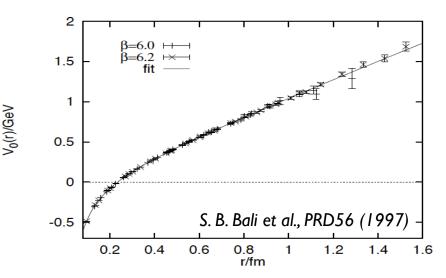


The Hadron Spectroscopy Program at Jefferson Lab

Frascati, 22 September 2015

Jefferson Lab Upgrade


Jefferson Lab Upgrade

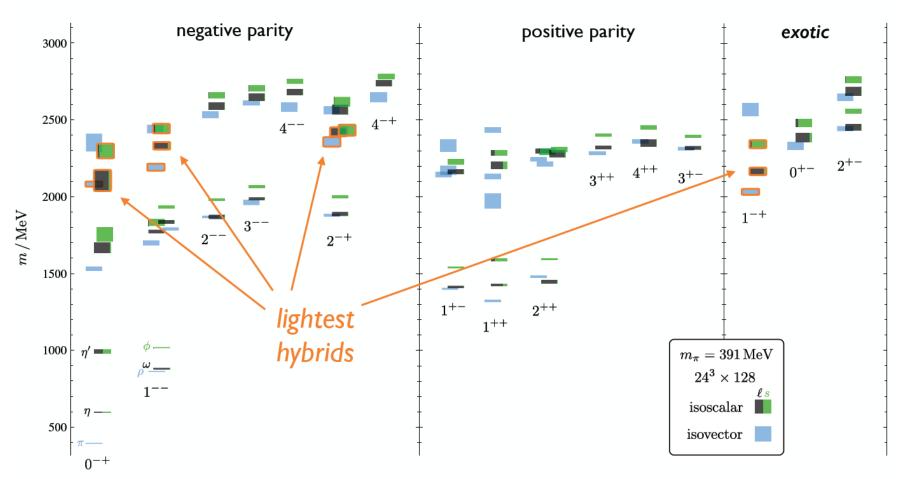


Meson Spectroscopy

Goals in meson spectroscopy are to investigate fundamental aspects of QCD, studying meson spectrum and decays and searching for exotic states

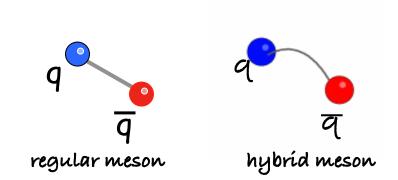
D. Leinweber: LQCD visualization of the QCD vacuum

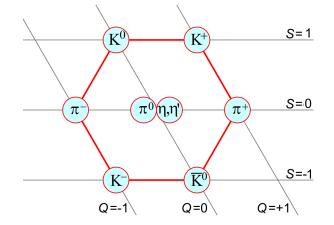
Light quark mesons (uds):


- sensitive to chiral symmetry breaking and vacuum condensate effects
- probe the strong force at larger distances (confinement)

Heavy quark mesons (cbt):

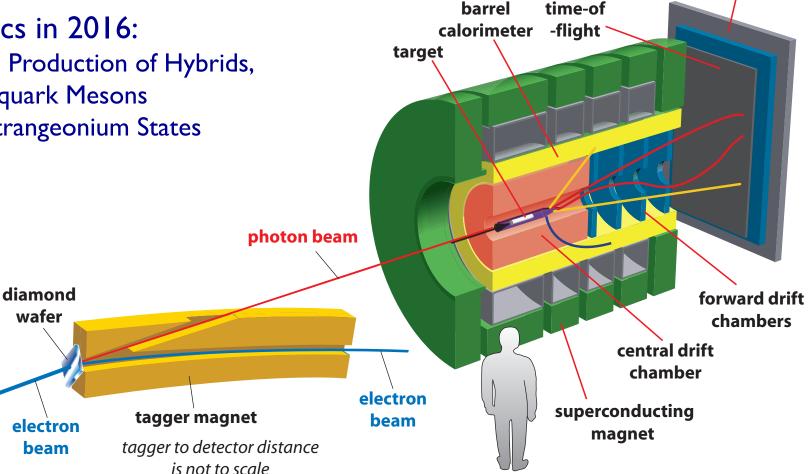
- can be described with non-relativistic potential models
- probe the strong force at smaller distances where short-range color interaction dominates


Hadrons on the Lattice


Dudek, Edwards, Guo, and Thomas, PRD 88, 094505 (2013)

