Recent Progress in the Understanding of the Baryon Spectrum

Priyashree Roy

Florida State University
Excited QCD Workshop
March 08, 2016

Outline

(1) Introduction

- Motivation
- CLAS and ELSA Collaborations
(2) Results
- Observables in $\gamma p \rightarrow p \omega$ Reaction
- Observables in $\gamma p \rightarrow p \pi \pi$ Reaction
(3) Summary and Outlook

Outline

(1) Introduction

- Motivation
- CLAS and ELSA Collaborations
(2) Results
- Observables in $\gamma p \rightarrow p \omega$ Reaction
- Observables in $\gamma p \rightarrow p \pi \pi$ Reaction
(3) Summary and Outlook

Introduction
Results
Summary and Outlook

Why Baryon Spectroscopy?

[1] R. Bradford et al. (CLAS), PRC 75, 035205 (2007), Observables $\mathrm{C}_{x}, \mathrm{C}_{z}$ from $\vec{\gamma} p \rightarrow K^{+} \vec{\Lambda}$
[2] Fits: BnGa Model, V.A. Nikonov et al., Phy. Lett. B 662, 245 (2008)

N^{*}	$J^{P}\left(L_{2 I, 2 J}\right)$	2010	2012
$N(1440)$	$1 / 2^{+}\left(P_{11}\right)$	$* * * *$	$* * * *$
$N(1520)$	$3 / 2^{-}\left(D_{13}\right)$	$* * * *$	$* * * *$
$N(1535)$	$1 / 2^{-}\left(S_{11}\right)$	$* * * *$	$* * * *$
$N(1650)$	$1 / 2^{-}\left(S_{11}\right)$	$* * * *$	$* * * *$
$N(1675)$	$5 / 2^{-}\left(D_{15}\right)$	$* * * *$	$* * * *$
$N(1680)$	$5 / 2^{+}\left(F_{15}\right)$	$* * * *$	$* * * *$
$N(1685)$			$*$
$N(1700)$	$3 / 2^{-}\left(D_{13}\right)$	$* * *$	$* * *$
$N(1710)$	$1 / 2^{+}\left(P_{11}\right)$	$* * *$	$* * *$
$N(1720)$	$3 / 2^{+}\left(P_{13}\right)$	$* * * *$	$* * * *$
$N(1860)$	$5 / 2^{+}$		$* *$
$N(1875)$	$3 / 2^{-}$		$* * *$
$N(1880)$	$1 / 2^{+}$		$* *$
$N(1895)$	$1 / 2^{-}$		$* *$
$N(1900)$	$3 / 2^{+}\left(P_{13}\right)$	$* *$	$* * *$
$N(1990)$	$7 / 2^{+}\left(F_{17}\right)$	$* *$	$* *$
$N(2000)$	$5 / 2^{+}\left(F_{15}\right)$	$* *$	$* *$
$N(2080)$	D_{13}	$* *$	
$N(2090)$	S_{11}	$*$	
$N(2040)$	$3 / 2^{+}$		$*$
$N(2060)$	$5 / 2^{-}$		$* *$
$N(2100)$	$1 / 2^{+}\left(P_{11}\right)$	$*$	$*$
$N(2120)$	$3 / 2^{-}$		$* *$
$N(2190)$	$7 / 2^{-}\left(G_{17}\right)$	$* * * *$	$* * * *$
$N(2200)$	D_{15}	$* *$	
$N(2220)$	$9 / 2^{+}\left(H_{19}\right)$	$* * * *$	$* * * *$

Introduction
Results
Summary and Outlook

Why Baryon Spectroscopy?

$\mathrm{N}(1900) 3 / 2^{+}$(which can be assigned as a member of the quartet of $\left(70,2_{2}^{+}\right)$) cannot be accommodated in the naive quark-diquark picture, both oscillators need to be excited. ${ }^{[1],[2]}$

Introduction
Results
Summary and Outlook

Why Baryon Spectroscopy?

$\mathrm{N}(1900) 3 / 2^{+}$(which can be assigned as a member of the quartet of $\left(70,2_{2}^{+}\right)$) cannot be accommodated in the naive quark-diquark picture, both oscillators need to be excited. ${ }^{[1],[2]}$

Baryon Spectrum with LQCD

- - - LQCD manifests broad features of $S U(6) \otimes O(3)$ symmetry.

New states accommodated in LQCD calculations (ignoring mass scale) with J^{P} values consistent with CQM.

Baryon Spectrum with LQCD

More predicted states than experimentally observed. Lot more yet to be learnt!

-- - LQCD manifests broad features of $S U(6) \otimes O(3)$ symmetry.
New states accommodated in LQCD calculations (ignoring mass scale) with J^{P} values consistent with CQM.

