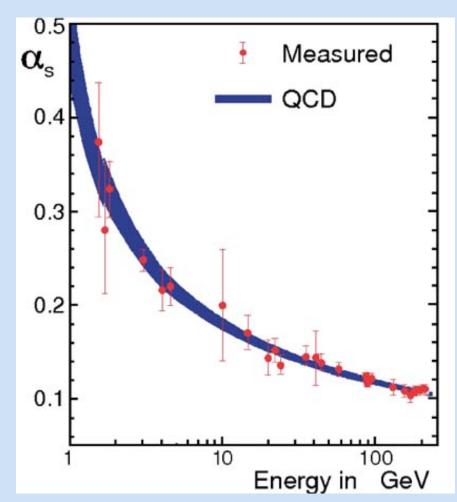
Measurement of polarization observables for the ∧ hyperon for photon energies up to 5.45 GeV.

Shankar Adhikari Florida International University



Outline

- Introduction
- Motivation
- Experiment overview
- Very preliminary $-C_x$ and C_z
- Conclusion

Introduction

- For high energy, QCD has perturbative series expansion.
- The equation of QCD remains unsolved at energy scales relevant for describing the atomic nuclei. Such as hadron relevant degree.
- Hadron spectroscopy: Study properties of hadron such as mass, decay and classify based on quantum number.

Motivation

- Constituent Quark Model predict large numbers of resonance spectrum.
- Predicted states are not observed.
- Higher densities for Nπ channel, whereas resonance are broad and overlapping.

K⁺Λ channel could couple
 with resonance and it is easier
 to measure polarization
 observables.

Table 1. The status of the N resonances. Only those with an overall status of *** or **** are included in the main Baryon Summary Table.

		Status as seen in								
Particle J^P	overall	$N\gamma$	$N\pi$	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
$N = 1/2^+$	****									
$N(1440) 1/2^+$	****	****	****		***				*	***
$N(1520) 3/2^{-}$	****	****	****	***					***	***
$N(1535) 1/2^{-}$	****	****	****	****					**	*
$N(1650) 1/2^{-}$	****	****	****	***			***	**	**	***
$N(1675) 5/2^{-}$	****	****	****	*			*		*	***
$N(1680) 5/2^+$	****	****	****	*	**				***	***
$N(1700) 3/2^{-}$	***	**	***	*			*	*	*	***
$N(1710) 1/2^+$	****	****	****	***		**	****	**	*	**
$N(1720) 3/2^+$	****	****	****	***			**	**	**	٠
$N(1860) 5/2^+$	**		**						*	۰
$N(1875) 3/2^{-}$	***	***	*			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^{-}$	**	**	*	**			**	*		
$N(1900) 3/2^+$	***	***	**	**		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**					*		
$N(2000) 5/2^+$	**	**	*	**			**	*	**	
$N(2040) 3/2^+$	*		*							
N(2060) 5/2	**	**	**	*				**		
$N(2100) 1/2^+$	*		*							
$N(2120) 3/2^{-}$	**	**	**				*	*		
$N(2190) 7/2^{-}$	****	***	****			*	**		*	
$N(2220) 9/2^+$	****		****							
$N(2250) 9/2^{-}$	****		****			- 1				
$N(2300) 1/2^+$	**		**							
$N(2570) 5/2^{-}$	**		**			- 1				
N(2600) 11/2	***		***							
N(2700) 13/2	+ **		**							

**** Existence is certain, and properties are at least fairly well explored.

*** Existence is very likely but further confirmation of decay modes is required.

** Evidence of existence is only fair.

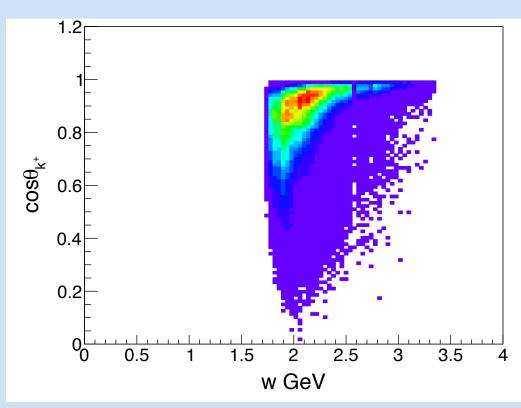
Evidence of existence is poor.

