JLAB CLAS12 TMDs PROGRAM

Contalbrigo Marco INFN Ferrara

Parton TMDs at large x – ECT*16 April 12, 2016 Trento

The QCD View

Non Perturbative Physics

Contalbrigo M.

The Spin Degree of Freedom

In our exploration of the QCD micro-world

Fundamental: do not neglect spin !!

Two questions in Hadronic Physics await explanation since too long

The 3D Nucleon Structure

3D Vision and Parton Dynamics

Dynamic Spin

- Parton polarization
- Orbital motion
- Form Factors
- Anomalous MM

Hadronization

- Spin-orbit effects
- Parton energy loss
- Jet quenching

Parton Correlations

- Short range
- MPI

Color charge density

- Nucleon tomography
- Diffractive physics
- Gluon saturation

CEBAF Upgrade at Jefferson Lab

CLAS12 Timeline (indicative)

2016: Installation

2017: Commissioning Hydrogen Target

2018: Deuteron Target (BoNuS for proton spectator tagging)

2019: Polarized NH₃, ND₃

Beam is being delivered to the Halls

Contalbrigo M.

Hall-B Mission

6 GeV

12 GeV

CLAS12 Forward Detector

Torus + Time-of-Flight Wall (Hadron ID)

Low-Threshold Gas Cherenkov (pion ID)

Ring-Imaging Cherenkov (Hadron ID)

Contalbrigo M.

CLAS12 Central Detector

High-Threshold Gas Cherenkov (elec. ID)

Central Neutron Detector

Silicon + MicroMegas Vertex Detector

Polarized Targets

Solid state targets:

NH_3	P = 0.90	f = 0.15	FOM = 0.14
ND ₃	P = 0.40	f = 0.28	FOM = 0.11

New approach HD-ice target:

HD-ice P = 0.75 f = 0.33 FOM = 0.25 *under test with charged beam*

HD-lce target vs standard nuclear targets (less luminosity for higher purity)

Advantages:

Minimize nuclear background

smaller dilution, no attenuation at large p_{T}

Weak holding field (BdL ~ 0.1 Tm) wide acceptance, negligible beam deflection

Disadvantages:

- Very long polarizing times (months)
- Sensitivity to local heating by charged beams

DIS Cross-Section

Wide kinematic coverage is needed to resolve the convolution

$$F_{UU} = f \otimes D = x \sum_{q} e_{q}^{2} \int d^{2} p_{T} d^{2} k_{T} \ \delta^{(2)}(\mathbf{P}_{h\perp} - z\mathbf{k}_{T} - \mathbf{p}_{T}) \ w(\mathbf{k}_{T}, \mathbf{p}_{T}) \ f^{q}(x, k_{T}^{2}) \ D^{q}(z, p_{T}^{2})$$

$$\frac{d^{6}\sigma}{dxdQ^{2}dzdP_{h}d\phi d\phi_{s}} \propto \left[F_{UU} + \varepsilon \cos(2\phi)F_{UU}^{\cos(2\phi)}\right] + S_{L}\left[\varepsilon \sin(2\phi)F_{UL}^{\sin(2\phi)}\right]$$
$$+ S_{T}\left[\sin(\phi - \phi_{s})F_{UT}^{\sin(\phi - \phi_{s})} + \varepsilon \sin(\phi + \phi_{s})F_{UT}^{\sin(\phi + \phi_{s})} + \varepsilon \sin(3\phi - \phi_{s})F_{UT}^{\sin(3\phi - \phi_{s})}\right]$$
$$+ S_{L}\lambda_{e}\left[\sqrt{1 - \varepsilon^{2}}F_{LL}\right] + S_{T}\lambda_{e}\left[\sqrt{1 - \varepsilon^{2}}\cos(\phi - \phi_{s})F_{LT}^{\cos(\phi - \phi_{s})}\right] + O\left(\frac{1}{Q}\right)$$

TMD x Range

The SIDIS Landscape

Limit defined by luminosity

CLAS12 Kinematic Coverage

The CLAS12 forward detector is suitable for high- Q^2 and high- p_T measurements since designed to cover up to 40 degrees angles

CLAS12 Kinematic Coverage

The CLAS12 forward detector is suitable for high- Q^2 and high- p_T measurements since designed to cover up to 40 degrees angles

Unpolarized TMDs

Scattering on deuterium with proton spectator tagging

Extending the study to the transverse momentum

The P_{hī}-unintegrated multiplicities

 $\sigma_{IIII} \propto f_1 (k_T \ldots) \otimes D_1 (p_T \ldots)$

Large tiles extending up to the inverse of the gauge field fluctuation scale ρ << M

Short range parton correlations may manifest also in pp MPI

Reflect different fragmentation

May be enhanced in medium.

Parton propagation in cold matter as complementary study to QGP

The P_{hi}-unintegrated multiplicities

Contalbrigo M.

Parton TMDs at large x – ECT*16, 12th April 2016, Trento

TMD Evolution

Drell-Yan

3

 $\pi^{-}N {\longrightarrow} \mu^{+}\mu^{-}X$

TMD evolution:

Azimuthal Modulations @ CLAS

Medium modification

In terms of the QCD, there are several contributions to P_T distribution of hadrons produced in SIDIS:

- primordial transverse momentum + gluon radiation of the struck quark
- · the formation and soft multiple interactions of the "pre-hadron"
- the interaction of the formed hadrons with the surrounding hadronic medium

HERMES [arXiv: 0906.2478]

Medium modification

HERMES

 R_{M}

CLAS12

Contalbrigo M.

