Double-spin observables in charged pion photo-production from polarized neutrons in solid HD using the CLAS at Jefferson Lab

> @SPIN 2016 Sept. 27, 2016; Champaign, USA

> > Tsuneo Kageya

Thomas Jefferson National Accelerator Facility, Newport News, USA (On behalf of the g14 Analysis Team and CLAS collaboration)

1. Experimental conditions and our objective g14 experiments: Dec. 2011 – May. 2012

* Circularly polarized photon beams: 0.85 < E_{γ} < 2.4 GeV \overrightarrow{D} : 27 days \rightarrow 4.5 B events (Dpol. ~ + 25 %) Used for this analysis Extract E asymmetry from $\gamma + n(p) \rightarrow \pi^- + p(p)$

2. Experimental apparatus

Circularly and linearly polarized photon beams

CLAS detectors and electron tagging system

Polarized deuteron target (Solid HD)

3. Independent analyses of this E asymmetry with three methods

(a) Background subtraction (1D-Bsub)
(b) BDT (Boosted Decision Trees) ¹) : K⁰Λ analysis
(c) Kinematical fitting ²)

(a): Background from target cell can be subtracted completely

(b) & (c): could be applied to low statistics channels.

Compare and combine the results from three analysis methods

- 1) from Dao Ho PhD. thesis; "Measurements of the E Polarization Observable for $\gamma d \rightarrow \pi p(p_s)$, $\gamma d \rightarrow Ko\Lambda(p_s)$, and $\gamma d \rightarrow \pi + \pi d(o)$ using CLAS g14 data at Jefferson Lab"
- 2) from Peng Peng PhD thesis; "Polarization observables for single and double charged pion photoproduction with polarized HD target"

Common corrections for Easymmetry

on $\gamma + n(p) \rightarrow \pi^{-} + p(p)$

- (a) Energy loss correction
- (b) Momentum correction
- (c) Tagger photon beam energy correction

(a) Background subtraction method (No.1)

(a) Background subtraction method (No.2); Major cuts

(b) Kinematic fitting method (No.1)

- Apply a hypothesis to the fitter; $\gamma + (n) \rightarrow \pi^- + p$;
- Assume a moving target neutron with unknown Fermi momentum

this method removes the events from

- * high-momentum neutrons in the deuteron (automatically)* Target cell background
- * Background from 2 pion productions

(b) Kinematic fitting method (No.2); $\gamma + (n) \rightarrow \pi^- + p$

(c) BDT (Multivariate analysis, Boosted Decision Trees) Method (No.1)

* To reject two backgrounds Target cell Other channels (2 П productions)

* Train data with **signals from Monte Carlo** (CLAS geometry and performances) background from target cell data

(c) BDT (Multivariate analysis, Boosted Decision Trees) Method (No.2)

* Common cut for Missing momentum to the three methods

Jefferson Lab Thomas Jefferson National Accelerator Facility

E asymmetry dependence on the missing momentum ranges (all energy and integrated to $\cos \theta_{CM}$ of π -) (BDT method) • 3rd order polynomial χ^{2} /d.o.f=0.75 -0.1 -0.2 -0.3 Ш-0.4 -0.5-0.6 -0.7 Used for the analysis -0.8[∟] 0.02 0.06 0.08 0.04 0.12 0.14 0.18 0.1 0.16 0.2 (GeV/c) n missing

4. Preliminary results; E asymmetries from 3 methods for $\gamma + n(p) \rightarrow \pi^{-+} p(p)$ (cos θ_{CM} of π -)

T. Kageya, SPIN 2016, Sept. 27 2016

E asymmetries for γ +n (p) $\rightarrow \pi^-$ + p + (p)

Comparisons of three methods

(as a function of Cos θ_{CM})

T. Kageya, SPIN 2016, Sept. 27 2016

E asymmetries for combining 3 methods with PWA analysis for $\gamma + n (p) \rightarrow \pi^{-+} p(p)$ (cos θ_{CM} of π -)

Combined systematic errors (relative) for the three analysis methods

Contributions to σ_{sys}		σ_{sys}			
	1D-Bsub	kinematic fit	BDT		
z-vertex cut / Kel-F suppression:	2.6 %	1.4 %	1.7 %		
Confidence level cut / BDT cut:		1.3 %	0.7 %		
Missing momentum cut:	1.7 %	2.9 %	1.4 %		
PID cut:	1.3 %				
Missing mass cut:	1.4 %		2.6 %		
Coplanarity cut:	0.4 %				
Monte Carlo (DC resolution):			0.4 %		
Extrapolation to $ p_{missing} = 0$	2.2 %	2.2 %	2.2 %		
σ (cuts)	4.3 %	4.1 %	4.1 %		
Photon beam polarization:	3.4 %	3.4 %	3.4 %		
Target polarization:	6.0 %	6.0 %	6.0 %		
σ (polarization):	6.9 %	6.9 %	6.9 %		
σ (total)	8.1 %	8.0 %	8.0 %		

5. Summary

- a. Completed experiments for pseudoscalar-meson photo-production from longitudinally polarized HD at CLAS for 64 days of circularly and 30 days of linearly polarized photon beams.
- b. Preliminary results for E asymmetry for $\gamma + n(p) \rightarrow \pi p(p)$ were shown. Systematic errors are estimated.
- c. Study of Σ and G asymmetries for $\gamma + n(p) \rightarrow \pi p(p)$ is ongoing
- d. Analyses for other channels, like $\gamma + p(n) \rightarrow p \pi + \pi (n)$, $\gamma + n(p) \rightarrow n \pi + \pi - (p)$, K⁰A and K⁺ Σ^- are in progress.
- e. For vector meson production, $\gamma + p(n) \rightarrow p \rho$ (n), analyses are ongoing.