Polarization observables

General form of cross section including polarization observables:

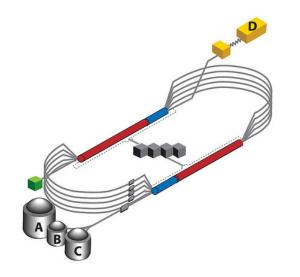
$$\begin{aligned} d\sigma &= \frac{1}{2} \left(d\sigma_0 + \hat{\Sigma} [-P_L^{\gamma} \cos(2\phi_{\gamma})] + \hat{T} [P_y^T] + \hat{P} [P_{y'}^R] \\ &+ \hat{E} [-P_e^{\gamma} P_z^T] + \hat{G} [P_L^{\gamma} P_z^T \sin(2\phi_{\gamma})] + \hat{F} [P_e^{\gamma} P_x^T] + \hat{H} [P_L^{\gamma} P_x^T \sin(2\phi_{\gamma})] \\ &+ \hat{C}_{x'} [P_e^{\gamma} P_{x'}^R] + \hat{C}_{z'} [P_e^{\gamma} P_{z'}^R] + \hat{O}_{x'} [P_L^{\gamma} P_{x'}^R \sin(2\phi_{\gamma})] + \hat{O}_{z'} [P_L^{\gamma} P_{z'}^R \sin(2\phi_{\gamma})] \\ &+ \hat{L}_{x'} [P_z^T P_{x'}^R] + \hat{L}_{z'} [P_z^T P_{z'}^R] + \hat{T}_{x'} [P_x^T P_{x'}^R] + \hat{T}_{z'} [P_x^T P_{z'}^R] \right). \end{aligned}$$

Total 16 observables.
3 single polarization observables.


4 double polarization observables.

- Polarization observables are sensitive to interference from different states.
- With this experiment we are measuring 3 polarization observables.

Obcarrobla	Required Polarization								
Observable	Beam	Target	Hyperon						
Single Polarization									
$\frac{d\sigma}{d\Omega}$	-	-	-						
Σ	linear	-	-						
T	-	along y'	-						
P	-	-	along y'						
Beam and Target Polarization									
G	linear	along z	-						
H	linear	along x	-						
E	circular	along z	-						
F	circular		-						
Beam and Hyperon Polarization									
$O_{x'}$	linear	-	along x'						
$O_{z'}$	linear	-	along z'						
$C_{x'}$	circular	-	along x'						
$C_{z'}$	circular	-	along z'						
Target and Hyperon Polarization									
$T_{x'}$	-	along x	along x'						
$T_{z'}$	-	along x	along z'						
$L_{x'}$	-	$a \log z$	along x'						
Т		along z	along z'						
	$\begin{array}{c} \frac{d\sigma}{d\Omega} \\ \Sigma \\ T \\ T \\ P \\ \end{array}$ Beam $\begin{array}{c} G \\ H \\ E \\ F \\ \end{array}$ Beam $\begin{array}{c} G \\ O_{x'} \\ O_{z'} \\ C_{x'} \\ C_{z'} \\ \end{array}$ Target $\begin{array}{c} T \\ T_{x'} \\ \end{array}$	ObservableBeamSingle Pola $\frac{d\sigma}{d\Omega}$ Σ linear T P I Beam and Target G linear H linear E circular F circular $O_{z'}$ linear $O_{z'}$ linear $C_{z'}$ circular $C_{z'}$ circular $T_{z'}$ $T_{z'}$ $T_{z'}$ $T_{z'}$	ObservableBeamTargetSingle Polarization $\frac{d\sigma}{d\Omega}$ linear Σ linear T along y' P -Beam and Target Polarizat G linear H linear I along z H linear E circular F olong z F circular $O_{z'}$ linear $O_{z'}$ linear $C_{x'}$ circular $C_{z'}$ circular $Target$ - $Target$ along x $T_{x'}$ - $T_{z'}$ along x $T_{z'}$ - $Along x$ $T_{z'}$ - $Along x$ $T_{z'}$ - $Along x$ $T_{z'}$ - $Along x$						