Study of N^{*} to Vector Meson Decay Modes

Vector meson (ω, ρ, ϕ) decay modes have mostly remained unexplored. Vast pool of information yet to be unearthed:

- For a better understanding of known resonances, it is essential to study their vector meson decay modes.
- They carry the same $J^{P C}$ as the photon so it is highly expected that they play an important role in the baryon spectrum.
- This talk will focus on $\gamma p \rightarrow p \pi \pi$ and $\gamma p \rightarrow p \omega$ reactions. The former $\left(\pi^{+} \pi^{-}\right.$final state) gives information on $N^{*} \rightarrow p \rho$ which is difficult to study directly due to the broad nature of ρ.

Ongoing analysis on $\gamma p \rightarrow p \phi$ cross section from CLAS-g 12 (A. Hurley, FSU).

Particle J^{P}	Status			Status as seen in -						
	overal	$1 \pi N$	γN	$N \eta$	$N \sigma$	$N \omega$	ΛK	ΣK	$N \rho$	$\Delta \pi$
$N(1700) 3 / 2^{-}$	***	***	**	*			*	*	*	***
$N(1710) 1 / 2^{+}$	***	***	***	***		**	***	**	*	**
$N(1720) 3 / 2^{+}$	****	****	***	***				**	**	*
$N(1860) 5 / 2^{+}$	**	**							*	*
$N(1875) 3 / 2^{-}$	***	*	***			**	***	**		***
$N(1880) 1 / 2^{+}$	**	*	*		**		*			
$N(1895) 1 / 2^{-}$	**	*	**	**				*		
$N(1900) 3 / 2^{+}$	***	**	***	**		**	***	**	*	**
$N(1990) 7 / 2^{+}$	**	**	**					*		
$N(2000) 5 / 2^{+}$	**	*	**	**				*	**	
$N(2040) 3 / 2^{+}$	*									
$N(2060) 5 / 2^{-}$	**	**	**	*				**		
$N(2100) 1 / 2^{+}$	*									
$N(2150) 3 / 2^{-}$	**	**	**				**			**
$N(2190) 7 / 2^{-}$	****	****	***			*	**		*	
$N(2220) 9 / 2^{+}$	****	****								
$N(2250) 9 / 2^{-}$	****	****								
$N(2600) 11 / 2^{-}$	***	***								
$N(2700) 13 / 2^{+}$	**	**								

Particle Data Group 2014

Study of N^{*} to Vector Meson Decay Modes

Vector meson (ω, ρ, ϕ) decay modes have mostly remained unexplored. Vast pool of information yet to be unearthed:

- For a better understanding of known resonances, it is essential to study their vector meson decay modes.
- They carry the same $J^{P C}$ as the photon so it is highly expected that they play an important role in the baryon spectrum.
- This talk will focus on $\gamma p \rightarrow p \pi \pi$ and $\gamma p \rightarrow p \omega$ reactions. The former $\left(\pi^{+} \pi^{-}\right.$final state) gives information on $N^{*} \rightarrow p \rho$ which is difficult to study directly due to the broad nature of ρ.

Ongoing analysis on $\gamma p \rightarrow p \phi$ cross section from CLAS-g 12 (A. Hurley, FSU).

Particle J^{P}	Status			Status as seen in -						
	overal	$1 \pi N$	γN	$N \eta$	$N \sigma$	$N \omega$	ΛK	ΣK	$N \rho$	$\Delta \pi$
$N(1700) 3 / 2^{-}$	***	***	**	*			*	*	*	***
$N(1710) 1 / 2^{+}$	***	***	***	***		**	***	**	*	**
$N(1720) 3 / 2^{+}$	****	****	***	***				**	**	*
$N(1860) 5 / 2^{+}$	**	**							*	*
$N(1875) 3 / 2^{-}$	***	*	***			**	***	**		***
$N(1880) 1 / 2^{+}$	**	*	*		**		*			
$N(1895) 1 / 2^{-}$	**	*	**	**				*		
$N(1900) 3 / 2^{+}$	***	**	***	**		**	***	**	*	**
$N(1990) 7 / 2^{+}$	**	**	**					*		
$N(2000) 5 / 2^{+}$	**	*	**	**				*	**	
$N(2040) 3 / 2^{+}$	*									
$N(2060) 5 / 2^{-}$	**	**	**	*				**		
$N(2100) 1 / 2^{+}$	*									
$N(2150) 3 / 2^{-}$	**	**	**				**			**
$N(2190) 7 / 2^{-}$	****	****	***			*	**		*	
$N(2220) 9 / 2^{+}$	****	****								
$N(2250) 9 / 2^{-}$	****	****								
$N(2600) 11 / 2^{-}$	***	***								
$N(2700) 13 / 2^{+}$	**	**								

Particle Data Group 2014

Study of N^{*} to Vector Meson Decay Modes

Vector meson (ω, ρ, ϕ) decay modes have mostly remained unexplored. Vast pool of information yet to be unearthed:

- For a better understanding of known resonances, it is essential to study their vector meson decay modes.
- They carry the same $J^{P C}$ as the photon so it is highly expected that they play an important role in the baryon spectrum.
- This talk will focus on $\gamma p \rightarrow p \pi \pi$ and $\gamma p \rightarrow p \omega$ reactions. The former $\left(\pi^{+} \pi^{-}\right.$final state) gives information on $N^{*} \rightarrow p \rho$ which is difficult to study directly due to the broad nature of ρ. Ongoing analysis on $\gamma p \rightarrow p \phi$ cross section from CLAS-g 12 (A. Hurley, FSU).

