New Results on Spin Structure Functions at Very Low Momentum Transfers (Q²) from Jefferson Lab

- Spin structure at Low Q² -Formalism and Motivation
- Recent Data
- Summary and Outlook

Krishna P. Adhikari Mississippi State University For the CLAS collaboration

5/18/2016

MISSISSIPPI STATE

Inclusive Lepton Scattering & Structure Functions

Nucleon Structure vs Distance Scale

5/18/2016

Krishna P. Adhikari

3

View in Terms of the Photo-absorption Cross Sections and Asymmetries

Jefferson Lab

- Lepton scattering can be viewed as the two step interaction - emission of a virtual photon and then the absorption of the photon by the target.
- Therefore, the spin structure functions are related with four independent virtual photo-absorption cross sections and their asymmetries:

4

Certain combinations of the virtual photo-absorption cross sections provide us with certain structure functions, such as:

$$g_{1} = \frac{MK}{8\pi^{2}\alpha(1+\gamma^{2})} (\sigma_{1/2}^{T} - \sigma_{3/2}^{T} + (\gamma\sigma_{1/2}^{TL})) + (\gamma\sigma_{1/2}^{TL}) + (\gamma$$

Krishna P. Adhikari

5/18/2016

Low Q² Motivation - Integrals

- At low momentum transfers (Q²), one can study the transition from partonic (quark-gluon) to hadronic (nucleonic) descriptions of Strong interaction by testing & constraining effective theories based on QCD such as Chiral Perturbation Theory (χPT).
- Low Q² region (<~0.1 GeV²): χ**PT** Calculations:
 - Relativistic Baryon χ PT with Δ , Bernard, Hemmert, Meissner;
 - Heavy Baryon χPT, Ji, Kao, Osborne; Kao, Spitzenberg, Vanderhaeghen
 - Lensky, Alarco n, Pascalutsa, PRC90, 055202 (2014).

5/18/2016

 Bernard, Epelbaum, Krebs, Ulf-G. Meißner, Phys. Rev. D 87, 054032 (2013)

 γ_0

Jefferson Lab

$$=\frac{16\alpha M^2}{Q^6}\int_{0}^{x_{th}}(g_1-\frac{2M^2x^2}{Q^2}g_2)x^2dx$$

$$\bar{I}_{TT} = \frac{2M^2}{Q^2} \int_0^{x_{th}} (g_1 - \frac{2M^2 x^2}{Q^2} g_2) dx \xrightarrow{(Q^2 \to 0)} -\frac{\kappa^2}{4}$$

GDH

$$\int_{LT}^2 (Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [g_1 + g_2] dx$$

Krishna P. Adhikari

5

Low Q² Motivation - First Moment of g₁

- At low momentum transfers (Q^2) , one can study the transition from partonic (quark-gluon) to hadronic (nucleonic) descriptions of Strong interaction by testing & constraining effective theories based on QCD such as Chiral Perturbation Theory (xPT).
- In the parton model, it is the fraction of the nucleon spin contributed by the quark helicities
 - Enters directly into two historically important sum rules - Ellis-Jaffe sum rule (Spin Crisis sum rule (QCD validation).
 - Some low Q² predictions from **xPT** and phenomenological models

Jefferson Lab

s) and Bjorken

$$\overline{\Gamma}_{1} = \int_{0}^{x_{th}} g_{1}(x,Q^{2}) dx$$

$$2M^{2} x_{th} \qquad 2M^{2} x^{2} \qquad (Q^{2} + Q) = 12^{2}$$

not included
$$pQCl$$

 Γ_1 operator product
expansion
quark models
ChPT
 1 Q^2 (GeV²)
GDH sum rule

DTS

Elastic contribution

Interesting variation with Q²

 $\bar{I}_{TT} = \frac{2W}{Q^2} \int_{0}^{\infty} (g_1 - \frac{2W}{Q^2} g_2) dx \xrightarrow{(Q^2 \to 0)} -\frac{K}{4}$

Hadron _____

$$\gamma_{0} = \frac{16\alpha M^{2}}{Q^{6}} \int_{0}^{x_{th}} (g_{1} - \frac{2M^{2}x^{2}}{Q^{2}}g_{2})x^{2}dx$$
lefters on Lab 5/18/2016 Krishna P. Adhikari

