Nucleon and Nuclear structure studies in electroproduction with CLAS at Jefferson Lab

S. Stepanyan (JLAB) for the CLAS collaboration

22nd International Spin Symposium 2016 September 25-30, 2016, UIUC

Jefferson Lab

Parameter	1996 – 2012	2014 –
E _{max} (GeV)	6 (1.2/pass)	12 (2.2/pass)
I _{max} (μA)	200	100
Polarization	85%	85%
Simultaneous delivery of CW beam to	3 halls	3 halls (4@5th pass)

SCIENCE

Hall B CLAS detector

Experiments with [polarized] electron and photon beams using variety of cryogenic, solid and polarized targets

Supported execution of a diverse physics program for 15 years

CLAS12 – Design Parameters

Forward Datastar		FD	CD
	Angular range Track Photons	5 ⁰ – 40 ⁰ 2 ⁰ – 40 ⁰	35 ⁰ – 125 ⁰
	Resolution dp/p (%) dθ (mr) Δφ (mr)	< 1 @ 5 GeV/c < 1 < 3	< 5 @ 1.5 GeV/c < 10 – 20 < 5
	Photon detection Energy (MeV) δθ (mr) Neutron detection	>150 4 @ 1 GeV N _{eff} < 0.7	 N _{eff} < 0.3
	Particle ID e/π	Full range	
Central Detector $L = 10^{35} cm^{-2} s^{-1}$	π/p π/K K/p π(η)→γγ	< 5 GeV/c < 2.6 GeV/c < 4 GeV/c Full range	< 1.25 GeV/c < 0.65 GeV/c < 1.0 GeV/c

JLAB kinematic and experimental reach

6

Physics program of CLAS (CLAS12)

- Hadron spectroscopy
 - Spectrum of nucleon resonances
 - Exotics
- Nucleon structure (p & d targets)
 - Form Factors (FFs)
 - Parton Distribution Functions (PDFs)
 - Generalized Parton Distributions (GPDs)
 - Transverse Momentum Distributions (TMDs)
- Nuclear QCD
 - Nuclear GPDs
 - Quark propagation and hadronization in nuclei
 - Color transparency
 - Short-range correlations
 - Effects of binding on nucleon structure

Electroexcitation of nucleon resonances

- Over past decade, CLAS provided the lion's share of the world's data on meson photoand electroproduction in the resonance excitation region.
- These data were not only important for in identifying new states (accommodated in CQM and LQCD) but also in revealing structure of known resonances
- Theoretical analyses of these results have revealed that there are two major contributions to the resonance structure:
 - an internal quark core
 - an external meson-baryon cloud

The neutron magnetic FF

Dual-cell target containing LD₂ and LH₂ – need an accurate measurement of the neutron detection efficiency

4.2 GeV data

2.5 GeV data

Structure of the Free Neutron at Large Bjorken x

Radial TPC: $70 < p_s < 270 \text{ MeV/c}$

N. Bailie et al., PRL 108, 142001 (2012)

0.9

0.8

0.7

0.3 0.2

0.1

0.2

0.3

0.4

0.5

x*

CLAS12, E12-06-113

0.6

0.7

0.8

> 1.8 GeV

> 1.6 GeV

* > 1.4 GeV

The Longitudinal Spin Structure of the Nucleon

SCIENCE

 Magnet provides natural Moller shielding

11

$$A_1(x) \approx \frac{g_1(x)}{F_1(x)} = \frac{\sum e_i^2 \Delta q_i(x,Q)}{\sum e_i^2 q_i(x,Q)}$$

Model for $x \rightarrow 1$	A_1^p	A_1^n	d/u	∆u/u	∆d/d
SU(6)	5/9	0	1/2	2/3	-1/3
w/ hyperfine ($E_{S=0} < E_{S=1}$)	1	1	0	1	-1/3
One gluon exchange	1	1	0	1	-1/3
Suppressed symmetric WF	1	1	0	1	-1/3
S=1/2 dominance	1	1	1/14	1	1
$\sigma_{1/2}$ dominance	1	1	1/5	1	1
pQCD (conserved helicity)	1	1	1/5	1	1

No data are available at large x

Polarized structure functions at 11 GeV

Short range correlations in nuclei

In the region of internal momentum where the NN short range correlations dominate the nuclear wave function -

- the form of the momentum distribution for different nuclei should be the same
- the ratios of quasi-elastic scattering cross sections for different nuclei should scale

- a₂ is extracted using R(³He/D) from model calculation
- The correlation between the slope of EMC ratio R_{EMC} in deep inelastic region and a₂ indicates that the EMC effect is result of local nuclear density

3-D Picture of the Nucleon

Transverse Momentum Distributions & Generalized Parton Distributions 3-D imaging of the nucleon, the correlation of quark/antiquark transverse spatial and longitudinal momentum distributions, and on the quark angular momentum distribution

Accessing GPDs experimentally - DVCS

First DVCS measurements

CLAS DVCS beam spin asymmetry

CLAS target and double spin asymmetry

E. Seder et al., Phys. Rev. Lett. 114, 032001 (2015)

S. Pisano et al., Phys. Rev. D 91, 052014

Compton form factors from BSA, TSA and DSA

Using a local-fitting method at each given experimental (Q²; x_B ;-t) kinematic point and setting $\tilde{E}_{Im} = 0$, seven out of eight real and imaginary parts of CFF were left as free parameters

The better constrained CFF with these data are $\,H_{_{I\!m}}\,$ and ${\tilde H}_{_{I\!m}}\,$

The t-slope of H_{Im} is much steeper than that of \tilde{H}_{Im} , hinting at the fact that the axial charge (linked to \tilde{H}_{Im}) might be more "concentrated" in the center of the nucleon than the electric charge (linked to H_{Im}).

CLAS DVCS cross sections

CLAS12 DVCS - longitudinally polarized beam

21

S. Stepanyan, SPIN2016

son

Jefferson National Accelerator Facil

Hidden charmed pentaquarks and *gluonic structure* of the nucleon with CLAS12

Experiment E12-12-001 measures J/ψ production on the proton near threshold – will verify existence of the *charmed pentaquarks* and will study *the gluon field of the nucleon*

23

Summary

- The Hall-B CLAS detector at Jefferson lab run successfully for about 15 years, supporting a diverse physics program
- CLAS physics program included experiments with [polarized] electron and photon beams, and variety of cryogenic, solid, and polarized targets
- The physics program of CLAS, the large part of which will continue with CLAS12, covers studies of nucleon and nuclear structure using inclusive and exclusive electroproduciton reactions, and hadron spectroscopy
- There is already more than 1500 hours of beam time approved for CLAS12 experiments
- The 12 GeV Upgrade greatly enhances the scientific "reach" of JLAB facility. Detectors in experimental halls are well suited to carry out vigorous physics program

