International Conference on the Structure of Baryons at FSU in Tallahassee FL

Exclusive Single Pion Electroproduction off the Proton: Results from CLAS

Kijun Park Jefferson Lab

May 16-20, 2016

▲□> ▲圖> ▲国> ▲国>

- Non-purturbative **DCSB** generates more than 98% of dress quark masses as well as dynamical structure
 - although, higgs mechanism < 2% in N, N * masses
- Quark-gluon confinement in bayrons emerges from QCD dressed quarks, meson-baryon cloud, dressed gluon,...
- The most fundamental question: "WHAT ARE THE RELEVANT DEGREE-OF-FREEDOM AT VARYING DISTANCE SCALE ? "

- Non-purturbative DCSB generates more than 98% of dress quark masses as well as dynamical structure
 - although, higgs mechanism < 2% in N, N* masses
- Quark-gluon confinement in bayrons emerges from QCD dressed quarks, meson-baryon cloud, dressed gluon,...
- Study of the excited states of the nucleon is important step in the development of a fundamental understanding of strong interaction ------[N. Isgur, V. Burkert (2000)]
- The most fundamental question: "WHAT ARE THE RELEVANT DEGREE-OF-FREEDOM AT VARYING DISTANCE SCALE ? "

- Non-purturbative DCSB generates more than 98% of dress quark masses as well as dynamical structure
 - although, higgs mechanism < 2% in N, N^{*} masses
- Quark-gluon confinement in bayrons emerges from QCD - dressed quarks, meson-baryon cloud, dressed gluon,...
- Study of the excited states of the nucleon is important step in the
- The most fundamental question: "WHAT ARE THE RELEVANT

- Non-purturbative **DCSB** generates more than 98% of dress quark masses as well as dynamical structure
 - although, higgs mechanism < 2% in N, N* masses
- Quark-gluon confinement in bayrons emerges from QCD dressed quarks, meson-baryon cloud, dressed gluon,...
- Study of the excited states of the nucleon is important step in the development of a fundamental understanding of strong interaction [N. Isgur, V. Burkert (2000)]
- The most fundamental question: "WHAT ARE THE RELEVANT DEGREE-OF-FREEDOM AT VARYING DISTANCE SCALE ? "

- Non-purturbative **DCSB** generates more than 98% of dress quark masses as well as dynamical structure
 - although, higgs mechanism < 2% in N, N* masses
- Quark-gluon confinement in bayrons emerges from QCD dressed quarks, meson-baryon cloud, dressed gluon,...
- Study of the excited states of the nucleon is important step in the development of a fundamental understanding of strong interaction — [N. Isgur, V. Burkert (2000)]
- The most fundamental question: "WHAT ARE THE RELEVANT DEGREE-OF-FREEDOM AT VARYING DISTANCE SCALE ? "

$SU(6) \times O(3)$ Classification of Baryons

- DCSB leads to the presence of massive constituent quarks as effective DOF in hadrons
- Hadrons are viewed as quark-system in an effective potential by gluon field that depend on spins & position of quarks

$SU(6)\otimes O(3)$

** Baryon wavefunction as representation of 3-dimension permutation group: Symmetric, $\phi_c |SU(6) \otimes O(3)\rangle = \phi_c |N_6, {}^{2S+1}N_3, N, L, J\rangle$

$SU(6) \times O(3)$ Classification of Baryons

			Status as seen in —							
Particle J^P	overa	Status πN	γN	Nn	Νσ	No	ΛΚ	ΣK	No	Δπ
	0.010		1						** <i>p</i>	
$N = 1/2^+$	****									
$N(1440) 1/2^+$	****	****	****		***				*	***
$N(1520) 3/2^{-}$	****	****	****	***					***	***
$N(1535) 1/2^{-}$	****	****	****	****					**	*
$N(1650) 1/2^{-}$	****	****	***	***			***	**	**	***
$N(1675) 5/2^{-1}$	****	****	***	*			*		*	***
$N(1680) 5/2^+$	****	****	****	*	**				***	***
N(1685) ??	*									
$N(1700) 3/2^-$	***	***	**	*			*	*	*	***
$N(1710) 1/2^+$	***	***	***	***		**	***	**	*	**
$N(1720) 3/2^+$	****	****	***	***			**	**	**	*
$N(1860) 5/2^+$	**	**							*	*
$N(1875) 3/2^-$	***	*	***			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^{-}$	**	*	**	**			**	*		
$N(1900) 3/2^+$	***	**	***	**		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**					*		
$N(2000) 5/2^+$	**	*	**	**			**	*	**	
$N(2040) 3/2^+$	*									
$N(2060) 5/2^{-}$	**	**	**	*				**		
$N(2100) 1/2^+$	*									
$N(2150) 3/2^{-}$	**	**	**				**			**
$N(2190)7/2^{-}$	****	****	***			*	**		*	
$N(2220) 9/2^+$	****	****								
$N(2250) 9/2^{-1}$	****	****								
$N(2600) 11/2^{-1}$	***	***								
$N(2700) 13/2^+$	**	**								
1. (2.00) 10/2										