GDH

Parton

Low Q² Motivation - Generalized GDH Integral

Gerasimov, Drell and Hearn (GDH) Sum Rule (PRL 16(1966) 908; Sov.J.Nucl Phys.2 (1966) 430)

$$\int_{V_{th}}^{\infty} \frac{dv}{v} \left(\sigma^{\frac{3}{2}}(v) - \sigma^{\frac{1}{2}}(v) \right) = \frac{2\pi^2 \alpha \kappa^2}{M^2}$$

 v_{th} is pion production threshold, κ = anomalous magnetic moment

First measurements at Mainz (up to 800 MeV), Bonn (up to 3 GeV) & LEGS (up to 421 MeV) agree with the predictions.

Extension of GDH Sum Rule to Q²> 0 (virtual photons) using the dispersion relation for the **forward virtual photon Compton scattering amplitude** $S_1(v=0,Q^2>0)$, just as the real photon GDH sum rule derived from the **dispersion relation for the invariant Compton amplitude** $S_1(v,Q^2=0)$.

$$\bar{I}_{TT}(Q^2) = \frac{2M^2}{Q^2} \int_{0}^{x_{th}} (g_1 - \frac{2M^2 x^2}{Q^2} g_2) dx \longrightarrow -\frac{\kappa^2}{4}$$

The new sum rule **yields the GDH sum rule at Q² =0, and the Bjorken sum rule in the DIS regime**, thus establishing a smooth connection between the hadronic worlds of quark-confinement & partonic world of asymptotic freedom.

Krishna P. Adhikari

7

Low Q² Motivation - Generalized Nucleon Spin Polarizabilities

Forward spin polarizability

$$\gamma_0(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 \left[g_1 - \frac{4M^2}{Q^2} x^2 g_2 \right] dx$$

Sensitive to resonances

Longitudinal transverse spin polarizability

$$\delta_{LT}(Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} x^2 [g_1 + g_2] dx$$

Insensitive to the Δ resonance

- Generalized polarizabilities: extensions polarizabilities to the case of virtual photon Compton scattering.
 - can be calculated in χ PT at low Q².
 - converge faster than the first moments due to power weighting by 1/v or x and thus easier to determine from the low energy measurements.
 - Thus, reduced dependence on the extrapolations to the unmeasured regions at large v or small x, and higher sensitivity to the low energy behavior of the cross sections (particularly the threshold behaviour), hence better tools to test xPT and phenomenological model predictions

Jefferson Lab Experimental Halls

Hall B:CLAS

Hall C: HMS+SOS

Hall-A E97-110: Low Q2 Spin Structure

E97-110: First Moment of gn1

E97-110: New Results for Neutron Spin Polarizabilities

Surprising failure of χPT : no Δ resonance contribution expected for δ_{LT}

Hall A g2p: Proton Spin Structure Functions

Hall B CLAS Experiment EG1

INIVERSITY

Jefferson Lab

EG1b: g₁ at Low Q²

Proton

$0.0187 < Q^2 < 0.0223 \text{ GeV}^2$ $0.0770 < Q^2 < 0.0919 \text{ GeV}^2$ 0.5 -0.: $0.0223 < Q^2 < 0.0266 \text{ GeV}^2$ $0.0919 < Q^2 < 0.110 \text{ GeV}^2$ 0.5 HH. -0.5 $0.0266 < Q^2 < 0.0317 \text{ GeV}^2$ $0.110 < Q^2 < 0.131 \text{ GeV}^2$ 0.5 Harlah -0.5 $0.0317 < O^2 < 0.0379 \text{ GeV}^2$ $0.131 < O^2 < 0.156 \text{ GeV}^2$ 0.5 hund -0.5 $0.0379 < Q^2 < 0.0452 \text{ GeV}^2$ $0.156 < O^2 < 0.187 \text{ GeV}^2$ 0.5 ngi jagai gaga s∏lasana as miniti Ifiji -0.5 $0.0452 < O^2 < 0.0540 \text{ GeV}^2$ $0.187 < Q^2 < 0.223 \text{ GeV}^2$ 0.5 ┧┿╤╶╗┿┿┿┿[╋]┷[╋] Minning Int -0.5 0.223 < O2 < 0.266 GeV2 $0.0540 < Q^2 < 0.0645 \text{ GeV}^2$ 0.5 متبين ليصب فللتصبي والفراج أبل Nilester Street, Stree -0.5 $0.0645 < Q^2 < 0.0770 \text{ GeV}^2$ $0.266 < Q^2 < 0.317 \text{ GeV}^2$ 0.5 -0.5 1.0 1.5 2.5 2.0 2.5 3.0 2.0 1.5 W (GeV)

