

γ γ fi

Photoproduction of the $f_1(1285)$ Meson

Reinhard Schumacher Carnegie Mellon University

Ph.D. work of Ryan Dickson, completed 2011

arXiv:1604.07425 [nucl-ex], Accepted by Phys. Rev. C

MESON2016, Krakow PL, June 3, 2016

- What are the $f_1(1285)$ and $\eta(1295)$ mesons?
- Identification of the state in CLAS/g11
- Results for:
 - Mass and Width
 - Differential cross sections model comparisons
 - Branching ratios ηππ, $\gamma \rho^0$, K K π
 - Dalitz plot analysis
 - spin and parity determination

$f_1(1285)$ I^G(J^{PC}) = 0⁺(1⁺⁺)

- Well-established axial-vector meson seen in hadronic reactions;
 - Seen in experimental PWA analyses
 - Seen in Lattice QCD
- Possible "dynamically generated" $K\overline{K}^*$ c.c. state

• $\eta(1295)$ I^G(J^{PC}) = 0⁺(0⁻⁺)

- A "controversial" state seen in $\pi^- p \rightarrow \eta \pi^+ \pi^- n$
 - Seen only in PWA, e.g. J. Manak et al., E852/BNL
- Important in the enumeration of mesonic states

Cross-check η^\prime cross section

- Compare two CLAS analyses of η' photoproduction
 - Same data set, using different methods
 - Red: Williams & Krahn et al.*
 - Blue: Dickson *et al.* (this work)
 - Good agreement between independent analyses
- Use (small) differences to quantify systematic uncertainty

(Note log scale)

R. A. Schumacher, Carr *M. Williams *et al.*, Phys. Rev. **C 80**, 045213 (2009)

Results

arXiv:1604.07425 [nucl-ex], Accepted by Phys. Rev. C R. Dickson et al., CLAS Collaboration

Channel		${\rm Mass}~({\rm MeV/c^2})$	Width (MeV/c^2)
$\eta' \to \eta \pi^+ \pi^-$	CLAS	958.48 ± 0.04	$\Gamma \ll \sigma_{exp}$
$x \to \eta \pi^+ \pi^-$	CLAS	1281.0 ± 0.8	18.4 ± 1.4
η'	PDG	957.78 ± 0.06	0.198 ± 0.009
$f_1(1285)$	PDG	1281.9 ± 0.5	24.2 ± 1.1
$\eta(1295)$	PDG	1294 ± 4	55 ± 5

• Mass consistent with PDG value for $f_1(1285)$ not $\eta(1295)$

• Width is smaller than PDG by several σ

- Differential cross-sections
 - $\eta \pi^+ \pi^-$ final state
 - <u>total</u> rate not measured
- Systematic Juncertainty Very weak
- forward peaking seen
 - Cross section falls at very forward angles

- $f_1(1285)$ is produced "flatter" than the η'
- (Note logarithmic scale)
- Clue about production:
 <u>not</u> meson-exchange
 dominated like the η'

Comparison with Models

- Solid red: Effective Lagrangian with meson exchange
 - Kochelev *et al*.
- Dashed: Effective Lagrangian with meson exchange
 - Uncontrolled hadronic form factor cut-offs
 - J-J. Xie (unpublished, private comm.)
- Dotted: "Holographic QCD" model
 - S. Domokos: meson exchange with specific recipe to compute couplings

S. Domokos *et al.*, Phys. Rev. **D 80**, 115018 (2009) N. Kochelev *et al.*, Phys. Rev. **C 80**, 025201 (2009)

 Event-by-event, rescale meson sidebands to lie within the Dalitz plot contour

Algebraic method developed to do this projection...

- Background-subtracted acceptance-corrected Dalitz plot reveals dominance of decay via $a_0^{\pm} \pi^{\mp}$ intermediate states.
- Strong interference of bands seen. Amplitude analysis!

From decay: find spin & parity

From decay: find spin & parity

From decay: find spin & parity

R. A. Schumacher, Carnegie Mellon University

- s-channel helicity system
- Components:
 - **Blue:** L=1, m=0
 - **Green**: L=1, m=±1
 - Red: Total

200

175

150

125

100

75

50

25

- a_0^{\pm} interference reproduced
 - *p*-wave decay and negative parity demonstrated
 - Decaying meson is definitely the $f_1(1285)$

Gottfried-Jackson system fit

- t-channel helicity system
- Components:
 - **Blue:** L=1, m=0
 - Green: $L=1, m=\pm 1$
 - Red: Total
 - Cyan: L=0 fit
 - a_0 interference NOT reproduced
 - Decaying meson is not aligned in this system

