Beam Spin Asymmetry in Exclusive ω Photoproduction off the Bound Proton

Olga Cortés, Philip Cole (for the CLAS Collaboration)

Idaho State University, Pocatello, Idaho

Abstract

In this talk, we present preliminary results for the polarization observable beam-spin asymmetry, Σ , of the $\vec{\gamma}d \rightarrow \omega p(n)$ reaction, where the ω meson was identified through its $\omega \rightarrow \pi^+\pi^-\pi^0$ decay. The data were taken during the E06-103 experiment with the CLAS detector in Hall B at Jefferson Laboratory. The experiment used the Hall-B Coherent Bremsstrahlung Facility to provide a high quality beam of linearly-polarized photons in the energy range from 1.1 to 2.3 GeV.

We determined the beam-spin asymmetry of the ω s photoproduced off quasi-free protons in deuterium. We studied the evolution of Σ with photon energy and center-of-mass angle. This observable provides information on the underlying mechanisms responsible for *s*- and *t*channel processes. Further, since the ω meson is an isoscalar ($I_{\omega} = 0$), the reaction of interest serves as an ideal isospin filter, as only N^* states may contribute to the production process. Our results, together with studies of other reaction channels, serve to constrain the missing resonances predicted by QCD-inspired models of the nucleon's internal structure. This work is funded in part by NSF grant PHY-1307340.