

<u>Strangeness Physics at</u> <u>CLAS in the 6 GeV Era</u>

Reinhard Schumacher Carnegie Mellon University

February 2, 2016

Uutline /Overview

- The N* spectrum of states via hyperon photoand electro- production
- Dimensional scaling of KA photoproduction
- Excited Y* cross sections measured at CLAS
 Σ⁰(1385) (J^P = 3/2⁺); Λ(1405) (J^P = 1/2⁻); Λ(1520) (J^P = 3/2⁻)
- Structure of the $\Lambda(1405)$: $\Sigma \pi$ line shapes; J^{P}
- Strangeness suppression in exclusive electroproduction
- Cascade photoproduction

• One new idea for K_L Beam at GlueX re $\Lambda(1405)$

CLAS Experiment

Photoproduction:

Targets: unpolarized LH₂, polarized p, & HD-ice Beams: unpolarized, circular, linear, to ~5 GeV Reconstructed $K^+p\pi^-(\pi^0)$ or $K^+\pi^+\pi^-(n)$ ■ 20x10⁹ triggers \rightarrow 1.41x10⁶ KY π events in g11a Electroproduction: Q² from ~0.5 to ~3 (GeV/c)² Structure functions from Rosenbluth and beamhelicity separations

The N* Spectrum Photoproduction

Strangeness in N* Physics: Status

Table 8. Star rating suggested for baryon resonances and their decays. Ratings of the Particle Data Group are given as *; additional stars suggested from this analysis are represented by \star ; (*) stands for stars which should be removed.

		all	πN	γN	$N\eta$	ΛK	ΣK	$\Delta \pi$	$N\sigma$	=
	$N(1440)\frac{1}{2}^+$	****	****	****	(*)			***	***	-
	$N(1710)\frac{1}{2}^{+}$	***	***	***	***	***	**	*(*)		
	$N(1880)\frac{1}{2}^+$	**	*	*		**	*			
	$N(1535)\frac{1}{2}^{-}$	****	****	****	****			*		-
$\boldsymbol{\varsigma}$	$N(1650)\frac{1}{2}^{-}$	****	****	***	***	***	**	**(*)		
\mathbf{J}_{11}	$N(1895)\frac{1}{2}^{-}$	**	*	**	**	**	*			
\	$N(1720)\frac{3}{2}^+$	****	****	****	****	**	**	***		_
D	$N(1900)\frac{3}{2}^+$	***	**	***	**	***	**	**		
Γ <u>13</u>	$N(1520)\frac{3}{2}^{-}$	****	****	****	***			****		-
10	$N(1700)\frac{3}{2}^{-}$	**★	**	**	*	*(*)	*	***		
	$N(1875)\frac{3}{2}^{-}$	***	*	***		***	**		***	
U_{12}	$N(2150)\frac{3}{2}^{-}$	**	**	**		**		**		
15	$N(1680)\frac{5}{2}^+$	****	****	****	*			**(*)	**	-
	$N(1860)\frac{5}{2}^+$	*	*	*						
	$N(2000)\frac{5}{2}^+$	***	*(*)	**	**	**	*			
	$N(1675)\frac{5}{2}^{-}$	****	****	***(*)	*	*		***(*)	*	-
	$N(2060)\frac{5}{2}^{-}$	***	**	***	*		**			
	$N(1990)\frac{7}{2}^+$	**	*(*)	**						-
	$N(2190)\frac{7}{2}^{-}$	****	****	***		**				-
U_{17} ,	$N(2220)\frac{9}{2}^+$	****	****							-
	$N(2250)\frac{9}{2}$	****	****							-
	$\Delta(1910)^{\frac{1}{2}+}$	****	****	**		\frown	**	**		-
	$\Delta(1620)^{\frac{1}{2}}$	****	****	***				****		-
	$\Delta(1900)^{\frac{2}{1}}$	**	**	**			**	**		
	$\Delta(1232)^{\frac{3}{2}+}$	****	****	****						-
	$\Delta(1600)^{\frac{2}{3}+}$	***	***	***				***		
	$\Delta(1920)^{\frac{2}{3}+}$	***	***	**			***	**		
	$\Delta(1700)^{\frac{2}{3}}$	***	***	***				**		-
	$\Delta(1940)^{\frac{2}{3}}$	*	*	**				* fro	$m \Delta \eta$	
	$\Delta(1905)^{\frac{2}{5}+}$	****	****	****			***	**(**)		
KI 2016 Workshop	$\Delta(1950)\frac{7}{2}^{+}$	****	****	***			***	***		Α.
						_				