K. Park (JLab)

May 16-20, 2016 2 / 19

3

э

- 4 回 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 1 □

CEBAF Large Acceptance Spectrometer

Reaction

K. Park (JLab)

CLAS single pion data coverage - (published)

Final State	W (GeV)	Q^2 (GeV ²)	Observables
$n\pi^+$	1.1 -1.38	0.16-0.36	$d\sigma/d\Omega$
	1.1 -1.55	0.3 -0.6	$d\sigma'/d\Omega$
	1.1 -1.7	1.7 -4.5	$d\sigma/d\Omega, A_B$
	1.65-2.0	1.8 -4.5	$d\sigma/d\Omega$
$p\pi^0$	1.1 -1.38	0.16-0.36	$d\sigma/d\Omega$
	1.1 -1.68	0.4 -1.8	$d\sigma/d\Omega, A_B, A_T, A_{BT}$
	1.1 -1.39	3.0 -6.0	$d\sigma/d\Omega$

 All CLAS data is available at CLAS-DB http://clasweb.jlab.org/physicsdb/

CLAS single pion data coverage for $n\pi^+$

RunGroup	W (GeV)	Q^2 (GeV ²)	Observables	# data
e1-6	1.10 -1.15	1.8 -4.5	$d\sigma/d\Omega$	1800
e1-6	1.1 -1.7	1.7 -4.5	$d\sigma'/d\Omega$	50400
			Ám	12600
e1-f	1.65 -2.0	1.8 -4.5	$d\sigma/d\Omega$	32500
e1-6	0.16-0.58 (x _{BJ})	1.6 -4.5	$d\sigma'/dt$	140

- Overall kinematic range W, Q^2 of all $\gamma^* p \rightarrow n\pi^+$ analyses
- From the near pion threshold to Deep Process regime
- Study of resonances: $\Delta(1232)3/2^+$, $N(1440)1/2^+$, $N(1520)3/2^-$, $N(1535)1/2^-$, $N(1675)5/2^-$, $N(1680)5/2^+$, and $N(1710)1/2^+$

$ec{e} p ightarrow e' \pi^+ n$ for low lying $\Delta~(1.15 < W < 1.69~{ m GeV})$

• Two different approaches: UIM, DR UIM

- BG UIM is built from nucleon exchange in s-, u- and π, ω, ρ exchange in t- channel

- Unitarization of multipole amplitudes in the K-matrix approximation

- Resonance contributions are parameterized in the unified BW form with energy dependence $\ensuremath{\textbf{DR}}$

- Fixed-t dispersion relation for the invariant amplitude

- Re-Amplitude to Born-term (s,u, channel nucleon exchange, π exchange in t-

- Integral Im-Amplitude with the isospin structure

Two model-uncertainties

1/ BG determination in the UIM and Born term in DR

2/ A width and mass of resonances from PDG

Take into account...

- 1/ All(13) **** and *** states in the 1st,2nd,3rd
- $2/\Delta(1905)F_{35}$, $\Delta(1950)F_{37}$ in 4th resonance region

Same BR from PDG2012

$ec{e} ho ightarrow e'\pi^+n$ for low lying $N^*~(1.15 < W < 1.69$ GeV)

- Transition Form Factors for $N(1440)1/2^+$ (old conv: $P_{11}(1440)$) $A_{1/2}$ shows a sign change in $Q^2 \sim 0.8 \text{ GeV}^2$
- $S_{1/2}$ is large at low Q^2 and drop off smoothly with increasing Q^2
- A complex interplay btw inner core of quarks in the first radial excitation and external MB cloud
- Quark core in DSEQCD (thick blue curve), MB cloud contribution (purple band)
- $N\pi$ loops MB, running quark mass (red solid curve)
- $N\sigma$ loops MB, fixed constituent quark mass (red dashed curve) [\Downarrow including single π and 2π data]

