Cross Sections of K⁰A Photoproduction off the Deuteron

Presented by: Nick Compton
Co-authors: Ken Hicks, Max Camp
Ohio University
Data from CLAS (g10) at JLAB

Motivation and Significance

- It is possible that current missing resonances may yield a better signal for different initial and final states (i.e. neutron excitations or strange sector decay).
- The photocouplings to that of a neutron are different than that of a proton, therefore could yield results unique to the neutron.
- Data for neutron spectroscopy are not very abundant. Specifically, there is minimal world data on the reaction $\gamma d \to K^0 \Lambda(p)$, if any.
- Investigated are the differential and total cross section of $\gamma d \to K^0 \Lambda$ (p) on an unpolarized target with an unpolarized real photon beam with beam energies of 1.0-3.0 GeV.

Figure 40.13: Total and elastic cross sections for $\pi^{\pm}p$ and $\pi^{\pm}d$ (total only) collisions as a function of laboratory beam momentum and total center-of-mass energy. Corresponding computer-readable data files may be found at http://pdg.lbl.gov/xsect/contents.html. (Courtesy of the COMPAS Group, HIEP, Protvino, August 2005.)

One possible production channel:

Reaction: $\gamma d \to K^0 \Lambda(p)$

- G10 data set
 - Incident electron energies of roughly 3.8 GeV
 - Magnetic field with +2250A
 - Reviewed are events with tagged beam energies in the range of 1.0 to 3.0 GeV
- Required detection of all final state particles
 - $\pi^{+}\pi^{-}\pi^{-}p$
 - Three branching ratios come into play to obtain final state shown to the right
 - Use detection of K_S^0 decay products
- Initial invariant mass plots show a clear peak at the PDG values of K_S^0 and Λ
 - $M(K_S^0) = 0.498 \text{ GeV}$
 - $M(\Lambda) = 1.116 \text{ GeV}$

Raw data where events contain the 4 final state products

$$\gamma d \to K^0 \Lambda(p) \to \pi^+ \pi^- \pi^- p(p)$$

$$K_{\rm S}^0 \to \pi^+\pi^-$$
 69.2%

$$\Lambda \rightarrow \pi^- p$$
 63.9%

Simulation of $K^0\Lambda$ Production

The missing mass technique results in a mass equal to the assumed spectator proton

$$m_p(spec) = \sqrt{{P_p}^2}$$

 $P_p(spec) = (P_{\gamma} + P_d - P_K - P_{\Lambda})$

Distributions within the Data

 Successive cuts about invariant masses cleans up the signal

- Signal is not completely isolated
 - One background is under the Kaon distribution (brown arrow)
 - Another background is to the right of the spectator proton (brown circle)

Simulation of $\gamma d \to K^0 \Sigma^0(p)$

Simulation of $\gamma d \to \pi^+\pi^-\pi^-p(p)$

- A generated 4-Body phase space distribution can model the background in the data reasonably well
 - Most likely due to a variety of production channels not producing KOLam at a variety of kinematics
 - No matter the invariant mass cuts, a peak should form about the proton mass

MM(π*ππ̄p)

| String | String

This type of background will be hidden under the $m_p(spec)$ signal. A pion background subtraction can be done by looking at the sidebands of K^0 .

Yield Extraction

- Cut on the invariant mass of Lambda
- Cut on the invariant mass of Kaon
- Fit missing mass spectrum
- Σ^0 production still produces real signal in the K^0 and Λ invariant mass spectrum
 - Fit the edge of the MC missing mass of Σ^0 production
- Subtract phase space type background
 - $\gamma d \rightarrow \pi^+ \pi^- \pi^- p(p)$
 - Fit pion background and subtract

Differential Cross Section

•
$$\frac{d\sigma}{d\cos\theta} = \frac{Y(E,\theta)}{\delta(\cos\theta)AN_{\gamma}(E)} \frac{d_{MM}}{\rho LN_A}$$

- The plot to the right
 - Fit to 3rd order Legendre Polynomial
 - Error bars are statistical only
 - Systematic Uncertainty is ~10%
 - Point geometrically centered on angular bin
 - Energy bins of 200 MeV

Differential Cross Section

•
$$\frac{d\sigma}{d\cos\theta} = \frac{Y(E,\theta)}{\delta(\cos\theta)AN_{\gamma}(E)} \frac{d_{MM}}{\rho LN_A}$$

- The plot to the right
 - Fit to 3rd order Legendre Polynomial
 - Error bars are statistical only
 - Systematic Uncertainty is ~10%
 - Point geometrically centered on angular bin
 - Energy bins of 200 MeV

Model Comparison

- Blue dotted line is an old isobar model calculation from T. Mart
 - Created for energies near threshold
 - Updated model comparison to come shortly

Total Cross Section: $\gamma d \to K^0 \Lambda(p)$

- Integrated polynomial to obtain a total cross section
 - Several fits were applied to obtain an idea of systematic effects
- An increase in the cross section is seen in the energies for W < 1.87 GeV
 - Indicative of resonance coupling to this channel
 - There are several nucleon resonances within these energies
- Theoretical models could utilize this data to predict and/or set limits on couplings to this channel

Summary and Conclusion

- Passed the internal CLAS analysis review
- Demonstrated where a nucleon resonance may be coupled to this reaction channel
- Provided a comparison for current work with g13
 - Independent study is also being done (C. Taylor)
 - Much more statistics
 - Finer binning available
 - A comparison between two methods and two different data sets would offer a powerful result
- Waiting for a comparison to a current theoretical model
 - In contact with T. Mart, who is almost completed with such a model

Back-Up Slides

Comparison of the Σ^0 background to the Data

Comparison of the pion background to the data

- Each plot is shown after a cut about the invariant mass of the lambda particles.
- As seen previously the phase space background has a linear distribution in the calculated K⁰ mass.
- This background can be removed by subtracting the events between the colored dotted lines.

Here "Mix" represents a subset of KOLam mixed with a 4 body phase space distribution

Sideband subtraction

- Using 3 of the plots in the figure to the left, a plot that resembles the upper left plot can be constructed
 - Signal (KOLam), Sigma0, and other non signal producing background
- The figure below shows the sideband cuts