Hybrids and Exotics

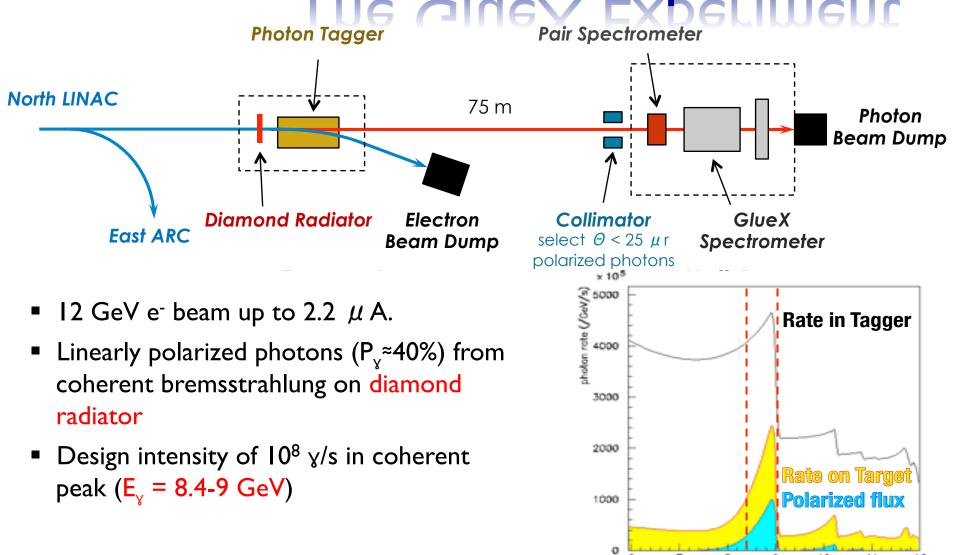
- Hybrids (qqg) are the ideal system to study qq interaction and the role of gluons
- Existence is not prohibited by QCD but not yet firmly established.
- A possibility to identify unambiguously a meson as an hybrid state is to look for exotic quantum numbers



- * Excitation of the glue leads to a new spectrum of hadrons that can have exotic quantum numbers $\int^{PC} = 0^{+-}, 1^{-+}, 2^{+-} \dots$
- For each exotic quantum number combination, a nonet of state should exist
- Lattice QCD predictions indicated the mass of the lowest state to be around 2 GeV, a range that can be explored at JLab

The GlueX Experiment

Physics in 2016: Photo Production of Hybrids, Light-quark Mesons and Strangeonium States



The Hadron Spectroscopy Program at Jefferson Lab

BaBar DIRC Bars

forward calorimeter

The GlueX Experiment

GLUE

The Hadron Spectroscopy Program at Jefferson Lab

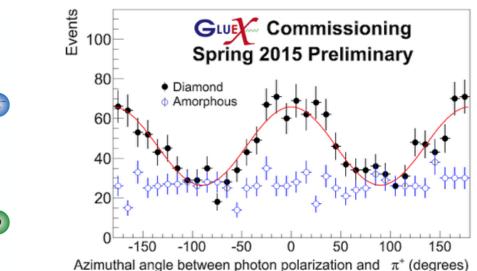
Frascati, 22 September 2015

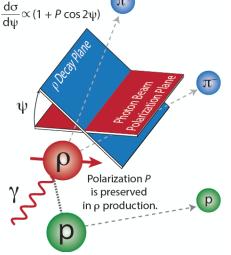
10

photon energy (GeV)

7

я


The GlueX Experiment


Spring 2014:	Installation mostly complete
Fall 2014:	First commissioning beam (~2 weeks@
	10.5 GeV)
Spring 2015:	Commissioning (~1 week @ 5 GeV)
	first liquid hydrogen target,
	first linearly polarized beam

Observations:

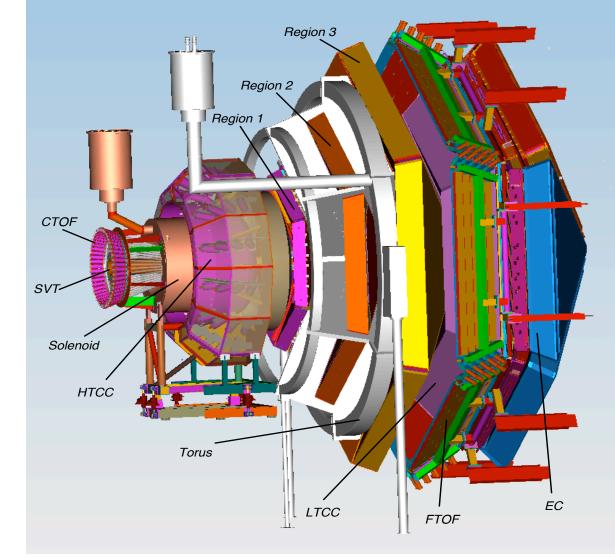
- Particles: $\pi^0 \eta$ and $\phi \rho \omega$ in exclusive channels
- Polarization asymmetry in physics reactions

First physics with GLUEX!