Particle J^{P}	Status			Status as seen in -						
	overal	$1 \pi N$	γN	$N \eta$	$N \sigma$	$N \omega$	ΛK	ΣK	$N \rho$	$\Delta \pi$
$N(1700) 3 / 2^{-}$	***	***	**	*			*	*	*	***
$N(1710) 1 / 2^{+}$	***	***	***	***		**	***	**	*	**
$N(1720) 3 / 2^{+}$	****	****	***	***				**	**	*
$N(1860) 5 / 2^{+}$	**	**							*	*
$N(1875) 3 / 2^{-}$	***	*	***			**	***	**		***
$N(1880) 1 / 2^{+}$	**	*	*		**		*			
$N(1895) 1 / 2^{-}$	**	*	**	**				*		
$N(1900) 3 / 2^{+}$	***	**	***	**		**	***	**	*	**
$N(1990) 7 / 2^{+}$	**	**	**					*		
$N(2000) 5 / 2^{+}$	**	*	**	**				*	**	
$N(2040) 3 / 2^{+}$	*									
$N(2060) 5 / 2^{-}$	**	**	**	*				**		
$N(2100) 1 / 2^{+}$	*									
$N(2150) 3 / 2^{-}$	**	**	**				**			**
$N(2190) 7 / 2^{-}$	****	****	***			*	**		*	
$N(2220) 9 / 2^{+}$	****	****								
$N(2250) 9 / 2^{-}$	****	****								
$N(2600) 11 / 2^{-}$	***	***								
$N(2700) 13 / 2^{+}$	**	**								

Particle Data Group 2014

Study of N^{*} to Vector Meson Decay Modes

Vector meson (ω, ρ, ϕ) decay modes have mostly remained unexplored. Vast pool of information yet to be unearthed:

- For a better understanding of known resonances, it is essential to study their vector meson decay modes.
- They carry the same $J^{P C}$ as the photon so it is highly expected that they play an important role in the baryon spectrum.
- This talk will focus on $\gamma p \rightarrow p \pi \pi$ and $\gamma p \rightarrow p \omega$ reactions. The former $\left(\pi^{+} \pi^{-}\right.$final state) gives information on $N^{*} \rightarrow p \rho$ which is difficult to study directly due to the broad nature of ρ.

Ongoing analysis on $\gamma p \rightarrow p \phi$ cross section from CLAS-g12 (A. Hurley, FSU).

Particle J^{P}	Status			Status as seen in -						
	overal	$1 \pi N$	γN	$N \eta$	$N \sigma$	$N \omega$	ΛK	ΣK	$N \rho$	$\Delta \pi$
$N(1700) 3 / 2^{-}$	***	***	**	*			*	*	*	***
$N(1710) 1 / 2^{+}$	***	***	***	***		**	***	**	*	**
$N(1720) 3 / 2^{+}$	****	****	***	***				**	**	*
$N(1860) 5 / 2^{+}$	**	**							*	*
$N(1875) 3 / 2^{-}$	***	*	***			**	***	**		***
$N(1880) 1 / 2^{+}$	**	*	*		**		*			
$N(1895) 1 / 2^{-}$	**	*	**	**				*		
$N(1900) 3 / 2^{+}$	***	**	***	**		**	***	**	*	**
$N(1990) 7 / 2^{+}$	**	**	**					*		
$N(2000) 5 / 2^{+}$	**	*	**	**				*	**	
$N(2040) 3 / 2^{+}$	*									
$N(2060) 5 / 2^{-}$	**	**	**	*				**		
$N(2100) 1 / 2^{+}$	*									
$N(2150) 3 / 2^{-}$	**	**	**				**			**
$N(2190) 7 / 2^{-}$	****	****	***			*	**		*	
$N(2220) 9 / 2^{+}$	****	****								
$N(2250) 9 / 2^{-}$	****	****								
$N(2600) 11 / 2^{-}$	***	***								
$N(2700) 13 / 2^{+}$	**	**								

Particle Data Group 2014

Study of N^{*} to Vector Meson Decay Modes

Vector meson (ω, ρ, ϕ) decay modes have mostly remained unexplored. Vast pool of information yet to be unearthed:

- For a better understanding of known resonances, it is essential to study their vector meson decay modes.
- They carry the same $J^{P C}$ as the photon so it is highly expected that they play an important role in the baryon spectrum.
- This talk will focus on $\gamma p \rightarrow p \pi \pi$ and $\gamma p \rightarrow p \omega$ reactions. The former $\left(\pi^{+} \pi^{-}\right.$final state) gives information on $N^{*} \rightarrow p \rho$ which is difficult to study directly due to the broad nature of ρ.
- Ongoing analysis on $\gamma p \rightarrow p \phi$ cross section from CLAS-g12 (A. Hurley, FSU).