Backup slides

(c) BDT (Multivariate analysis, Boosted Decision Trees) Method (No.2)

* Build up distinct decision trees in multi dimensional (10 in this case)

T. Kageya, SPIN 2016, Sept. 27 2016

efferson Lab 22 Thomas Jefferson National Accelerator Facility

(c) BDT (Multivariate analysis, Boosted Decision Trees) Method (No.3)

* BDT output -> -1 (background) to 1 (Signal)

son Lab

mas Jefferson National Accelerator Facility

23

Physics motivation: for missing resonances issue, measure more spin observables for neutron (little known) from HD

Photon beam		Target		Recoil		Target - Recoil										
					<i>x'</i>	y'	z'	<i>x'</i>	<i>x'</i>	<i>x'</i>	y'	y'	y'	z'	z'	z '
		x	У	Z				x	У	Z	x	У	Z	x	У	Z
unpolarized	σ₀		Т			P		$T_{x'}$		$L_{x'}$, , , ,	Σ	, , ,	T _z ,		$L_{z'}$
$P_L^{\gamma} sin(2\phi_{\gamma})$		H		G	0 _{x'}		0 z'		$C_{z'}$		E		F		$-C_{x'}$	
$P_L^{\gamma} \cos(2\phi_{\gamma})$	_Σ		- P			- T		$-L_{z'}$		T z*		$-\sigma_0$		$L_{x'}$		- T _{x'}
circular P_c^{γ}		F		E	<i>C</i> _{<i>x'</i>}		<i>C</i> _{z'}		- O z'		G		-H		0 _{x'}	
This talk																

status	CLAS run period		beam	target	
complete	g13		$ec{\gamma}_L$, $ec{\gamma}_c$	LD_2	
complete	g14		$ec{\gamma}_L$, $ec{\gamma}_c$	HD <i>ice</i>	(Longitudinally polarized)

Sandorfi, Hoblit, Kumano, Lee, J.PHYS, G38 (2011)053001

New longitudinally polarized target for this experiment

Frozen Spin Polarized solid HD target Relaxation time of D > 1 year @ \sim 50 mK and 0.9 Tesla

* Horizontal Dilution Fridge (designed and constructed by HDice group at Jlab)
* 1 Tesla main Solenoid for longitudinal holding field
* Transverse field of 750 Gauss for field rotation (spin flip)
* NMR coil: polarization monitor during the run and spin transfer and H-spin flip, Birdcage coil

Pseudoscalar meson reactions and observables measured in this experiment (try Neutron reactions using Deuteron)

reaction	observable
$\gamma + n(\mathbf{p}) \rightarrow \pi^{-} p(\mathbf{p})$	$\sigma_{\theta}, \Sigma, E, G$
$\gamma + n(\mathbf{p}) \rightarrow \pi^{+}\pi^{-}n(\mathbf{p})$	$\sigma_{\theta}, I^{c}(\Sigma), I^{s}, I^{\theta}, P_{z},$
	$P^{o}_{z}(E), P^{s}_{z}(G), P^{c}_{z}$
$\gamma + n (p) \longrightarrow K^0 \land (p)$	$\sigma_{\theta}, \Sigma, E, G$
	$O_{x'}, O_{z'}, C_{x'}, C_{z'}, P, T=(-O_{y'})$
	$L_{x'}, L_{z'}, T_{x'}, T_{z'}$
$\gamma + n (p) \rightarrow K^0 \Sigma^0 (p)$	σ _θ , Σ, <i>Ρ</i> , <i>Ε</i> , <i>G</i>
$\gamma + n(p) \rightarrow K^+ \Sigma^-(p)$	σ _θ , Σ, Ε, G

From proposal Eo6-101

T. Kageya, 4th Joint DNP Meeting, Octber11, 2014

3. Experimental conditions and data reduction g14 experiments: Dec. 2011 – May. 2012

* Circularly polarized photon beams: 0.85 < E_{γ} < 2.4 GeV \overrightarrow{D} : 27 days \rightarrow 4.5 B events (Dpol. ~ + 25 %)

Dpol : **Preliminary**

* Linearly polarized photon beams: $1.6 < E_v < 2.2 \text{ GeV}$

- D : 21 days \rightarrow 2.5 B events (Dpol. ~ + 25 %)
 - : 9 days \rightarrow 1.2 B events (Dpol. ~ 17 %)

(a) Select events; only π^- and Proton detected in CLAS