 π^+

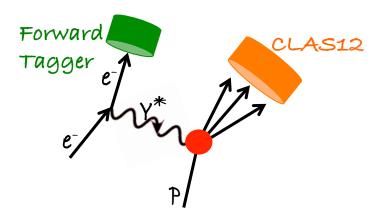
CLASI2

Forward Detector:

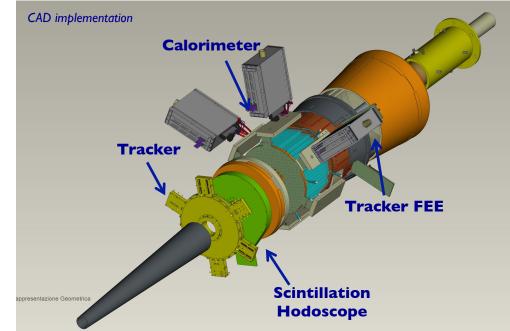

- TORUS magnet
- Forward SVT tracker
- HT Cherenkov Counter
- Drift chamber system
- LT Cherenkov Counter
- Forward ToF System
- Preshower calorimeter
- E.M. calorimeter (EC)

Central Detector:

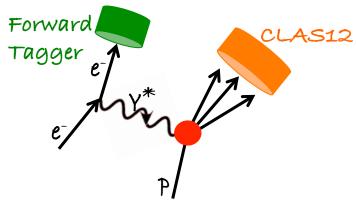
- SOLENOID magnet
- Barrel Silicon Tracker
- Central Time-of-Flight


Proposed upgrades:

- Micromegas (CD)
- Neutron detector (CD)
- RICH detector (FD)
- Forward Tagger (FD)


Frascati, 22 September 2015

The CLASI2 Forward Tagger


Quasi-real photoproduction on proton target:

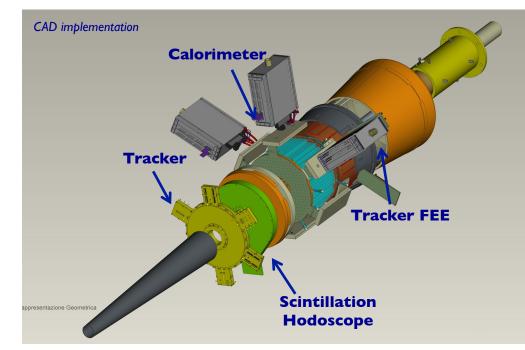
- Detection of multiparticle final state from meson decay in the large acceptance spectrometer CLAS12
- Detection of the scattered electron for the tagging of the quasi-real photon in the novel Forward Tagger

Forward Tagger				
E'	0.5-4.5 GeV			
ν	7-10.5 GeV			
θ	2.5-4.5 deg			
Q ²	0.007 – 0.3 GeV ²			
W	3.6-4.5 GeV			
Photon Flux	$5 \times 10^7 \gamma/s @ L_e = 10^{35}$			

The CLASI2 Forward Tagger

Physics goals

Meson spectroscopy:

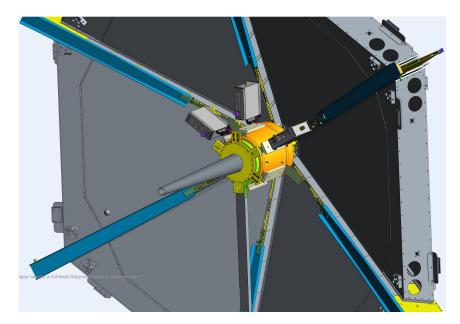

- Detailed mapping of the meson spectrum up to 2.5 GeV
- Investigation of strangeonium and strangeness rich states
- Search for exotics

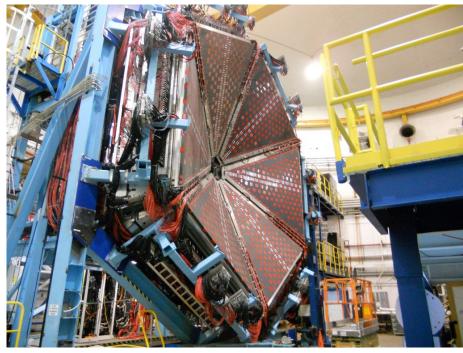
Baryon spectroscopy:

- Study of the $\Omega^{\scriptscriptstyle -}$ and Ξ^*
- Study of Ξ^* production and polarization mechanisms

Quasi-real photoproduction on proton target:

- Detection of multiparticle final state from meson decay in the large acceptance spectrometer CLAS12
- Detection of the scattered electron for the tagging of the quasi-real photon in the novel Forward Tagger




The Hadron Spectroscopy Program at Jefferson Lab

R. De Vita

The CLASI2 Forward Tagger

- FT components in final assembly/test phase at different institutions
- Integration and installation plan defined
- First FT detector (calorimeter) to be transferred at Jefferson Lab in the Fall for full commissioning

- Installation scheduled for late summer 2016
- Commissioning of the full CLASI2 detector in Fall 2016
- First physics run in spring 2017

Summary and Herspectives

- The study of hadron spectroscopy can shed light on fundamental problems in the understanding of strong interaction and QCD
- Hadron spectroscopy is one of the pillars of the Jefferson Lab physics program carried out in the 6 GeV era and planned at 12 GeV
- The CLAS data at 6 GeV have provided important input for the understanding of the hadron spectrum and structure:
 - N* resonances
 - Hyperons
 - Light mesons
- An extensive program is planned at 12 GeV exploiting both real and quasireal photo-production:
 - GlueX in Hall D starting physics production in 2016
 - CLASI2 in Hall B starting physics production in 2017