Particle J^{P}	Status			Status as seen in -						
	overal	$1 \pi N$	γN	$N \eta$	$N \sigma$	$N \omega$	ΛK	ΣK	$N \rho$	$\Delta \pi$
$N(1700) 3 / 2^{-}$	***	***	**	*			*	*	*	***
$N(1710) 1 / 2^{+}$	***	***	***	***		**	***	**	*	**
$N(1720) 3 / 2^{+}$	****	****	***	***				**	**	*
$N(1860) 5 / 2^{+}$	**	**							*	*
$N(1875) 3 / 2^{-}$	***	*	***			**	***	**		***
$N(1880) 1 / 2^{+}$	**	*	*		**		*			
$N(1895) 1 / 2^{-}$	**	*	**	**				*		
$N(1900) 3 / 2^{+}$	***	**	***	**		**	***	**	*	**
$N(1990) 7 / 2^{+}$	**	**	**					*		
$N(2000) 5 / 2^{+}$	**	*	**	**				*	**	
$N(2040) 3 / 2^{+}$	*									
$N(2060) 5 / 2^{-}$	**	**	**	*				**		
$N(2100) 1 / 2^{+}$	*									
$N(2150) 3 / 2^{-}$	**	**	**				**			**
$N(2190) 7 / 2^{-}$	****	****	***			*	**		*	
$N(2220) 9 / 2^{+}$	****	****								
$N(2250) 9 / 2^{-}$	****	****								
$N(2600) 11 / 2^{-}$	***	***								
$N(2700) 13 / 2^{+}$	**	**								

Particle Data Group 2014

Resonance Hunting is Not Easy!

- Most of the identified baryon resonances came from πN scattering. Many missing resonances may couple to photoproduction reactions.
- Baryon resonances are broad and overlapping so peak hunting is difficult. Need more observables in addition to cross sections to disentangle the resonances.

Resonance Hunting is Not Easy!

Polarization observables are essential for the determination of the scattering amplitudes with minimal ambiguities \rightarrow 'reveal' the baryon resonances.
E.g., in single meson photoproduction:

$$
\begin{aligned}
& \sigma_{\text {total }}=\sigma_{\text {unpol. }}\left[1-\delta_{l} \Sigma \cos (2 \phi)\right. \\
& +\Lambda_{x}\left(-\delta_{l} \mathbf{H} \sin (2 \phi)+\delta_{\odot} \mathbf{F}\right) \\
& -\Lambda_{y}\left(-\mathrm{T}+\delta_{l} \mathbf{P} \cos 2 \phi\right) \\
& \left.-\Lambda_{z}\left(-\delta_{l} \mathrm{G} \sin (2 \phi)+\delta_{\odot} \mathbf{E}\right)+\ldots\right]
\end{aligned}
$$

$\delta_{\odot}\left(\delta_{l}\right)$: degree of beam pol.
$\Lambda:$ degree of target pol.

Resonance Hunting is Not Easy!

[1] R. Bradford et al. (CLAS), PRC 75, 035205 (2007), Observables $\mathrm{C}_{x}, \mathrm{C}_{z}$ from $\vec{\gamma} p \rightarrow K^{+} \vec{\Lambda}$ [2] Fits: BnGa Model, V.A. Nikonov et al., Phy. Lett. B 662, 245 (2008)
$C_{x^{\prime}} C_{z}$ Fits without $N(1900) 3 / 2^{+}$resonance

$C_{x^{\prime}} C_{z}$ Better Fit Results with $N(1900) 3 / 2^{+}$!