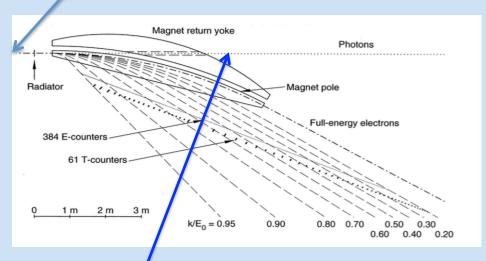

Previous Measurements

- Pre-existing data for $\gamma+p \to K^+ + \Lambda$ on polarization observables and cross sections from CLAS(JLab), LEPS, SAPHIR, GRAAL.
- Kinematic coverage:
 - CM energy up to 2.6 GeV.
- Extracting polarization observables w > 2.6 GeV, where previous measurements are missing.
- Higher energies measurement helps us to constrain on non-resonant contribution.

Jefferson Lab

Electron beam with energies 5.71GeV for this experiment.

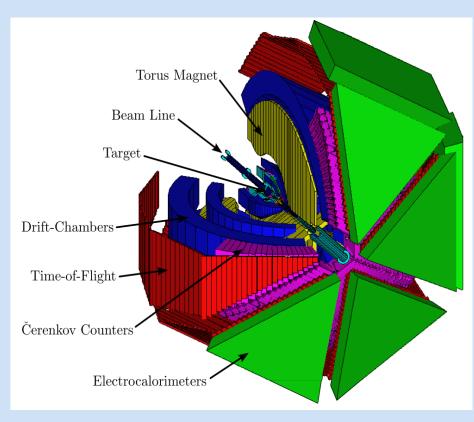
CEBAF "race track" accelerator with linacs and arcs.


Hall B

Located Newport News, Virginia

CEBAF Large Acceptance Spectrometer (CLAS)

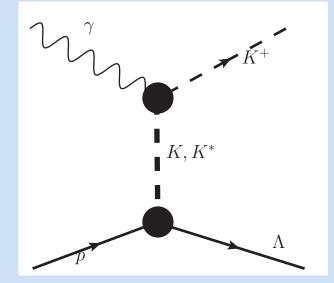
60-65 nA electron beam



Geometry of tagging system

Produce real photon beam through Bremsstrahlung process.

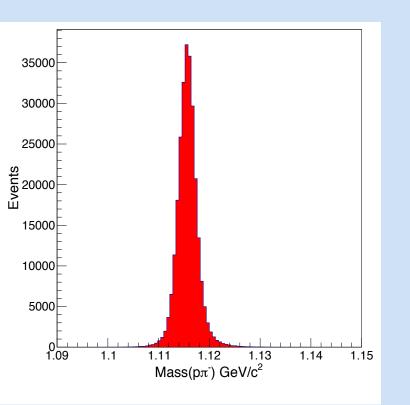
Photons passed to the hall were tagged.

