ELECTROPRODUCTION AND TRANSITION FORM FACTORS – ON THE ROAD TO A BARYON SPECTRUM

Philip L. Cole¹ on behalf of the CLAS Collaboration

Idaho State University, Dept. of Physics, Pocatello, ID, 83201 USA

The CLAS detector at Jefferson Lab is a unique instrument, which has provided the lion's share of the world's data on meson photo- and electroproduction in the resonance excitation region. The electroexcitation amplitudes for the lowlying resonances $P_{33}(1232)$, $P_{11}(1440)$, $D_{13}(1520)$, and $S_{11}(1535)$ were determined over a wide range of $Q^2 < 5.0 \text{ GeV}^2$ in a comprehensive analysis of exclusive single-meson ($\pi^+ n$, $\pi^0 p$) reactions in the electroproduction off protons. Further, CLAS was able to precisely measure $\pi^+\pi^-p$ electroproduction differential cross sections provided by the nearly full kinematic coverage of the detector. The electrocouplings of the $P_{11}(1440)$, $D_{13}(1520)$, $S_{31}(1620)$, and $D_{33}(1700)$ excited states are determined from the exclusive- $\pi^+\pi^-p$ reaction. Consistent results on the electrocouplings from two-independent analyses (single- and doublepion electroproduction) have provided compelling evidence for the reliable extraction of the N^* electrocouplings. Preliminary results on the electrocouplings of the $S_{31}(1620)$, $S_{11}(1650)$, $D_{33}(1700)$, $P_{11}(1710)$, and $P_{13}(1720)$ states have recently become available. Theoretical analyses of these results have revealed that there are two major contributions to the resonance structure: a) an internal quark core and b)! an external meson-baryon cloud. These CLAS results have had considerable impact on QCD-based studies on N^* structure and in the search for manifestations of the dynamical masses of the dressed quarks. Future CLAS12 N* structure studies at high photon virtualities will considerably extend our capabilities in exploring the nature of confinement and dynamical chiral symmetry breaking in baryons.