N^{*}	$J^{P}\left(L_{2 I, 2 J}\right)$	2010	2012
$N(1440)$	$1 / 2^{+}\left(P_{11}\right)$	$* * * *$	$* * * *$
$N(1520)$	$3 / 2^{-}\left(D_{13}\right)$	$* * * *$	$* * * *$
$N(1535)$	$1 / 2^{-}\left(S_{11}\right)$	$* * * *$	$* * * *$
$N(1650)$	$1 / 2^{-}\left(S_{11}\right)$	$* * * *$	$* * * *$
$N(1675)$	$5 / 2^{-}\left(D_{15}\right)$	$* * * *$	$* * * *$
$N(1680)$	$5 / 2^{+}\left(F_{15}\right)$	$* * * *$	$* * * *$
$N(1685)$			$*$
$N(1700)$	$3 / 2^{-}\left(D_{13}\right)$	$* * *$	$* * *$
$N(1710)$	$1 / 2^{+}\left(P_{11}\right)$	$* * *$	$* * *$
$N(1720)$	$3 / 2^{+}\left(P_{13}\right)$	$* * * *$	$* * * *$
$N(1860)$	$5 / 2^{+}$		$* *$
$N(1875)$	$3 / 2^{-}$		$* * *$
$N(1880)$	$1 / 2^{+}$		$* *$
$N(1895)$	$1 / 2^{-}$		$* *$
$N(1900)$	$3 / 2^{+}\left(P_{13}\right)$	$* *$	$* * *$
$N(1990)$	$7 / 2^{+}\left(F_{17}\right)$	$* *$	$* *$
$N(2000)$	$5 / 2^{+}\left(F_{15}\right)$	$* *$	$* *$
$N(2080)$	D_{13}	$* *$	
$N(2090)$	S_{11}	$*$	$*$
$N(2040)$	$3 / 2^{+}$		$*$
$N(2060)$	$5 / 2^{-}$		$* *$
$N(2100)$	$1 / 2^{+}\left(P_{11}\right)$	$*$	$*$
$N(2120)$	$3 / 2^{-}$		$* *$
$N(2190)$	$7 / 2^{-}\left(G_{17}\right)$	$* * * *$	$* * * *$
$N(2200)$	D_{15}	$* *$	
$N(2220)$	$9 / 2^{+}\left(H_{19}\right)$	$* * * *$	$* * * *$

Sophisticated data interpretation tools such as Partial Wave Analysis and Phenomenological models are required to identify the contributing resonances.

Photoproduction @ JLAB and CBELSA/TAPS

- Two major collaborations in photoproduction experiments.
- Complimentary detectors: charged tracks at CLAS (JLab, U.S.), neutral tracks at CBELSA/TAPS (Germany).

CLAS: almost 4π acceptance.
Crystal Barrel calorimeter: coverage $30^{\circ}-168^{\circ}$. TAPS calorimeter: coverage $5.8^{\circ}-30^{\circ}$.

Picture courtesy: A. Wilson

Status of N^{*} Program in Photoproduction at CLAS

Understanding the systematics of the baryon spectrum requires a combined effort by different collaborations to extract and analyse results from many relevant channels.

Outline

(1) Introduction

- Motivation
- CLAS and ELSA Collaborations

(2) Results

- Observables in $\gamma p \rightarrow p \omega$ Reaction
- Observables in $\gamma p \rightarrow p \pi \pi$ Reaction
(3) Summary and Outlook

Results

Results in $\vec{\gamma} \vec{p} \rightarrow p \omega$

Published Results in $\gamma p \rightarrow p \omega$

Isospin filter (sensitive to N^{*} only), reduces complexity

[1] Williams et al., PRC 80, 065208 (2009)
[2] Wilson et al., arXiv:1508.01483 (2015)
[3] Sumihama et al.,
PRC 80, 052201 (2009)
[4] Barth et al., EPJ A 18, 117 (2003)
[5] Wolf, Rept. Prog. Phys.
73, 116202 (2010)
[6] Eberhardt et al., arXiv:1504.02221 (2015)
[7] Vegna et al., PRC 91, 065207 (2015)
[8] Ajaka et al.,
PRL 96, 132003 (2006)
[9] F. Klein et al.,
PRD 78, 117101 (2008)

+ High quality polarized SDMEs from CLAS, Brian Vernarsky (CMU), to be published soon.

Partial Wave Analysis of $\gamma p \rightarrow p \omega$ Observables

Pol. SDMEs and Σ were crucial to understand the t-channel background: Major contribution from pomeron exchange mechanism.

BnGa PWA 2016 (coupled-channel) using ELSA data

\squareNotable contribution

Suggestive evidence

CLAS PWA 2009

Notable
contribution

Suggestive evidence
I. Denisenko et al., Phys. Lett. B (2016)
M. Williams et al., PRC 80, 065208 (2009)

Particle J^{P}	overall	$N \omega$
$N(1680) 5 / 2^{+}$	****	
$N(1685) ~ ? ~ ? ~$	*	
$N(1700) 3 / 2^{-}$	***	
$N(1710) 1 / 2^{+}$	***	**
$N(1720) 3 / 2^{+}$	****	
$N(1860) 5 / 2^{+}$	**	
$N(1875) 3 / 2$	***	**
$N(1880) 1 / 2^{+}$	**	
$N(1895) 1 / 2^{-}$	**	
$N(1900) 3 / 2^{+}$	***	**
$N(1990) 7 / 2^{+}$	**	
$N(2000) 5 / 2^{+}$	**	
$N(2040) 3 / 2^{+}$	*	
$N(2060) 5 / 2^{-}$	**	
$N(2100) 1 / 2^{+}$	*	
$N(2150) 3 / 2^{-}$	**	
$N(2190) 7 / 2^{-}$	****	*

$N(2250) 9 / 2^{-}$	****	

Partial Wave Analysis of $\gamma p \rightarrow p \omega$ Observables

* rating in PDG 2014

Pol. SDMEs and Σ were crucial to understand the t-channel background: Major contribution from pomeron exchange mechanism.