160 🗖

140

120

100

80

60

40

20

Properties of $f_1(1285)$ vs. $\eta(1295)$

	$f_1(1285)$	η(1295)	CLAS
I ^G (J ^{PC})	0+(1++)	0+(0-+)	J ^P = 1 ⁺
Mass (MeV)	1281.9 ± .5	1294 ± 4	1281.0 ± 0.8
Width, Γ (MeV)	24.2 ± 1.1	55 ± 5	18.4 ± 1.4
Decays:			
4 π	33 ± 2%	-	_
ηππ	52 ± 2%	Seen	-
$\frac{\Gamma(a_0\pi (noKK))}{\Gamma(\eta\pi\pi (total))}$	69 ± 13%	-	74 ± 9%
$\frac{\Gamma(K\bar{K}\pi)}{\Gamma(\eta\pi\pi)}$	17.1 ± 1.3%	-	21.6 ± 3.1%
$rac{\Gamma(\gamma ho^0)}{\Gamma(\eta\pi\pi)}$ ne 2016	10.5 ± 2.2% R. A. Schumacher, Carnegie	Not seen Mellon University	4.7 ± 1.8%

Conclusions: arXiv:1604.07425 [nucl-ex], Accepted by Phys. Rev. C R. Dickson et al., CLAS Collaboration

- The photoproduced meson CLAS sees at 1281 MeV is the $f_1(1285)$.
- Production mechanism is more consistent with s-channel process (N*-decay...) than t-channel process (meson-exchange)
 - Cross section is much "flatter" than η' production
 - The $f_1(1285)$ is aligned in the s-channel helicity system, seen via $\eta \, \pi^+ \pi^-$ Dalitz-plot amplitude analysis
- $\Gamma \sim 18.2 \text{ MeV}$; narrower than PDG average
- Branching ratios measured:
 - $K K \pi / \eta \pi \pi$, $a_0 \pi / \eta \pi \pi$ and $\gamma \rho^0 / \eta \pi \pi$

CLAS Experiment

Photoproduction:

 Targets: unpolarized LH₂, polarized p, & HDice

Beams: unpolarized, circular, linear, to ~5 GeV
Reconstructed K⁺pπ⁻(π⁰) or K⁺π⁺π⁻(n)
20×10⁹ triggers → 1.41×10⁶ KYπ events in g11a
Electroproduction:
Q² from ~0.5 to ~3 (GeV/c)²
Structure functions from Rosenbluth and beam-helicity separations

Quark Model for Mesons PDG 2014

Table 15.2: Suggested $q\bar{q}$ quark-model assignments for some of the observed light mesons. Mesons in bold face are included in the Meson Summary Table. The wave functions f and f' are given in the text. The singlet-octet mixing angles from the quadratic and linear mass formulae are also given for the well established nonets. The classification of the 0⁺⁺ mesons is tentative: The light scalars $a_0(980)$, $f_0(980)$, and $f_0(500)$ are often considered as meson-meson resonances or four-quark states, and are omitted from the table. Not shown either is the $f_0(1500)$ which is hard to accommodate in the nonet. The isoscalar 0⁺⁺ mesons are expected to mix. See the "Note on Scalar Mesons" in the Meson Listings for details and alternative schemes.

$n^{2s+1}\ell_J$	J^{PC}	$I = 1$ $u\overline{d} \overline{u}d \frac{1}{-1}(d\overline{d} - u\overline{u})$	$I = \frac{1}{2}$ $u\overline{s} \ d\overline{s} \cdot \overline{ds} - \overline{us}$	I = 0 f'	I = 0	θ_{quad}	θ _{lin} [°]
		$\frac{uu, uu, \sqrt{2}}{\sqrt{2}}$	40, 40, 40, 40	,	J	[]	[]
$1 \ {}^{1}S_{0}$	0-+	π	K	η	$\eta^{\prime}(958)$	-11.4	-24.5
$1 \ {}^3S_1$	1	ho(770)	$K^*(892)$	$\phi(1020)$	$\omega(782)$	39.1	36.4
$1 \ {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$		
$1 {}^{3}P_{0}$	0++	$a_{0}(1450)$	$K_{0}^{*}(1430)$	$f_0(1710)$	$f_0(1370)$		
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$		
$1 {}^{3}P_{2}$	2++	$a_{2}(1320)$	$K_{2}^{*}(1430)$	$f_2^\prime(1525)$	$f_2(1270)$	32.1	30.5
$1 \ ^1D_2$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$		
$1 \ {}^{3}D_{1}$	1	ho(1700)	$K^*(1680)$		$\omega(1650)$		
$1 \ {}^3D_2$	2		$K_{2}(1820)$				
$1 \ {}^{3}D_{3}$	3	$ ho_{3}(1690)$	$K_{3}^{*}(1780)$	$\phi_{3}(1850)$	$\omega_{3}(1670)$	31.8	30.8
$1 \ {}^3F_4$	4++	$a_4(2040)$	$K_{4}^{*}(2045)$		$f_4(2050)$		
$1 \ {}^3G_5$	5	$ ho_5(2350)$	$K_5^*(2380)$				
$1 \ {}^{3}H_{6}$	6++	$a_6(2450)$			$f_6(2510)$		
$2 {}^{1}S_{0}$	0-+	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$		
$2 \ {}^3S_1$	1	ho(1450)	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$		

[†] The 1^{+±} and 2^{-±} isospin $\frac{1}{2}$ states mix. In particular, the K_{1A} and K_{1B} are nearly equal (45°) mixtures of the $K_1(1270)$ and $K_1(1400)$. The physical vector mesons listed under 1³ D_1 and 2³ S_1 may be mixtures of 1³ D_1 and 2³ S_1 , or even have hybrid components.