K. Park (JLab)

May 16-20, 2016 10 / 19

$ec{e} p ightarrow e' \pi^+ n$ for low lying N^* (1.15 < W < 1.69 GeV)

- Transition Form Factors for $N(1535)1/2^-$ (old conv: $S_{11}(1535)$)
- $\beta_{N\eta}^{PDG} = 0.45 0.60 \rightarrow \beta_{N\pi}^{PDG} = 0.485 \& \beta_{N\eta}^{PDG} = 0.460$, excellent agreement $N\pi$, $N\eta$
- Sensitive to long. as well (strong interference S₁₁-P₁₁)
- Perviously Opposite sign of $S_{1/2} ! \rightarrow$ Impossible to change in quark model (LFRQM failed for $S_{1/2} !$)
 - \rightarrow Combined with the difficulties in the description of
 - (1) large width of $S_{11}(1535) \rightarrow \eta N$
 - (2) large $S_{11}(1535) \rightarrow \phi N$, ΛK couplings
 - \rightarrow It shows that 3q picture for $S_{11}(1535)$ should be complemented ! [I.Aznuryan]

[↓ solid: LFRQM, dash-dot: LCSR]

K. Park (JLab)

May 16-20, 2016 11 / 19

$ec{e} p ightarrow e' \pi^+ n$ for low lying N^* (1.15 < W < 1.69 GeV)

- Transition Form Factors for $N(1520)3/2^-$ (old conv: $D_{13}(1520)$)
- $A_{1/2}$ is large at high Q^2 , $A_{3/2}$ is small at high Q^2

$ec{e} ho o e'\pi^+n$ for high lying N^* (1.65 < W < 2.0 GeV)

K. Park (JLab)

May 16-20, 2016 13 / 19

Selection Rules in Symmetric Quark Model

- The first orbital excitation states $|70, {}^{2}8, 1, 1, J\rangle S_{11}(1535)(****), D_{13}(1520)(****) |70, {}^{4}8, 1, 1, J\rangle S_{11}(1650)(****), D_{13}(1700)(***), D_{15}(1675)(****)$
- Moorhouse selection rule (Moorhouse, PRL16, 772 (1966)) $\gamma + p(|56, {}^28; 0, 0, 1/2\rangle) \leftrightarrow N^*(|70, {}^48\rangle)$: vanishing TME for charge operator $\gamma + n(|56, {}^28; 0, 0, 1/2\rangle) \leftrightarrow N^*(|70, {}^48\rangle)$
- A selection rule (Zhao, PRD74, 094014 (2006)) $N^*|70, {}^48\rangle \nleftrightarrow K(K^*) + \Lambda$
- Faiman-Hendry selection rule (Faiman,Hendry, PR173, 1720 (1968)) $\Lambda^*|70, {}^{4}8\rangle \nleftrightarrow N(|56, {}^{2}8; 0, 0, 1/2\rangle) + \bar{K}$

Moorehouse selection rule must be violated !

Spin-dependent potential from one-gluon-exchange and $SU(6) \otimes O(3)$ symmetry breaking, interaction H_{hyper} is introducing mass splitting and configuration mixing in SU(6) multiplets

$$H_{hyper} = \frac{2\alpha_s}{3m_i m_j} \left[\frac{8\pi}{3} S_i \cdot S_j \delta^3(r_{ij}) + \frac{1}{r_{ij}^3} \left(\frac{3(S_i \cdot r_{ij})(S_j \cdot r_{ij})}{r_{ij}^2} - S_i \cdot S_j \right) \right]$$

TABLE I. Violations of some SU(6) rules.