Need more polarization observables, in particular to understand $\mathbf{W}>2 \mathbf{G e V}$ region:

- $\mathrm{N}(\sim 2.2 \mathrm{GeV})$ Uncertain J^{P} :
$1 / 2^{-}, 3 / 2^{+}, 3 / 2^{-}$or $5 / 2^{+}$?
- $\mathrm{N}(>2.1 \mathrm{GeV}) 7 / 2^{-}$?

Particle J^{P}	overall	$N \omega$
$N(1680) 5 / 2^{+}$	****	
$N(1685) \quad$? ${ }^{\text {a }}$	*	
$N(1700) 3 / 2^{-}$	***	
$N(1710) 1 / 2^{+}$	***	**
$N(1720) 3 / 2^{+}$	****	
$N(1860) 5 / 2^{+}$	**	
$N(1875) 3 / 2$	***	**
$N(1880) 1 / 2^{+}$	**	
$N(1895) 1 / 2^{-}$	**	
$N(1900) 3 / 2^{+}$	**	**
$N(1990) 7 / 2^{+}$	**	
$N(2000) 5 / 2^{+}$	**	
$N(2040) 3 / 2^{+}$	*	
$N(2060) 5 / 2^{-}$	**	
$N(2100) 1 / 2^{+}$	*	
$N(2150) 3 / 2^{-}$	**	
$N(2190) 7 / 2$	****	*
- N	****	
$N(2250) 9 / 2^{-}$	****	

Spin Observables in $\vec{\gamma} \vec{p} \rightarrow p \omega$ from FROST using CLAS

JLab aerial view

Data taking: Oct 2007 - Jan 2008 (g9a) Mar. - Aug 2010 (g9b)
W range covered: $\sim 1.5-2.3 \mathrm{GeV}$
Target: FROzen Spin butanol Target
Target pol.: Longitudinal (g9a run)/ Transverse (g9b run)
Photon pol.: Linear/Circular
Prelim. results (Priyashree, FSU)
(Almost final results)
Data acquired

Beam Target	Transversely Pol.	Longitudinally Pol.
Linearly Pol.	$\boldsymbol{\Sigma}, \mathbf{T}, \mathbf{H}, \mathbf{P}$	$\boldsymbol{\Sigma}, \mathbf{G}$
Circularly Pol.	\mathbf{F}, \mathbf{T}	\mathbf{E}

Getting close to a 'complete experiment'!

Highlights of the CLAS-FROST Data Analysis

- Topology for $\mathrm{p} \omega$ ($\mathbf{8 9} \%$ branching fraction): $\vec{\gamma} \vec{p} \rightarrow p \pi^{+} \pi^{-}$(missing π^{0})
Topology identified using Kinematic fitting.
- Standard cuts \& corrections: vertex cut, photon selection, β cuts, E-p corrections.
- Event-based method ${ }^{[1]}$ for signal-background separation.
- Event-based maximum likelihood method ${ }^{[2]}$ for $1.6-1.7 \mathrm{GeV}$
 extracting polarization observables.

Beam Asymmetry Σ in $\vec{\gamma} p \rightarrow p \omega$ from FROST

ω reconstructed from $\pi^{+} \pi^{-}\left(\pi^{0}\right)$

$$
\begin{aligned}
& \sigma=\sigma_{0}\left[1-\boldsymbol{\Sigma} \delta_{l} \cos (2 \phi)\right. \\
& +\Lambda \cos (\alpha)\left(-\delta_{l} \mathbf{H} \sin (2 \phi)+\delta_{\odot} \mathbf{F}\right) \\
& \left.-\Lambda \sin (\alpha)\left(-\mathbf{T}+\delta_{l} \mathbf{P} \cos (2 \phi)\right)\right] \\
& \left.-\Lambda_{z}\left(-\delta_{l} \mathbf{G} \sin (2 \phi)+\delta_{\odot} \mathbf{E}\right)\right]
\end{aligned}
$$

$\delta_{\odot}\left(\delta_{l}\right)$: degree of beam pol.
Λ : degree of target pol.

Beam Asymmetry Σ in $\vec{\gamma} p \rightarrow p \omega$ from FROST

FROST: transversely polarized target GRAAL: unpolarized target Good agreement between FROST and GRAAL (2006) results. New results at high energies.

ω reconstructed from $\pi^{+} \pi^{-}\left(\pi^{0}\right)$

$$
\begin{aligned}
& \sigma=\sigma_{0}\left[1-\boldsymbol{\Sigma} \delta_{l} \cos (2 \phi)\right. \\
& +\Lambda \cos (\alpha)\left(-\delta_{l} \mathbf{H} \sin (2 \phi)+\delta_{\odot} \mathbf{F}\right) \\
& \left.-\Lambda \sin (\alpha)\left(-\mathbf{T}+\delta_{l} \mathbf{P} \cos (2 \phi)\right)\right] \\
& \left.-\Lambda_{z}\left(-\delta_{l} \mathbf{G} \sin (2 \phi)+\delta_{\odot} \mathbf{E}\right)\right]
\end{aligned}
$$

$\delta_{\odot}\left(\delta_{l}\right)$: degree of beam pol.
$\Lambda:$ degree of target pol.