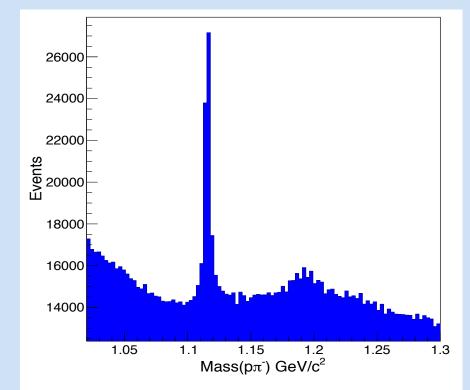

Hall B detector

g12 Experiment and Analysis Reaction

- Circularly polarized photon beam.
- Photon beam energy range 1.1 to 5.5 GeV.
- 40 cm long unpolarized hydrogen target.
- Large amount of meson photo-production data were collected.

$$\begin{array}{c} \gamma p \rightarrow K^+ \Lambda \\ \hline & p \pi^- \end{array}$$
Examples of Feynman diagram
$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

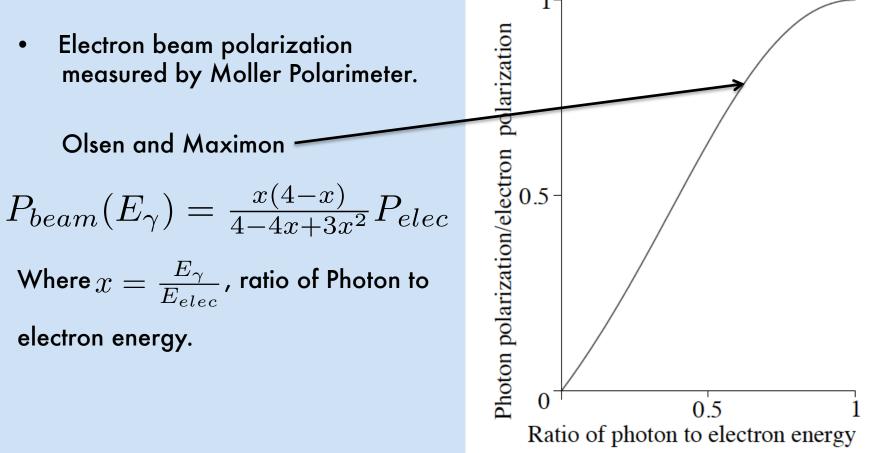



s – channel

t – channel

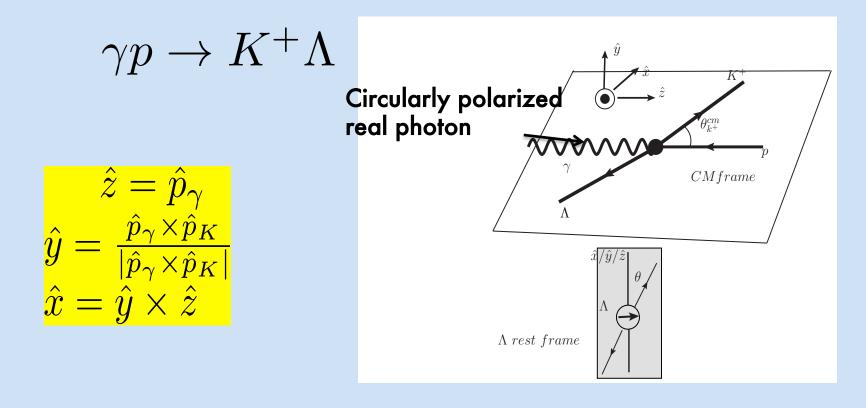
Event Selection

Background comes from other reaction channels with same final states.



Background reduction process:

- Vertex cut
- Timing cut
- Fiducial cuts
- Mass cuts.


Photon beam Polarization

 In order to measure the polarization observables, the polarization of photon beam need to be measure.

Measurement of Polarization

- If the produced particle is polarized then, we can extract polarization observables from its decay particles.
- It is possible when there is weak decay of polarized particle such as Lambda.

