

Conversion Decays of Light Mesons

Susan Schadmand, IKP

talk at Baryons 2016 May 16-20, 2016, Florida State U

Reactions of hadrons with (virtual) photons

Why is it interesting?

- explore intrinsic structure of hadrons
 - \rightsquigarrow form factors

 $\rightarrow g - 2$ of muon

- → to which extent does vector meson dominance hold?
- background for physics beyond standard model
 - \rightsquigarrow rare pion decay $\pi^0 \rightarrow e^+ e^-$

Dalitz (conversion) decays of mesons

L.G. Landsberg, Electromagnetic decays of light mesons

(old) world data set: conversion decays

for @ meson, clearly additional mechanisms apart from standard VMD

(black curves are fits to the data)

- confirmed by NA60 AA reactions, S. Damjanovic, PLB 677 (2009) 260
- confirmed by NA60 pA reactions, A.Uras, J.Phys. Conf.Ser.270(2011) 012038

different experimental approach: elementary reactions, using di-electrons

Mitglied in der Helmholtz-Gemeinschaft

Baryons 2016

BESIII PR D92 (2015) 012001

new data sets: η and η'

A2 Phys.Rev. C89 (2014) 044608 NA60 PLB (2016) in print

new data sets: ω and Φ

puzzle not solved yet

Baryons 2016

a tale of two experiments

CLAS Jefferson Lab	experimental issue	WASA COSY-Jülich
$\gamma + p$ (g12 experiment)	cross sectionmultipion background	<i>p</i> + <i>p</i> (2010)
LH ₂ target	external γ conversion	pellet target + beam pipe
Cerenkov Counters	dilepton identification	
EM calorimeter	photon detection	CsI EM Colrimeter

Mitglied in der Helmholtz-Gemeinschaft

Baryons 2016

more statistics with CLAS12 experiments

$\eta' \rightarrow \gamma ee : cut-based analysis$

- CLAS g12 experiment
- data analysis: g12 procedures
- q-factor signal extraction: evaluate smooth background event-by-event

 \triangleright 359 event candidates

not competitive

82 events (signal weight)

Entries Integral

towards the ω - π transition form factor close \int JÜLICH

kinematic fit for CLAS g12 dileptons

analysis strategy: e+e- detection and missing particle

missing pion:

- w→πee
- missing mass is pion mass
- missing energy

missing photon:

- missing mass zero
- missing energy

missing nothing:

ρ/ω→ee

η(´)→γee

- missing mass and nergy zero

in der Helmholtz-

towards the ω - π transition form factor

cut-based analysis: $\eta \rightarrow \gamma ee$

preliminary, from this fit

WASA-at-COSY 2010 1.4 GeV pp run

- usual method: multipion phase space * polynomial fit to background (excluding peak)
- background subtraction method good for dilepton analysis?

LICH

cut-based analysis: $\eta \rightarrow \gamma ee$

background study

- direct (not from ηdecays)
- competing decays
- mostly phase space simulations (for now)
- for WASA, has to include charged pion pairs
- seen even better in invariant mass of decay particles
- needs improvement
- helps with sys errors

very promising and high statsitics

Baryons 2016

reaching for the double Dalitz decay

pp η 2010 | $\eta \rightarrow e^+e^-e^-$ | cut-based analysis: background study

- WASA-at-COSY standard analysis
- preliminary and not acceptance corrected.
- consistency-check : yield consistent with our preliminary single Dalitz decay analysis
 goal: evaluate branching ratio

latest WASA result: nucl-ex/1509.06588 BR = $(3.2 \pm 0.9_{stat} \pm 0.5_{sys}) \times 10^{-5}$

Summary

chasing conversion decays of light mesons

- WASA-at-COSY:
 - η meson decays
- CLAS g12 experiment
 - η and ω decays
- CLAS12 campaigns:
 - η' and Φ decays?

tough competition

physics landscape needs the results