YF

LQCD: Excited Isoscalar Mesons

The $J^{PC} = 1^{++}$ mesons, including the $f_1(1285)$, are 'seen' in recent lattice calculations...

J. Dudek et al. Phys. Rev. D 88, 094505 (2013)

Dynamically Generated Mesons

The f₁(1285) as a {KK* + c.c.} composite state

- Chiral Lagrangian + unitarization of the pseudoscalar - vector meson nonet interaction
- Lattice calculations
- Expect "non-standard" production mechanisms, if true

M. F. M. Lutz and E. E. Kolomeitsev Nucl Phys **A730** 392, (2004) L. Roca, E. Oset, J. Singh Phys Rev **D72**, 014002 (2005)

F. Aceti, Ju-Jun Xie, E. Oset, arXiv:1505.06134 (2015)

Branching Ratios

Item	Value	Stat. Uncert.	Syst. Uncert.	PDG $f_1(1285)$
$\eta \pi^+ \pi^-$ Event Yield	1.33×10^{5}	4.9×10^{3}	2.9×10^{3}	
$\eta \pi^+ \pi^-$ Acceptance	0.0652	9.7×10^{-5}	0.0072	
$K^{\pm}K^{0}\pi^{\mp}$ Event Yield	6570	180	340	
$K^{\pm}K^{0}\pi^{\mp}$ Acceptance	0.0149	3.18×10^{-5}	0.0016	
$\gamma \rho^0$ Event Yield	3790	790	850	
$\gamma \rho^0$ Acceptance	0.0248	6.4×10^{-5}	0.0050	
Isospin C.G. $\Gamma(K^{\pm}K^0\pi^{\mp})/\Gamma(K\bar{K}\pi)$	2/3			
Isospin C.G. $\Gamma(\eta \pi^+ \pi^-)/\Gamma(\eta \pi \pi)$	2/3			
$\gamma \rho^0$ correction from $\eta' d\sigma/d\Omega$	0.95			
Branching Fraction $\Gamma(K\bar{K}\pi)/\Gamma(\eta\pi\pi)$	0.216	0.010	0.031	0.171 ± 0.013
Branching Fraction $\Gamma(\gamma \rho^0) / \Gamma(\eta \pi \pi)$	0.047	0.010	0.015	0.105 ± 0.022

TABLE III. Relative branching fractions of the $f_1(1285)$ meson, with estimated uncertainties from all sources.

- $K \overline{K} \pi / \eta \pi \pi$ ratio agrees with PDG average
 - (isospin factors applied)
- $\gamma \rho^0 / \eta \pi \pi$ ratio smaller than PDG average by 55%

- Subtract huge multi-pion background to reveal...
- ... dominance of decay via $a_0^{\pm} \pi^{\mp}$ intermediate state.
- Strong interference of bands seen. Amplitude analysis!

June 2016

$$A_{m=\pm1}(m_{a_{0}^{+}\pi^{-}},m_{a_{0}^{-}\pi^{+}}) = BW(m_{a_{0}^{+}\pi^{-}})W_{1,\pm1}(\Theta_{a_{0}^{+}\pi^{-}},\phi_{a_{0}^{+}\pi^{-}}) + BW(m_{a_{0}^{-}\pi^{+}})W_{1,\pm1}(\Theta_{a_{0}^{-}\pi^{+}},\phi_{a_{0}^{-}\pi^{+}})$$
$$A_{m=0}(m_{a_{0}^{+}\pi^{-}},m_{a_{0}^{-}\pi^{+}}) = BW(m_{a_{0}^{+}\pi^{-}})\left(W_{1,0}(\Theta_{a_{0}^{+}\pi^{-}},\phi_{a_{0}^{+}\pi^{-}}) + W_{0,0}\right) + BW(m_{a_{0}^{-}\pi^{+}})\left(W_{1,0}(\Theta_{a_{0}^{-}\pi^{+}},\phi_{a_{0}^{-}\pi^{+}}) + W_{0,0}\right)\right)$$

$$BW(m \mid m_0, \Gamma_0) = \frac{\sqrt{m_0 \Gamma_0}}{m_0^2 - m^2 - im_0 \Gamma_0} \frac{q(m)}{q(m_0)} - a \text{ Breit-Wigner for each } a_0$$