First Measurements of T, P in $\vec{\gamma} \vec{p} \rightarrow p \omega$ from FROST

Target-Asym. T •FROST (circ. pol. beam) •FROST (lin. pol. beam)

The two experimental results on target asym. T from FROST agree well.

$$
\sigma=\sigma_{0}\left[1-\boldsymbol{\Sigma} \delta_{l} \cos (2 \phi)\right.
$$

$$
+\Lambda \cos (\alpha)\left(-\delta_{l} \mathbf{H} \sin (2 \phi)+\delta_{\odot} \mathbf{F}\right)
$$

$$
\left.-\Lambda \sin (\alpha)\left(-\mathbf{T}+\delta_{l} \mathbf{P} \cos (2 \phi)\right)\right]
$$

$$
\left.-\Lambda_{z}\left(-\delta_{l} \mathbf{G} \sin (2 \phi)+\delta_{\odot} \mathbf{E}\right)\right]
$$

$\delta_{\odot}\left(\delta_{l}\right)$: degree of beam pol.
Λ : degree of target pol.

First Measurements of F, H in $\vec{\gamma} \vec{p} \rightarrow p \omega$ from FROST

Observable F (FROST)

\mathbf{F} and \mathbf{H} are double-polarization observables.

$\delta_{\odot}\left(\delta_{l}\right)$: degree of beam pol.
Λ : degree of target pol.

Results

Results in $\vec{\gamma} \vec{p} \rightarrow p \pi \pi$

Results in $\vec{\gamma} p \rightarrow p \pi^{0} \pi^{0}$ from ELSA

V. Sokhoyan et al., EPJ A 51, no. 8, 95 (2015)

- Allow the study of sequential decays of intermediate N^{*}.
- Not sensitive to $N^{*} \rightarrow p \rho$.

Proton

Sequential Decay of N^{*} to Multi-pion Final States

V. Sokhoyan et al., EPJ A 51, no. 8, 95 (2015)

Sequential decay of N^{*} to multi-pion final state via intermediate excited baryon states.

BnGa PWA observed new decay modes in the decay of N^{*} resonances.

Proton
$\underline{\mathbf{N}^{*}(\lambda+\rho \text { excited })}$
$\underline{\mathbf{N}^{*}(L=1) \pi}$
$\left.\begin{array}{l}N(1880) 1 / 2^{+} \\ N(1900) 3 / 2^{+} \\ N(2000) 5 / 2^{+} \\ N(1990) 7 / 2^{+}\end{array}\right\} \quad \begin{aligned} & N(1520) 3 / 2^{-} \\ & N(1535) 1 / 2^{-}\end{aligned}$

Results in $\vec{\gamma} \vec{p} \rightarrow p \pi^{+} \pi^{-}$from FROST @ CLAS

- Allow the study of sequential decays of intermediate N^{*} and also $N^{*} \rightarrow p \rho$ decay but the large hadronic background makes it challenging.
- Reaction described using 2 planes (5 kinematic variables) \rightarrow more spin observables than in single-meson photoproduction using polarized beam

2 beam-pol. observables: $\mathrm{I}^{\mathrm{s}}, \mathrm{I}^{\mathrm{C}}$
Unlike only one (Σ observable) in
I^{s} vanishes, I^{c} survives. single-meson photoproduction.

Spin Observables for $\vec{\gamma} \vec{p} \rightarrow p \pi^{+} \pi^{-}$from FROST @ CLAS

Prelim. results (Priyashree, FSU) (Almost final results)
Prelim. results available (FSU, USC)
Data acquired

- Topologies for $\mathrm{p} \pi^{+} \pi^{-}$:
$\vec{\gamma} \vec{p} \rightarrow p \pi^{+}$(missing π^{-})
$\vec{\gamma} \vec{p} \rightarrow p \pi^{-}$(missing π^{+})
$\vec{\gamma} \vec{p} \rightarrow p \pi^{+} \pi^{-}$(no missing particle)
The observables are weighted avg. over topologies.
- Event-based method for signal-background separation.
- Event-based maximum likelihood method for extracting polarization observables.