Defining Cx, Cz and P

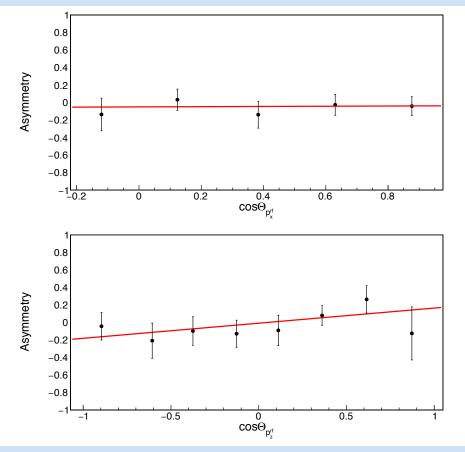
$$\rho_{\Lambda} \frac{d\sigma}{d\Omega_{K^+}} = \frac{d\sigma}{d\Omega_{K^+}} \Big|_{unpol} \{ 1 + \sigma_y P + P_{beam} (C_x \sigma_x + C_x \sigma_x) \}$$

$$ho_\Lambda = \left(1 + ec{\sigma}.ec{P_\Lambda}
ight)$$
 Density matrix.

Defining C_X, C_Z and P

 $P_{\Lambda_X} = P_{beam}C_X$; transferred polarization along x.

 $P_{\Lambda_Y} = P$; induced polarization along y. $P_{\Lambda_Z} = P_{beam}C_Z$; transferred polarization along z.

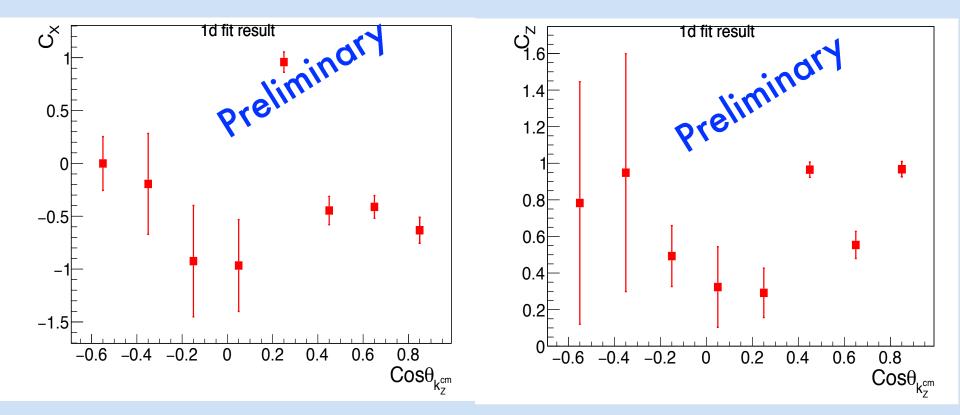

Asymmetry

- Construct beam helicity asymmetries from extracted yields.
- Slope of asymmetry distribution is proportional to C_X and C_Z observables.

$$A(\cos \theta_{p_{X/Z}^{rf}}) = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$
$$= \alpha P_{beam} C_{X/Z} \cos \theta_{X/Z}$$

Photon beam polarization. Weak decay asymmetry = 0.642

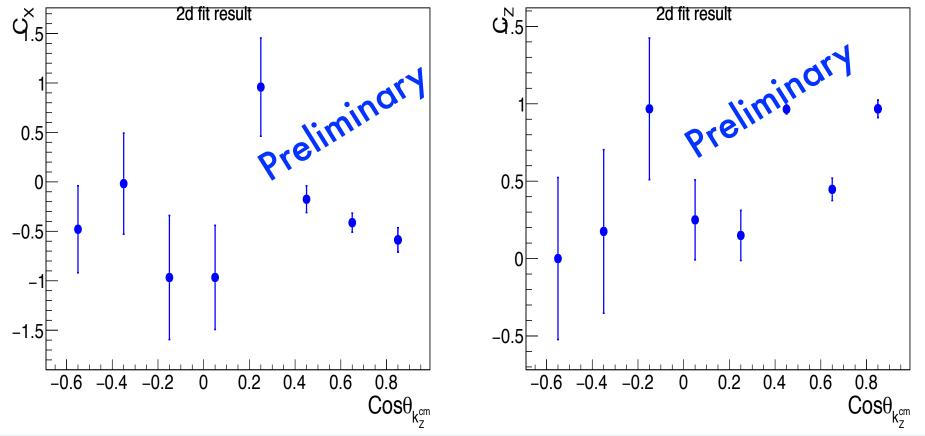
 $N \pm =$ helicity dependent yields.