- angular distribution in the selected system

$$f_{1}: W_{L=1, m=0,\pm1}(\Theta_{H}, \phi) = a Y_{1,\pm1}(\Theta_{H}, \phi) + b Y_{1,0}(\Theta_{H}, \phi) + a Y_{1,-1}(\Theta_{H}, \phi)$$
$$\eta: W_{L=0, m=0}(\Theta_{H}, \phi) = c Y_{0,0}$$

-total decay-weighted magnitude squared

$$T\left(m_{a_{0}^{+}\pi^{-}},m_{a_{0}^{-}\pi^{+}}\right) = \frac{q(m_{a_{0}^{+}\pi^{-}})}{q(m_{0})} \frac{q(m_{a_{0}^{-}\pi^{+}})}{q(m_{0})} \left(\left|A_{m=\pm 1}\left(m_{a_{0}^{+}\pi^{-}},m_{a_{0}^{-}\pi^{+}}\right)\right|^{2} + \left|A_{m=0}\left(m_{a_{0}^{+}\pi^{-}},m_{a_{0}^{-}\pi^{+}}\right)\right|^{2}\right)$$

red = measured particles

Two yield extraction methods

- Voigtian lines shape using known CLAS resolution
 - Convolution of BW and Gaussian
- Monte Carlo fitting using signal and estimated multi-pion backgrounds
 - *p* ρ π π (green)
 - *p* φ₁(1370) (purple)
 - p x(1280) (red) signal
 - Total (blue)

Looking for $\gamma \rho^0$ decays

- Select $p_{perp} > 40 \text{ MeV/c}$ • 2nd kin. fit to $\gamma p \rightarrow p \pi^+ \pi^-(\pi^0)$ to
- Very small signal: only extract branching ratio to $\eta \pi^+ \pi^-$

Sum over all kinematics

33

1.34

1.32

Comparison with Models

N. Kochelev model

- Effective Lagrangian
- t-channel ρ and ω
 exchange
- Solid: $f_1(1285)$
- Dashed: η(1295)
- Dotted: sum

Poor match to data

NR.Koshelevhe, Callagian Bers DeVita, Phys. Rev. C 80, 025201 (2009)

$\sum_{i=1}^{n} | \text{Dalitz analysis of } x \rightarrow \eta \pi^+ \pi^-$

 Fold data on symmetry axis

Generate "phase space" Monte Carlo events with finite width of meson and CLAS resolution included

"Weight" the events with amplitudebased intensity

$\sum_{n=1}^{\infty} | \text{Dalitz analysis of } x \rightarrow \eta \pi^+ \pi^-$

- Fit to full plot did not converge, so trim data to focus on 'bands'.
- Structure in unweighted Monte Carlo due to finite width and resolution effects

Helicity system fit

- The $f_1(1285)$ is "aligned" in the helicity system.
- The mix of m = 0 and $m = \pm 1$ is a property of the production mechanism in the range 2.30 < W < 2.80 GeV.

 $P_{\pm}: P_0 = 31.8: 69.2, \pm 1.4\%.$

- Discuss later...
- We also measure the ratio

$$\frac{\Gamma(a_0\pi(noKK))}{\Gamma(\eta\pi\pi(total))} = 74 \pm 2(stat) \pm 9(syst)\%$$

Consistent with PDG value

Speculation re $f_1(1285)$ production

- Alignment in helicity system suggests schannel N* production decays to $f_1(1285) p$
 - Can we infer J^{P} of the N* baryon resonance?
 - 3/2+ → 1+ + ½+ in s-wave leads to P_±: P₀ = 1 : 2 as seen in the data
 - $\frac{1}{2^+} \rightarrow 1^+ + \frac{1}{2^+}$ in s-wave leads to $P_{\pm}: P_0 = 2:1$, opposite to what data show

But there are no known N* states with low J at W~ 2.5 GeV, so the question remains open

2 10 W = 2.35 GeVAt equal W 10 1 -0.5 0 0.5 - 1 1 cos0^{c.m.} 10² 102 W = 2.45 GeVW = 2.55 GeVю $d\sigma/d\Omega (nb/sr) (\rightarrow \eta \pi^{+}\pi^{-})$ 10 10 $\cos \Theta^{\text{c.m.}}$ -0.50.5 -0.5 $\cos \Theta^{\text{c.m.}}$ 0.5 **—** 1 1 10², 10² • W = 2.65 GeVW = 2.75 GeVю ю 10 10 1 0.5 0.5 _ 1 -0.5-0.50 0 1 cosΘ^{c.m.} cosO^{c.m.}

R. A. Schumacher, Carnegie Mellon University

R. A. Schumacher, Carnegie Mellon University