- Role of JLab/CLAS strangeness physics in unraveling properties of N* and ∆ states?
- Worldwide effort to determine resonance poles, branching fractions, helicity couplings, etc.
- <u>Bottom line</u>: "Stars" & new resonances added to world database

. V. Anisovich (BoGa) et al., Eur.Phys. J. A **48**, 15 (2012)₆

Theory: Bonn Gatchina Model

(Just one of several models on the market)

Coupled channels (K-matrix) framework

- Input: from π N, K N elastic; γ N, π N inelastic to $\pi^{\pm 0}$ N, η N, η 'N, K^{\pm 0} Y, $\pi \pi$ N
 - Use ALL experimental channels, including the strangeness channels & spin observables

Partial Wave Analysis

- $\hfill\blacksquare$ First extract each $J^{\!P}$ wave
- \blacksquare Fit N* and Δ resonance pole parameters

Short list of References:

A. Sarantsev, V. Nikonov, A. Anisovich, E. Klempt, U. Thoma; Eur. Phys. J. A 25, 441 (2005)
A.V. Anisovich *et al.*, Eur. Phys J. A 25 427 (2005); Eur. Phys J. A 24, 111 (2005);
V. A. Nikonov *et al.*, Phys Lett. B 662, 246 (2008).

A. Anisovich, E. Klempt, V. Nikonov, A. Sarantsev, U. Thoma; Eur. Phys. J. A 47, 153 (2011).

$p \rightarrow K^+ \Lambda$: cross section

R. Bradford et al., Phys.Rev. C 73, 035202 (2006)

Forward peaking indicates t-channel processes at high W

Angular dependence at lower W consistent with s- and u-channel processes.

$V_{K^{+}} \rightarrow K^{+} \Lambda$: recoil polarization P

- Kaon-MAID model (green)
 - F.X. Lee et al., Nucl. Phys. A695, 237 (2001).
 - Single-channel BW resonance fits
 - No longer up-to-date
 - Bonn-Gatchina model (blue)
 - Multi-channel, unitary, BW resonance fit
 - Large suite of N* contributions
 - Was not predictive for recoil polarization

A.V. Sarantsev et al., Eur. Phys. J., A **25**, 441 (2005).

_{R. A. Schu} M. McCracken et al, (CLAS) Phys. Rev. C **81**, 025201 (2010). 10

CLAS Output vs. the World

Experiment	Ref(s)	Final State	W range (GeV)	Σ	Р	C_x	C_z	Т	O_x	O_z
CLAS g11	[12]	$K\Lambda$	1.62 - 2.84		*					
	[13]	$K\Sigma^0$	1.69 - 2.84		*					
CLAS -1-	[0, 11]	VA	1 69 9 74							
CLAS gIC	[9, 11]	KΛ	1.68-2.74		*	*	*			
	[9, 11]	$K\Sigma^0$	1.79-2.74		*	*	*			
LEDS	[1.4]	KΛ	1 04 9 20							
LEFS	[14]		1.94-2.30	*						
	[14]	$K\Sigma^{\circ}$	1.94 - 2.30	*						
GRAAL	[15, 16]	$K\Lambda$	1.64 - 1.92	*	*			*	*	*
	[15]	$K\Sigma^0$	1.74 - 1.92	*	*					
CLAS g8		$K\Lambda$	1.71 – 2.19	*	*			*	*	*
		$K\Sigma^0$	1.75 - 2.19	*	*			*	*	*

TABLE II. Measurements performed by the different experiments.

Spin Observables with linear and circular polarized photons

Hyperon recoil polarization is easy to measure: Competitive advantage over non-strange baryon channels

C.A. Paterson et al. (CLAS Collaboration) to be published, 2016

C.A. Paterson et al. (CLAS Collaboration) to be published, 2016 rnegie Mellon University

$V_{K^{\dagger}} | \vec{\gamma} p \rightarrow K^{\dagger} \vec{\Lambda} Beam-Recoil O_x and O_z$

W (GeV)

O_x

Bonn-Gatchina 2014 model was <u>not</u> predictive in newly-measured kinematics & observables:

The model is <u>descriptive</u> but not <u>predictive</u>: lots of high quality data needed to pin down the resonance content of the reaction.