Beam Target	Transversely Pol.	Longitudinally Pol.	
Linearly Pol.	$\mathbf{P}_{\mathbf{x}, \mathbf{y}}^{\mathbf{s}, \mathbf{c}}, \mathbf{P}_{\mathbf{x}, \mathrm{y}}, \mathbf{I}^{\mathbf{s}, \mathbf{c}}$	$\mathbf{P}_{\mathbf{z}}^{\mathbf{s , c}}, \mathbf{P}_{\mathbf{z}}, \mathbf{I}^{\mathbf{s , c}}$	
Circularly Pol.	$\mathbf{P}_{\mathbf{x}, \mathrm{y}}^{\odot}, \mathbf{P}_{\mathbf{x}, \mathrm{y}}, \mathbf{l}^{\odot}$	$\mathbf{P}_{\mathbf{z}}^{\odot}, \mathbf{P}_{\mathbf{z}}, \mathbf{I}^{\odot}$	

Beam Asymmetry I^{s} in $\vec{\gamma} p \rightarrow p \pi^{+} \pi^{-}$

Example: $1.30<\mathrm{E}_{\gamma}<\mathbf{1 . 4 0} \mathbf{~ G e V}$ (Total E_{γ} range covered: 0.7-2.1 GeV)
Good agreement between experiments

$$
\mathrm{I}=\mathrm{I}_{0}\left\{\delta_{l}\left[\mathrm{I}^{\mathrm{s}} \sin (2 \beta)+\mathrm{I}^{\mathrm{c}} \cos (2 \beta)\right]\right\}
$$

First Measurements of Target Asym. $\mathrm{P}_{\mathrm{x}, \mathrm{y}}$ in $\gamma \vec{p} \rightarrow p \pi^{+} \pi^{-}$

Example: $1.3<\mathrm{E}_{\gamma}<\mathbf{1 . 4} \mathbf{~ G e V}$ (Total E_{γ} range covered: 0.7-2.1 GeV)

FROST g9b (lin. pol. beam) Solid Line - Fourier fit ($n<3$)

3-dim. phase space: $\left(\mathrm{E}_{\gamma}, \phi_{\pi^{+}}^{*}, \cos \theta_{\pi^{+}}^{*}\right)$
$\mathrm{I}=\mathrm{I}_{0}\left[1+\Lambda \cos (\alpha) \mathrm{P}_{\mathrm{x}}+\Lambda \sin (\alpha) \mathrm{P}_{\mathrm{y}}\right]$
Λ : degree of target pol.

Outline

（1）Introduction
－Motivation
－CLAS and ELSA Collaborations
（2）Results
－Observables in $\gamma p \rightarrow p \omega$ Reaction
－Observables in $\gamma p \rightarrow p \pi \pi$ Reaction

（3）Summary and Outlook

Summary and Outlook

- Photoproduction of vector mesons and multi-pion final states: essential to discover new resonances and better understand the known resonances. These decay modes have mostly remained unexplored in the past.
- Many first time measurements of single- and double-polarization observables from CLAS-FROST for $\vec{\gamma} \vec{p} \rightarrow p \omega$ and $\vec{\gamma} \vec{p} \rightarrow p \pi^{+} \pi^{-}$:
 they will significantly augment the world database of polarization observables in photoproduction.
- The new high quality CLAS results are expected to put tight constraints on data interpretation tools, immensely aiding in determining contributing N^{*} with minimal ambiguities.
- The findings in the light baryon sector together with the findings in strange and heavy flavor sectors (GlueX, LHCb, BES III etc.), will help us understand the evolution of bound states of QCD from light to heavy-quark regime.

This work is supported by DOE\# DE-FG02-92ER40735

Thank You !

Photoproduction Cross Section

Vertex cut

Event-Based Qfactor Method with Likelihood Fits

- A multivariate analysis - For each event ("seed event"), find N nearest neighbors in 4-D kinematic phase space ($E_{\gamma}, \theta^{*}, \phi^{*}, \cos \left(\theta_{p}\right)^{c . m}$.). Plot mass distribution of the $N+1$ events and fit.
- Since N is small (300), use ML method to fit the mass distribution.
$L=\prod_{i}\left[f^{\text {Signal }}\left(m_{i}, \alpha\right)+f^{B k g}\left(m_{i}, \beta\right)\right]$
$\mathbf{Q}_{\text {seed-event }}=\frac{f^{\text {Signal }}\left(m_{0}, \alpha^{\text {best }}\right)}{\left[f^{\text {Signal }}\left(m_{0}, \alpha^{\text {best }}\right)+f^{B k g}\left(m_{0}, \beta^{\text {best }}\right)\right]}$,
m_{0} - seed event's mass.
- Computation time reasonably minimized- fits 10,000 events in 30 min .

Beam Asymmetry I^{c} in $\vec{\gamma} p \rightarrow p \pi^{+} \pi^{-}$

Example: $\mathbf{1 . 3 0}<\mathrm{E}_{\gamma}<\mathbf{1 . 4 0} \mathbf{~ G e V}$

- FROST (preliminary) - Fourier cosine fit to g8b
C. Hanretty et al. , CLAS-g8b run (in preparation for publication)
——BnGa fits to I^{c}, CLAS-g8b run

Good agreement between experiments

$$
\mathrm{I}=\mathrm{I}_{0}\left\{\delta_{l}\left[\mathrm{I}^{\mathrm{s}} \sin (2 \beta)+\mathrm{I}^{\mathrm{c}} \cos (2 \beta)\right]\right\}
$$