Beam energy = [2.642, 2.741] GeV Kaon cosine angle in CM frame = -0.25 to -0.45

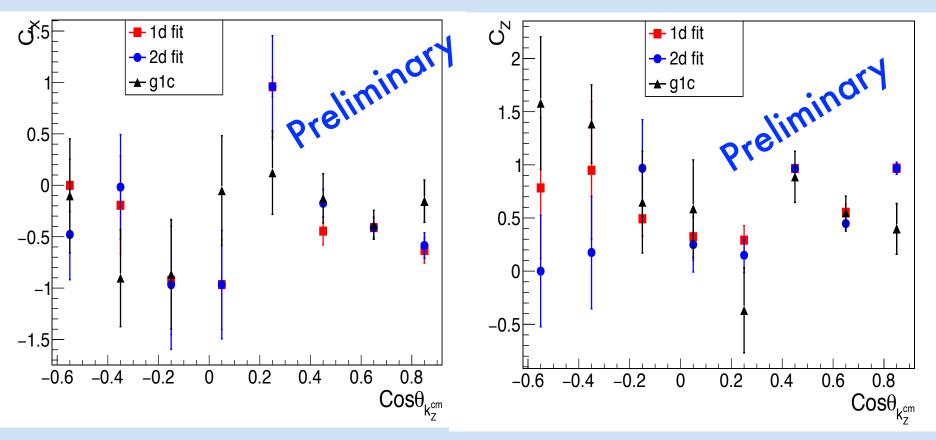
Result of 1d Fit

Beam energy = 2.642 - 2.741 GeV


Kaon cosine angle in CM frame = -0.05 to -0.45

2d Fit Method

2d fit method is same as 1d fit but with simultaneous measurement of observables.



Beam energy 2.642 – 2.741 GeV

Comparision

• Comparing 1d fit method and 2d fit method with g1c, CLAS(Jlab) experiment.

g1c : R. Broadford et al. published PHYSICAL REVIEW C 75, 035205 (2007)

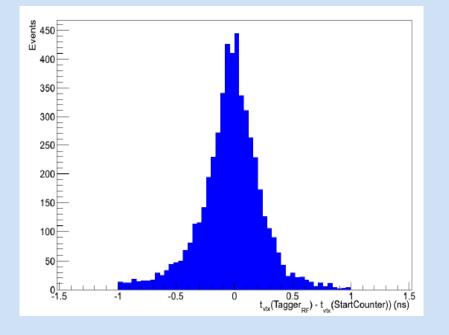
Energy = 2.642 to 2.741 GeV

Maximum likelihood method

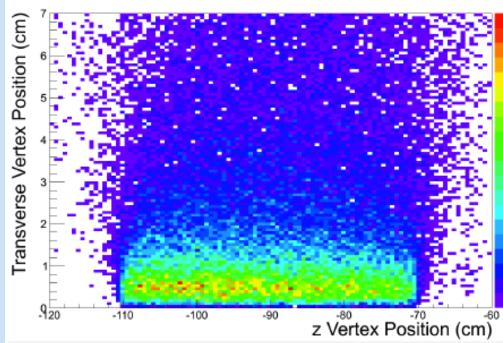
- Event by event basis.
- Reduce the bias comes from acceptance because of event wise analysis.
- Define likelihood function as; $L(C_i) = \prod_{i=1}^n f(Cos\Theta_i, C_i)$

where C_i , polarization observables. $Cos\Theta_i$ is the angular distribution of proton at rest frame of lambda.