$\vec{\gamma} p \rightarrow K^{\dagger} \vec{\Lambda}$ Beam-Recoil C_x and C_z

Nikanov *et al.*'s refit of Bonn-Gatchina coupled-channel isobar model mix includes: S_{11} -wave, $P_{13}(1720)$, $P_{13}(1900)$, $P_{11}(1840)$ $K^{+}\Sigma^{0}$ cross sections also better described

R. Bradford *et al.*, (CLAS Collaboration) Phys. Rev. C **75**, 035205 (2007). V. A. Nikanov *et al.*, Phys Lett. B **662**, 246 (2008). see also: A.V. Anisovich *et al.*, Eur. Phys J. A **25** 427 (2005).

- Omit results for Σ photoproduction
- Omit discussion of reactions on the neutron (deuteron), which accesses photon coupling isospin dependence.
- Overall goal: measure enough observables for "complete" determination of amplitudes \Rightarrow extract N* and Δ content

Strangeness and the N* Spectrum of States - Electroproduction

Structure Functions

For unpolarized target & polarized e⁻ beam:

$\kappa \sim K^+ \Lambda$ Structure Functions

Y CLAS ep Data Set Overview

#	Period	E _b (GeV)	Events (M)
1	e1c	2.567	900
2	e1c	4.056	370
3	e1c	4.247	620
4	e1c	4.462	420
5	e1d	4.817	300
6	e1-6	5.754	4500
7	e1f	5.499	5000
8	e1g	3.178	2500

- $K^{+}\Lambda$ recoil polariazation
 - W=1.6-2.7 GeV, <Q²=1.9 GeV² [Gabrielyan et al., PR C 90, 035202 (2014)]

Publications:

- $K^{+}\Lambda$ beam-recoil pol. transfer
 - $W=1.6-2.15 \text{ GeV}, Q^2=0.3 1.5 \text{ GeV}^2$ [Carman et al., PRL 90, 131804 (2003)]
- $K^{+}\Lambda \sigma_{I} / \sigma_{T}$ ratio from pol. transfer data
 - W=1.72-1.98 GeV, Q²~0.7 GeV² [Raue & Carman, PR C 71, 065209 (2005)]
- $K^+\Lambda$, $K^+\Sigma^0$ separated structure functions
 - W=thr-2.4 GeV, Q²=0.5-2.8 GeV²
 - σ_U, σ_{LT}, σ_{TT}, σ_L, σ_T K⁺Λ, K⁺Σ⁰ [Ambrozewicz et al., PR C 75, 045203 (2007)]
 - W=thr-2.6 GeV, Q²=1.4-3.9 GeV²
 - $\sigma_U, \sigma_{LT}, \sigma_{TT}, \sigma_{LT'}$ K⁺A , K⁺ Σ^0 [Carman et al., PRC 87, 025204 (2013)]
- K⁺ Λ fifth structure function $\sigma_{IT'}$
 - $W=1.6-2.1 \ GeV, \ Q^2=0.65, \ 1.0 \ GeV^2$ [Nasseripour et al., PR C 77, 065208 (2008)]
- $K^+\Lambda$, $K^+\Sigma^0$ beam-recoil pol. transfer
 - W=thr-2.6 GeV, Q²=1.6-2.6 GeV²

R. A. Schumacher, Carnegie Mellon University

KL2016 Workshop

Dimensional Scaling of KA

Publication: Scaling and Resonances in Elementary $K^+\Lambda$ Photoproduction, R.A.Sch. and M.M. Sargsian Phys.Rev.C83 025207 (2011).

Constituent-Counting Scaling

- Constituent counting rules for exclusive scattering
- Valid for s→∞ and t/s fixed
 - $t/s \sim \cos(\theta_{\rm cm})$ as $s \rightarrow \infty$
- n = number of pointlike constituents
- Follows from pQCD...
 but also other models
- Does it work for $K\Lambda$?

R.A. Schumacher and M.M. Sargsian Phys. Rev. C 83 025207 (2011). 22

Excited Y* Cross Sections

Publication: Differential Photoproduction Cross Sections of $\Sigma^0(1385)$, $\Lambda(1405)$ and $\Lambda(1520)$, K. Moriya *et al.* (CLAS Collaboration), Phys. Rev. C **88**, 045201 (2013).