Quantity	SU(6) (Relative values)	This calculation (Relative values)	Experiment (Various units)
$A_{3/2}^{n}(D_{15} \rightarrow n\gamma)$	<u>-</u> α	<u>-</u> α	-60 ± 33^{a}
$A_{+10}^{n}(D_{+r} \rightarrow n\gamma)$	-0.71α	-0.71α	-33 ± 25^{a}
$A_{3/2}^{p}(D_{15} \rightarrow p\gamma)$	0	+0.31 α	$+20 \pm 13^{a}$
$A_{1/2}^{p}(D_{15} \rightarrow p\gamma)$	0	$+0.22\alpha$	$+19 \pm 14^{a}$
$A(D_{15} \rightarrow KN)$	β	β	$+0.41\pm0.03^{b}$
$A(D_{05} \rightarrow \overline{K}N)$	0	-0.28β	$-0.09\pm0.04^{\circ}$
$\langle \sum e_i r_i^2 \rangle_b$	γ	γ	$+0.82 \pm 0.02^{d}$
$\langle \sum e_i r_i^2 \rangle_n$	0	-0.16γ	-0.12 ± 0.01 ^e

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* (1.65 < W < 2.0 GeV)

- Transition Form Factors for $N(1675)5/2^-$ (old conv: $D_{15}(1675)$)
- SQTM, Moorhouseselection rule: suppression Transverse Amplitudes
- Solid: M.M.Gianini/E.Santopinto (hQCM) dash: D.Merten& U.Loring(2003), Solid-dot(Q² =0): I.G.Aznauryan(LFRQ)

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* $(1.65 < W < 2.0 \; { m GeV})$

• Non-quark contributions dominance, A strong coupling $A_{1/2}$ for $Q^2 < 4 \text{ GeV}^2$

 Significant MB contribution from the dynamical coupled-channel model (dash-dot:B.Julia-Diaz,T-S.H.Lee,A.Matsuyama)

• A strong suppression of $A_{3/2}$ for $Q^2 > 1.8 \text{ GeV}^2$

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* (1.65 < W < 2.0 GeV)

- Transition Form Factors for $N(1680)5/2^+$ (old conv: $F_{15}(1680)$)
- ▲ RPP(PDG:2014), △ V.Mokeev& I.G.Aznauryan(2013), □ I.G.Aznauryan(2005)
- Solid: M.M.Gianini/E.Santopinto (hQCM), dash-dot: Z.Lee& F.Close(1990), dash: D.Merten& U.Loring(2003)
- All models estimates amplitudes larger $A_{1/2}$ (lower $A_{3/2}$) than data
- MB contribution should be taken into account ?

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* $(1.65 < W < 2.0 \; { m GeV})$

• Helicity asymmetry shows a very slow rise at $Q^2 > 2 \text{GeV}^2$

• Interesting of helicity asymmetry $Q^2 > 5 \text{ GeV}^2$? $\rightarrow \text{CLAS12}$

$$A_{hel} = \frac{A_{1/2}^2 - A_{3/2}^2}{A_{1/2}^2 + A_{3/2}^2}$$

- CLAS single- π and 2π electroproduction
- ARPP2014 at Q² = 0
- Solid: M.M.Gianini/E.Santopinto (hQCM), dash-dot: Z.Lee& F.Close(1990), dash: D.Merten& U.Loring(2003)

$ec{e} p ightarrow e' \pi^+ n$ for high lying N^* $(1.65 < W < 2.0 \; { m GeV})$

• Transition Form Factors for $N(1710)1/2^+$ (old conv: $P_{11}(1710)$)

- Finite size of $A_{1/2}$ for $Q^2 < 2.5 \text{ GeV}^2$
- Finite size and negative of $S_{1/2}$ for all given Q^2 GeV²

• CLAS6 \rightarrow CLAS12 N^* Physics Program

- E12-09-003, Nucleon Resonance Studies with CLAS12
- E12-06-108A, KY electroproduction with CLAS12
- LOI12-15-004, Search for Hybrid Baryons with CLAS12

- We have obtained the differential cross-sections/asymmetries using an exclusive single pion electroproduction data for very wide range of kinematics, near threshold < W < DIS regime, Q² =1.6-4.5 GeV².
- Precision of single pion data from CLAS allows to extract the helicity amplitudes for various resonance states N(1440)1/2⁺, N(1520)3/2⁻, N(1535)1/2⁻, N(1675)5/2⁻, N(1680)5/2⁺, and N(1710)1/2⁺
- Combined analysis with available and future data CLAS12 on all exclusive meson electroproduction channels at W > 1.2 GeV at Q² > 2 GeV² within the framework of coupled channel approaches will improve considerably our knowledge on N*-state electro-couplings.