

CLAS12 at Jefferson Lab

Latifa Elouadrhiri June 4, 2016

JLab Electron Accelerator Site

Continuous Electron Beam Accelerator:

- Continuous wave electron beam
- Simultaneous beam in all halls
- Beam energy up to 11 & 12 GeV
- Beam current I_{B} = 100pA 100 μ A
- Electron beam polarization > 85%

12 GeV Upgrade Project

ENERGY Science

2015 NSAC Long Range Plan

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

- NSAC = Nuclear Science Advisory Committee
- Advise DOE and NSF on future of Nuclear Physics program every 5-7 years
- Four recommendations
- Two initiatives
- Recommend modest budget growth at 4.5% per year

12 GeV Scientific Capabilities

Hall B – understanding nucleon structure via generalized parton distributions

Hall D – exploring origin of confinement by studying exotic mesons

Hall A – form factors, future new experiments (e.g., SoLID and MOLLER)

Hall C – precision determination of valence quark properties in nucleons/nuclei

The CLAS12 Science Program Outline

Overview

Gluonic hadrons Nucleon structure Nucleon tomography Summary

FA

CLAS12 Technical Scope

Forward Detector (FD)

- TORUS magnet (6 coils)
- **HT Cherenkov Counter**
- Drift Chamber System
- LT Cherenkov Counter
- Forward ToF System
- **Pre-Shower Calorimeter**
- E.M. Calorimeter

Central Detector (CD)

- SOLENOID Magnet
- **Barrel Silicon Tracker**
- Central Time-of-Flight

Beamline

- Targets
- **Moller Polarimeter**
- Photon Energy Tagger

Upgrades to the baseline

- MicroMegas
- **Central Neutron Detector**
- **Forward Tagger**

ENERGY Office of Science

RICH Detector (2 sectors)

Office of

SA

Polarized Target (long.)

The science program with CLAS12

The 3D structure of the nucleon – from form factors and PDFs to GPDs and TMDs

The strong interaction in nuclei – evolution of quark hadronization, nuclear transparency of hadrons

Quark confinement and the role of the glue in meson and baryon spectroscopy

Jefferson Lab

Kinematic coverage of DVCS

CLAS12 and GlueX

Meson spectroscopy is one of the main topics that will be studied with the Jlab 12 GeV upgrade. Key elements are:

- High intensity tagged photon beams
- Detectors with large acceptance and good particle identification capabilities

Meson Spectroscopy with CLAS12

Quasi-real photoproduction on proton target:

- Detection of multiparticle final state from meson decay in the large acceptance spectrometer CLAS12
- Detection of the scattered electron for the tagging of the quasi-real photon in the novel Forward Tagger

Physics goals:

- Detailed mapping of the meson spectrum up to 2.5 GeV
- Search for exotics

Meson spectroscopy & Forward Photon Tagger

Generated/reconstructed waves

Events generated in specific partial waves, tracked through detector system and reconstructed, retain their initial partial wave contents..

Forward Tagger

DIS structure functions and $d_v(x)/u_v(x)$

Neutron structure and quark distributions

 F_2^n/F_2^p ratio by tagging almost unbound neutrons using detection of low momentum protons in a radial TPC.

E12-10-102

5 Tesla mag. field d/u 0.9 $4 F_2^n / F_2^p - 1$ 0.8 0.7 0.6 **SU(6)** 0.5 0.4 0.3 • •• •• • • d/u = 1/50.2 0.1 d/u = 00 0.1 0.8 0.7 0.9 0.2 0.6 0 0.3 0.5 x*

First model-independent measurement of F_2^{n}/F_2^{p}

Generalized Parton Distributions (GPDs)

The size and structure of proton. Proton form factors, <u>transverse</u> charge and current distributions Nobel prize 1961- R. Hofstadter

D. Mueller, X. Ji, A. Radyushkin,(1994-1997),...

M. Burkardt, A. Belitsky (2000)...

GPDs connect the quark distribution in transverse space and longitudinal momentum

Internal constituents of the nucleon Quark <u>longitudina</u>l momentum and helicity distributions Nobel prize 1990 - J. Friedman, H. Kendall, R. Taylor

Deeply Virtual Compton Scattering & GPDs

GPDs depend on 3 variables, e.g. $H(x, \xi, t)$. They describe the internal nucleon dynamics.