Detect $K^+p\pi^-(\pi^0)$ or $K^+\pi^+\pi^-(n)$

Differential Σ^0 (1385) Cross Section

$\gamma + p \rightarrow \mathrm{K}^+ + \Sigma^0(1385)$

- Experiment: see *t*channel-like forward peaking & *u*-channel backward rise
 - Agreement with LEPS
- Theory by Oh et al.¹: contact term dominant; included four high-mass N^* and Δ resonances
 - Prediction was fitted to preliminary CLAS <u>total</u> cross section (years ago)

1. Y. Oh, C. M. Ko, K. Nakayama, Phys. Rev. **C 77**, 045204 (2008)

R. A. Sch K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013). 25

Differential $\Lambda(1520)$ Cross Section

$\gamma + p \rightarrow \mathrm{K}^{+} + \Lambda \,(1520)$

- Experiment: see *t*channel-like forward peaking & *u*-channel backward rise
- Agreement with LEPS^{1,2}
 Theories:
 - Nam & Kao³: contact term dominant; no K* or uchannel exchanges
 - He & Chen⁴: K* and $N(2080)D_{13} J^P=3/2^-$ added

H. Kohri et al. (LEPS) Phys Rev Lett **104**, 172001 (2010)
 N. Muramatsu et al. (LEPS) Phys Rev **103**, 012001 (2009)
 S.I. Nam & C.W. Kao, Phys. Rev. **C 81**, 055206 (2010)
 J. He & X.R. Chen, Phys. Rev. **C 86**, 035204 (2012)

R. A. Sch K. Moriya et al. (CLAS), Phys. Rev. C 88, 045201 (2013). 26

Differential $\Lambda(1405)$ Cross Section $\gamma + p \rightarrow K^+ + \Lambda (1405)$ 1.95<W<2.05 2.05<W<2.15 2.15<W<2.25 0.2 Experiment: first-ever 0.15 measurements 0.1 Low W: See strong 0.05 isospin dependence $\frac{d\sigma}{dcos\theta_{K^+}^{c.m.}}(\mu b)$ 2.25<W<2.35 2.35<W<2.45 2.45<W<2.55 Charge channels differ 0.15

2.75<W<2.85

- WHY?!?
- High W: See *t*-channellike forward peaking & u-channel backward rise at high W
- Channels merge together at high W

-0.5

2.55<W<2.65

0.5

0

1-1

-0.5

2.65<W<2.75

0.5

0

 $\cos \theta^{c.m.}_{-}$

1-1

-0.5

0.5

0.1

0.05

0.1

0.05

_{R.A. Sch} K. Moriya *et al.* (CLAS), Phys. Rev. C 88, 045201 (2013). 27

•
$$\gamma + p \rightarrow \mathbf{K}^+ + \mathbf{Y}^{(*)}$$

- All three Y*s have similar total cross sections
- Ground state Λ and Σ^0 are comparable to Y^* in size¹

1. R. Bradford et al. (CLAS) Phys. Rev. **C 73**, 035202 (2006)

K. Moriya *et al.* (CLAS), Phys. Rev. C **88**, 045201 (2013).

$\Lambda(1405)$ Structure

Publications: Measurement of the $\Sigma\pi$ Photo-production Line Shapes Near the $\Lambda(1405)$, K. Moriya *et al.* (CLAS Collaboration), Phys. Rev. C **87**, 035206 (2013); Isospin Decomposition of the Photoproduced $\Sigma\pi$ System near the $\Lambda(1405)$, R. A. Sch. & K. Moriya, Nucl. Phys A **914**, 51 (2013).

What "is" the $\Lambda(1405)$?

An issue since its prediction/discovery

- Dynamically generated resonance, via unitary meson-baryon channel coupling
 - R. Dalitz & S.F. Tuan, Phys. Rev. Lett. 2, 425 (1959), Ann. Phys. 10, 307 (1960).
 - Chiral unitary models (present-day theoretical industry!)
 - SU(3) singlet 3q state, I=0, $J^{\pi} = \frac{1}{2}^{-1}$
- *K*N sub-threshold state
 - Recent first Lattice QCD result: J. Hall *et al.*, Phys Rev Lett **114**, 132002 (2015)
- Signal may be an overlay of I=0 and I=1 states

Chiral Unitary Models

- SU(3) baryons irreps 1+8_s+8_a combine with 0⁻ Goldstone bosons to generate:
- Two octets and a singlet of ¹/₂- baryons generated dynamically in SU(3) limit
- SU(3) breaking leads to <u>two</u> S = -1 I = 0 poles near 1405 MeV
 - ~1420 mostly KN
 ~1390 mostly πΣ
- Possible weak I = 1 pole also predicted

D. Jido, J.A. Oller, E. Oset, A. Ramos, U-G Meissner Nucl. Phys. A **725**, 181 (2003) J.A. Oller, U.-G. Meissner Phys. Lett B **500**, 263 (2001).