• Minimize the negative loglikelihood as,


 $\ell = -\sum_{i=1}^{n} \log f(Cos\Theta_i, C_i)$

Conclusion


- For the polarization observables, no previous measurement exits on high energy regime.
- After verifying our method on low energy region, this will extend to high energy.
- By measuring polarization observables on higher beam energy, we can constrain non-resonant(t-channel) contribution.
- Calculate the induced polarization, which is missing in this part.
- Event based maximum likelihood method will implement in future.

Thank You!

Timing and Vertex Cuts

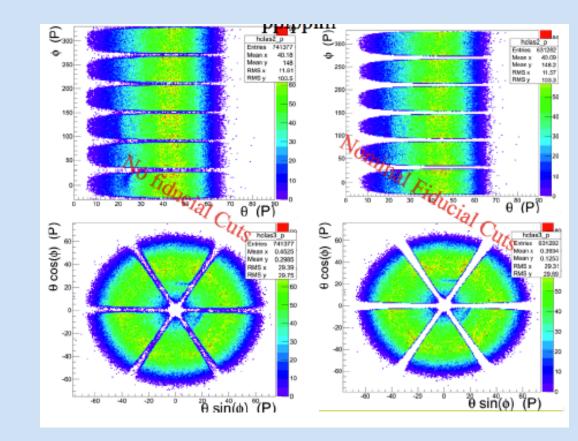
 Vertex selection occupied cylindrical volume around target with -120 to -60 cm along beam and 7 cm radius. • 1 ns agreement between time measured by RF corrected tagger and start counter.

Motivation

$\gamma p \rightarrow K^+ \Lambda$ -slope (GeV⁻²) McCracken 2010 Quinn 1975 Bockhorst 1994 5 - Anderson 1976 Boyarski 1969 2.5 log(<u>s</u> 0.5 1.5 ٥ 2 5.45 GeV Beam energy 3.8 GeV Plotted b along y and log weighted CM energy along x.

Daniel Puentes and et al, FIU

Differential cross section


$$\frac{d\sigma}{dt} \simeq \exp^{-bt}$$

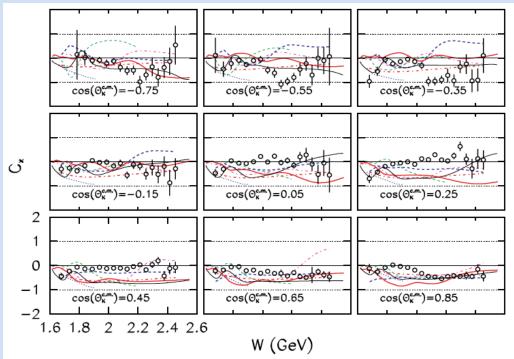
Fiducial cut

Fiducial meaning Trustworthy

• Based on CLAS detector geometry.

• Removing the events those lie on non-uniform region; such as between the sector.

1d Fit Method


- Photon beam is circularly polarized with positive and negative helicity.
- Simple idea: To count the number of events in the final state for those positive and negative helicity. $\Lambda \to p \pi^-$
- In order to count, we measure the angular distribution of proton in lambda rest frame.

 $A(\cos\theta_{p_{X/Z}^{rf}})=\frac{N^+-N^-}{N^++N^-}$, is called beam helicity asymmetry.

 N_{\pm} = total number of counts for positive and negative helicity, and X/Z refer to x and z component of angular distribution of proton at lambda rest frame.

Previous Measurements

- Pre-existing data for $\gamma+p \to K^+ + \Lambda$ on polarization observables and cross sections from CLAS(JLab), LEPS, SAPHIR, GRAAL.
- Kinematic coverage:
 - CM energy up to 2.6 GeV.
- Extracting polarization
 observables w > 2.6 GeV,
 where previous measurements
 are missing.
- Higher energies measurement helps us to constrain on non-resonant contribution.

R. Broadford et al. published PHYSICAL REVIEW C 75, 035205 (2007)