Link to DIS and Elastic Form Factors

Form factors (sum rules)

$$\int_{a}^{1} dx \sum_{a}^{a} \left[H^{a}(x,\xi,t)\right] = F_{1}(t) \text{ Dirac ff.}$$

$$\int_{a}^{1} dx \sum_{a}^{a} \left[E^{a}(x,\xi,t)\right] = F_{2}(t) \text{ Pauli ff.}$$

$$\int_{a}^{1} dx \widetilde{H}^{a}(x,\xi,t) = G_{A,q}(t), \int_{a}^{1} dx \widetilde{E}^{a}(x,\xi,t) = G_{P,q}(t)$$

$$H^{a}, E^{a}, \widetilde{H}^{a}, \widetilde{E}^{a}(x,\xi,t)$$
Angular Momentum Sum Rule
$$J^{a} = \frac{1}{2} - J^{a} = \frac{1}{2} \int_{-1}^{1} x dx \left[H^{a}(x,\xi,0) + E^{a}(x,\xi,0)\right]_{X.Ji, Phy.Rev.Lett.78,610(1997)}$$

Generalized Parton Distributions

U.S. DEPARTMENT OF Office of Science

Physical content of GPD *E* & *H*

Nucleon matrix element of the Energy-Momentum Tensor of QCD contains 3 scalar form factor:

- $M_2(t)$: Mass distribution inside the nucleon
- *J*(*t*) : Angular momentum distribution
- $d_1(t)$: Forces and pressure distribution

Directly measured in elastic graviton-proton scattering!

GPDs are related to these form factors through 2nd moments

$$J^{q}(t) = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \, x \left[H^{q}(x,\xi,t) + E^{q}(x,\xi,t) \right] \quad \text{,} \quad M_{2}^{q}(t) + \frac{4}{5} d_{1}(t)\xi^{2} = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \, x H^{q}(x,\xi,t) \quad \text{(Ji's sum rule)}$$

Accessing GPDs Through DVCS

GPDs are universal, they can be determined in any suitable process

 $\frac{d^{4}\sigma}{dQ^{2}dx_{B}dtd\phi} \sim |T^{DVCS} + T^{BH}|^{2}$ $\frac{DVCS}{\int} \qquad BH$

T^{BH :} given by elastic form factors T^{DVCS}: determined by GPDs

BH-DVCS interference generates beam and target asymmetries that carry the nucleon structure information. Cross section of ep \rightarrow ep γ at Q²=2 GeV/c² and X_B=0.35

Accessing GPDs through polarization

$$A = \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} = \frac{\Delta\sigma}{2\sigma}$$

Polarized beam, unpolarized target:

First observation of DVCS/BH beam asymmetry

DVCS Unpolarized Cross-Sections (6GeV)

DVCS Longitundinal Target (6GeV)

A_{LU} projections for JLab@12GeV

A_{LU} projections for protons

A_{UL} projections for protons

A_{UT} projections for 12GeV

 A_{UT} and A_{LT} are sensitive to the u and d-quark helicity content of the proton spin

Jefferson Lab

GPD H from projected CLAS12 data

Review article: M. Guidal, H. Moutarde, M. Vanderhaeghen, Rept. Prog. Phys. 76 (2013) 066202

For corrections see talk by H. Moutarde

Projected quark densities in impact parameter

ENERGY Office of Science

DVCS with CLAS12 at various beam energies

$$\mathcal{H}(\xi,t) = \sum_{f} \left[\frac{e_{f}}{e}\right]^{2} \left\{ i\pi \left[H_{f}(\xi,\xi,t) - H_{f}(-\xi,\xi,t)\right] \right\}$$

$$+ \mathcal{P} \int_{-1}^{+1} dx \left[\frac{1}{\xi-x} - \frac{1}{\xi+x}\right] H_{f}(x,\xi,t) \right\}$$
Real Part of CFF

$$\Re e[H(\xi, t)] = \int_{-1}^{1} dx \left\{ [H(x, x, t) + H(-x, x, t)] \left[\frac{1}{\xi - x} - \frac{1}{\xi + x} \right] + 2 \frac{D(x, t)}{1 - x} \right\}$$

 $r^2p(r)$ in GeV fm⁻¹

ENERGY Office of Science

- The D-term is the least known part of the conventional GPD H
- t-dependence of the D-term encodes the form factor associated with the distributions of forces on partons inside hadrons
- May shed light on the mechanism of confinement

Accessing GPDs through DVCS

DDVCS with CLAS12 in Hall-B – LOI

Two main challenges in DDVCS measurements:

- cross section is two to three orders of magnitude smaller than the DVCS cross section
- decay leptons of the outgoing virtual photon must be distinguishable from the incoming-scattered lepton

Both challenges can be solved with by studying di-muon electroproduciton, $ep \rightarrow e'p'\mu^+\mu^-$

CLAS12 FD will be blocked with heavy shielding/absorber from electromagnetic and hadronic backgrounds to be able to run at luminosities $\sim 10^{37}$ cm⁻² s⁻¹, and will be used as muon detector

Scattered electrons will be detected in a compact PbWO₄

ENERGY

Science

Jefferson Lab

Expected results on beam spin of DDVCS asymmetry

The beam spin asymmetry (BSA) in DDVCS is proportional to the imaginary part the, i.e. in a concise notation:

This allows the mapping of GPDs along each of the three axis ($, \xi$ and t) independently

Prediction of the "handbag" formalism is the sign change of BSA in transitioning from "space-like dominated" to "time-like dominated" regime

BSA for 100 days of running with CLAS12 at luminosity of 10^{37} cm⁻² s⁻¹

Extraction and Validation Framework

- The main goal is to develop a framework for extraction and validation of 3 D PDFs from experimental measurements of hard exclusive and semi-inclusive production of photons and mesons through:
 - Developing multidimensional MC-simulation
 - Implementing self consistent QED radiative corrections in the cross sections for a complete set of structure functions needed for the extraction framework and MC simulations
 - Developing capabilities, within the extraction and validation framework, to provide persistence and data visualization tools
 - Robust strategy to propagate and control uncertainties to the extracted 3D PDFs
- The analysis framework to be used in 2 ways: from measured observables to 3D PDFs, and from models of 3D PDFs to predictions of observables.

CLAS Collaboration

Arizona State University, Tempe, AZ University Bari, Bari, Italy University of California, Los Angeles, CA California State University, Dominguez Hills, CA Carnegie Mellon University, Pittsburgh, PA Catholic University of America CEA-Saclay, Gif-sur-Yvette, France Christopher Newport University, Newport News, VA University of Connecticut, Storrs, CT Edinburgh University, Edinburgh, UK University Ferrara, Ferrara, Italy Florida International University, Miami, FL Florida State University, Tallahassee, FL George Washington University, Washington, DC University of Glasgow, Glasgow, UK

University of Grenoble, Grenoble, France Idaho State University, Pocatello, Idaho INFN, Laboratori Nazionali di Frascati, Frascati, Italy INFN, Sezione di Genova, Genova, Italy INFN, Sezione di Genova, Genova, Italy Institut de Physique Nucléaire, Orsay, France ITEP, Moscow, Russia James Madison University, Harrisonburg, VA Kyungpook University, Daegu, South Korea University of Massachusetts, Amherst, MA Moscow State University, Moscow, Russia University of New Hampshire, Durham, NH Norfolk State University, Norfolk, VA Ohio University, Athen.s, OH Old Dominion University, Norfolk, VA Rensselaer Polytechnic Institute, Troy, NY Rice University, Houston, TX University of Richmond, Richmond, VA University of Rome Tor Vergata, Italy University of South Carolina, Columbia, SC Thomas Jefferson National Accelerator Facility, Newport News, VA

Union College, Schenectady, NY University Santa Maria, Valparaiso, Chile Virginia Polytechnic Institute, Blacksburg, VA University of Virginia, Charlottesville, VA College of William and Mary, Williamsburg, VA Yerevan Institute of Physics, Yerevan, Armenia Brazil, Germany, Morocco and Ukraine, have individuals or groups involved with CLAS, but with no formal collaboration at this stage

Summary

- CLAS12 with JLab 12 GeV upgrade has a broad science program covering many facets of hadron physics.
- Extending knowledge of PDFs to high x in measurements of (un)polarized structure functions using tagging. Addresses part of the nucleon "spin-puzzle" and extend knowledge of quark density distribution at high x.
- Precision studies of DVCS in polarization measurements give access to GPDs and enable quark spatial imaging. They relate to the quark spin, mass and force distributions in the nucleon (confinement?).
- Precise measurements of SIDIS improve access to TMDs and quark momentum tomography, and relate to the quark orbital angular momentum.
- Many topics not discussed, hadron spectroscopy, nucleon e.m. form factors, dark matter searches, QCD and nuclei,

Electron Ion Collider