Example at W=2.30 GeV

dơ/dm (μb/GeV)

Isospin Interference Final $\Sigma\pi$ state $|I, I_3\rangle = |0, 0\rangle, |1, 0\rangle$ $|t_I|^2 \equiv |\langle I, 0|\hat{T}^{(I)}|\gamma p\rangle|^2$

Three charge combinations: $|T_{\pi^{-}\Sigma^{+}}|^{2} = \frac{1}{3}|t_{0}|^{2} + \frac{1}{2}|t_{1}|^{2} - \frac{2}{\sqrt{6}}|t_{0}||t_{1}|\cos\phi_{01},$ $|T_{\pi^{0}\Sigma^{0}}|^{2} = \frac{1}{3}|t_{0}|^{2},$ $|T_{\pi^{+}\Sigma^{-}}|^{2} = \frac{1}{3}|t_{0}|^{2} + \frac{1}{2}|t_{1}|^{2} + \frac{2}{\sqrt{6}}|t_{0}||t_{1}|\cos\phi_{01}.$

What "is" the I=1 piece?

- I = 1 resonance? I = 1 continuum amplitude?
- L. Roca and E. Oset model¹:
 - Possible I=1 resonance in vicinity of $N\!K$ threshold
- B.-S. Zou et al. model²:
 - $\Sigma\left(\frac{1}{2}\right)^{-}$ is a $|[ud][us]\overline{s}\rangle$ state: part of a new nonet
- No interference seen in Λ(1520) mass range: therefore it's not a continuum amplitude
- More investigation needed !
- 1. L. Roca, E. Oset "On the isospin 0 and 1 resonances from $\pi\Sigma$ photoproduction data" Phys. Rev. C **88** 055206 (2013).
- 2. Bing-Song Zou "Five-quark components in baryons", Nucl Phys A 835 199 (2010).

Spin and Parity of $\Lambda(1405)$

Publication: Spin and Parity of the $\Lambda(1405)$ Baryon, K. Moriya *et al.* (CLAS Collaboration), Phys. Rev. Lett. **112**, 082004 (2014).

- $\frac{J^{P} = \frac{1}{2}^{-} \text{ confirms quark}}{\text{model expectation}}$
- for Σ^+ is $\alpha = -0.98$ (big!)
- Decay is s-wave, $\Rightarrow P = "negative"$

and the $\Lambda(1405)$ is produced ~ +45% polarized

Strangeness -2: Where are the Excited Cascades?

KL2016 Workshop

Strangeness Suppression in qq Creation in Exclusive Reactions

Publication: M. D. Mestayer, K. Park *et al.* (CLAS Collaboration), Phys. Rev. Lett. **113**, 152004 (2014).

$K^{\scriptscriptstyle +}\Lambda:\pi^{\scriptscriptstyle +}n$: $\pi^{\scriptscriptstyle 0}p$ Electroproduction Ratios

- Motivation:
 - Quark model picture of quark-pair creation and flux-tube breaking: does it apply in the low-energy exclusive limit?

Measurements:

- Ratio of processes in which only one qq pair is produced: an ss, dd, or uu, respectively
- In quark-model picture, ratios are proportional to the relative production rates of ss, dd, or uu
- Physics conclusion:
 - Ratio of \overline{ss} pair creation relative to uu or dd is suppressed $\sim 0.2 - 0.3$
 - Consistent with high-energy results when 100's of particles are produced

V Outlook at GlueX for Λ(1405) Line-Shape Measurement

$$K_L^0 p \to \Lambda(1405)\pi^+ \to \Sigma^{+0-}\pi^{-0+}\pi^+$$

- Assume: 10³ K_L/sec between 1.0 and 2.0 GeV/c
- Target 40 cm LH₂
- \blacksquare Total estimated cross section 250 μb
 - Scale from $K^-p \rightarrow \pi^0 \Lambda(1405) \dots 50\% K_L/K_S$ mixing
- Rate ~ 0.4 / sec (before acceptances)
 - No kaons to detect in final state
 - Measurement may be feasible

44

Summary/Conclusions

- Hyperon photo- and electro-production used to pin down N* spectrum above 1.6 GeV
- Y* cross sections compared; $\Lambda(1405)$ "weird"
- Interference effects in $\Lambda(1405)$ line shapes in $\Sigma\,\pi$ demonstrated
- Direct J^{P} measurement for $\Lambda(1405)$ made: $\frac{1}{2}^{-1}$
- Cross section "scaling" demonstrated
- Strangeness "suppression" seen in exclusive
- GlueX with K_L beam could explore $\Lambda(1405)$ line shapes in more detail