Plots courtesy of R. Fersch

0.5

Neutron

N. Guler et al – PhysRevC.92.055201

1

10⁻¹

10⁻¹

х

EG1 results: $\Gamma_1 = \int g_1(x,Q^2) dx$

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

Proton results from R. Fersch

Krishna P. Adhikari

17

Deuteron & neutron results from N. Guler

Hall B CLAS Experiment: EG4

"EG4": Similar conditions to EG1 Kinematical coverage extended down to $Q^2 = 0.015 \text{ GeV}^2$ using •lower beam energies -1.0, 1.3, 2.0, 2.3, 3.0 GeVs electron outbending CLAS configuration a new Cerenkov detector. Measurement of g₁ at low Q² •Test of χ PT as Q² 0 Measured Absolute XS differences Goal : Extended GDH Sum Rule Proton Deuteron •Ran in 2006

Spokespersons:

 NH_{3:} M. Battaglieri, A. Deur, R. De Vita, M. Ripani
 ND_{3:} A. Deur, G. Dodge, K. Slifer

EG4 – Proton g₁ Results

Preliminary

Plots courtesy of H. Kang

5/18/2016

EG4 Proton Results: First moment

EG4: Spin Asymmetry A_{LL} Results on p(e,e'π⁺)n

Xiaochao Zheng Results on the doublespin symmetries A_{LL} for π⁺n channel in different Q² bins

Plots courtesy of

The paper Measurement of Target and Double-spin Asymmetries for ep-> eπ⁺(n) Reaction in the Nucleon Resonance Region at Low Q² nearly ready for publication.

- A wealth of new low Q² data on the nucleon spin structure in the non-perturbative regime has been produced in Hall A, and B at Jefferson Lab as part of a broad spin physics program
- Nucleon polarizability γ_0 is a more stringent test of χ PT than Γ_1 . χ PT converge very slowly for the spin polarizabilites.
- Low Q² analysis of EG4 data from Hall B and g2p data from Hall A are in the final stages.
- At very low Q² the EG4 results show good agreement with other Jlab results and with available χ PT predictions.
- Neutron data extraction from EG4's deuteron and proton data is expected in near future.
- Ongoing 6 GeV data analyses and the future 12 GeV JLab measurements at low Q² are expected to shed more light on the nucleon spin structure in the non-perturbative region.

Thank you!

Method for g_1 calculation $\Delta N = (N^+ - N^-)$

ARYONS &

Sources of Systematic error

- **1) Overall scaling factor** (Mostly due to PbPt, Target length)
- 2) Radiative corrections
- 3) Model Uncertainties
- 4) Contaminations of polarized H in the target and π^- in the scattered electrons.
- 5) Beam energy measurement
- 6) CC-efficiency estimation
- 7) e⁺e⁻ pair symmetric contamination

Estimation of Systematic errors

EG4: Spin Asymmetry A_{UL} Results on p(e,e'π⁺)n

Target spin asymmetries A_{UL} for the π^*n channel as a function of the invariant mass ϕ^*

Plots courtesy of Xiaochao Zheng

5/18/2016

Krishna P. Adhikari

36

Neutron Target

- □ Neutron mean lifetime is just under 15 mins.
- ³He nucleus has two protons whose spins are paired, and a single neutron that accounts for most of the nuclear spin.
- \Box So, ³He is an effective polarized neutron target.

F. R. P. Bissey, A. W. Thomas, and I. R. Afnan, Phys. Rev. C64, 024004 (2001)

