Beam Spin Asymmetry in Exclusive ω Photoproduction off the Bound Proton

Olga Cortés, Philip Cole

Idaho State University, Pocatello, Idaho

Abstract

In this poster, we present preliminary results for the polarization observable beam-spin asymmetry, Σ , of the $\vec{\gamma}d \rightarrow \omega p(n)$ reaction, where the ω meson was identified through its charged decay ($\omega \rightarrow \pi^+\pi^-\pi^0$). The data were taken during the g13-b experiment with the CLAS detector, using the Hall-B Coherent Bremsstrahlung Facility to provide a high quality beam of linearly-polarized photons in the energy range from 1.1 to 2.3 GeV.

We determined the beam-spin asymmetry of the ω 's photoproduced off quasi-free protons in deuterium. We studied the evolution of Σ with photon energy and center-of-mass angle.

Since the ω meson is an isoscalar ($I_{\omega} = 0$), the reaction of interest serves as an ideal isospin filter, as only N^* states may contribute to the production process. The observable Σ will provide information on those resonant states that contribute in the ω photoproduction.

Our results on the quasi-free proton will give us also a methodology to conduct feasibility studies for analysing the $\gamma n(p) \rightarrow \omega n(p)$ channel. Should we have sufficient statistics allowing for us to calculate the Σ for the quasi-free neutron target. This work is funded in part by NSF grant PHY-1307340.