Parton TMDs at large x – ECT*16, 12th April 2016, Trento

Ζ

Medium modification

Contalbrigo M.

Parton TMDs at large x – ECT*16, 12th April 2016, Trento

20

Quark Helicity

H. Avakian et al. E12-07-107 @ 12 GeV

Quark Helicity

$$\frac{1}{2} = \frac{1}{2} \sum_{f} (q_{f}^{+} - q_{f}^{-}) + L_{q} + \Delta G + L_{g}$$

Contalbrigo M.

Transversity

quark polarisation

n polarisation	N/q	U	L	Т
	U	$f_{\scriptscriptstyle I}$		$\boldsymbol{h}_{I}^{\perp}$
	L		g_1	$\boldsymbol{h}_{1L}^{\perp}$
nucleo	Т	$f_{ m 1T}^{\perp}$	g_{1T}^{\perp}	$h_1, h_{1\mathrm{T}}^\perp$

	quark polarisation				
N/q	U	L	Т		
U	D_1		H_1^\perp		

de la sia stia a

Transversity:

different from helicity distribution as rotation and boost do not commute

- sensitive to the relativistic effects
- related to the tensor charge
- non-singlet type evolution
- chirally-odd
 - it requires a chirally-odd fragmentation

Collins function: a spin- p_T correlator in fragmentation

Transversity @ CLAS12

 $\sigma_{UT}^{\sin(\phi+\phi_S)} \propto h_1 \otimes H_1^{\perp}$

Distributions:

Di-hadron channel:

27

Sivers Mapping @ CLAS12

Contalbrigo M.

Higher-twists @ CLAS

e(x): twist-3 PDF sensitive to qGq correlations "transverse force"

The Target Fragmentation Region

Parton TMDs at large x – ECT*16, 12th April 2016, Trento

z

Parton 3D Dynamic

GPD E:

Imbalance in the probed parton spatial distribution

$$q_X(x,\mathbf{b}_\perp)\,=q(x,\mathbf{b}_\perp)-rac{1}{2M}rac{\partial}{\partial b_y}\mathcal{E}_q(x,\mathbf{b}_\perp)\,,$$

Sivers TMDs:

Imbalance in the observed hadron momentum distribution

The 3D Nucleon Structure

Generalized parton distributions

Exclusive reaction:

- For spin-1/2 target 4 chiral-even leading-twist quark GPDs: $H, E, \widetilde{H}, \widetilde{E}$
- H, \widetilde{H} conserve nucleon helicity, E, \widetilde{E} involve nucleon helicity flip
- Sensitivity of different final states to different GPDs
- DVCS $(\gamma) \rightarrow H, E, \widetilde{H}, \widetilde{E}$
- Vector mesons $(\rho, \omega, \phi) \rightarrow H, E$
- Pseudoscalar mesons $(\pi, \eta) \rightarrow \widetilde{H}, \widetilde{E}$

Collinear PDFs as forward limit:

$$\int d^2 b_T H(x, b_T) = f_1(x)$$

 $\int d^2 b_T \tilde{H}(x, b_T) = g_1(x)$

Access OAM $L_q = J_q - \frac{1}{2}\Delta\Sigma$ via Ji sum rule $J_q = \lim_{t \to 0} \int_{-1}^{1} dx \, x \Big[H_q(x,\xi,t) + E_q(x,\xi,t) \Big]$

DVCS Interference

Informations on the real and imaginary part of the QCD scattering amplitude

 $\frac{d^{4}\sigma}{dQ^{2} dx_{B} dt d\phi} \propto \left(|\mathcal{T}_{\text{DVCS}}|^{2} + |\mathcal{T}_{\text{BH}}|^{2} + \mathcal{I} \right)$

\mathbf{A}_{LU}

S. Stepanyan et al., Phys. Rev. Lett. 87, 182002 (2001).

S. Chen et al., Phys. Rev. Lett. 97, 072002 (2006).

DVCS X-sec on Proton @ CLAS

H. S. Jo et. al. [arXiv: 1504.02009]

Quark Orbital Momentum @ CLAS12

$$J_q = \frac{1}{2} \int_{-1}^{+1} dx \, x \, \left[H^q(x,\xi,t=0) + E^q(x,\xi,t=0) \right]$$

To access $E_u \& E_d$ both $E_p \& E_n$ are needed

 $(H,E)_{u}(\xi,\xi,t) = 9/15[4(H,E)_{p}-(H,E)_{n}]$

 $(H,E)_{d}(\xi,\xi,t) = 9/15[4(H,E)_{n}-(H,E)_{p}]$

Conclusions

CLAS @ HallB: a wide-acceptance high-luminosity high-polarization experiment for a comprehensive study of the partonic transverse degree of freedoms in the nucleon

Precise mapping of TMDs (pdf & FF) and GPDs in a multi-D approach

- Constrain models in the valence region
- Test factorization
- Study higher twist effects
- Investigate non-perturbative to perturbative transition (along P_T)
- Flavor separation via proton and deuteron targets and hadron ID
- Test of Lattice QCD calculations: tensor charge
- Access to OAM