Photoproduction of exotic hadrons Exotic mesons photoproduction + photoproduction of LHCB pentaquarks

Andrea Celentano

INFN-Genova

Introduction ●0000	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search 0000000	Conclusions 0
Introductio	n			

- 2 The MesonEx experiment
- 3 The GlueX experiment
- 4 Hidden-charm pentaquark search

5 Conclusions

0000	0000	000	0000000	0
Introduction	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search	Conclusions

Exotic mesons

QCD does not prohibit the existence of unconventional meson states such as hybrids $(q\bar{q}g)$, tetraquarks $(q\bar{q}q\bar{q})$, and glueballs.

Exotic quantum numbers: $J^{PC} \neq q\overline{q}$

The discovery of states with manifest gluonic component, behind the CQM, would be the opportunity to directly "look" inside hadron dynamics. **Exotic quantum numbers** would provide an **unambiguous** evidence of these states.

Lattice QCD calculations¹ provided a first hint on the spectrum and mass range of exotics. Mass range: 1.4 GeV - 3.0 GeV Lightest exotic is a 1-+ state.

¹J. J. Dudek et al, Phys. Rev. D82, 034508 (2010)

Exotic mesons photoproduction

Traditionally, meson spectroscopy was studied trough different experimental techinques: **peripheral hadron production**, $N\overline{N}$ annihiliation, ...

Photo-production measurements were limited by the lack of high-intensity, high-energy, high-quality photon beams.

Today, this limitation is no longer present.

Advantages:

- Photon spin: exotic quantum numbers are more likely produced by S = 1 probe
- Linear polarization: acts like a filter to disentangle the production mechanisms and suppress backgrounds
- Production rate: for exotics is expected to be comparable as for regular meson

Introduction 000●0	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search 0000000	Conclusions 0
Results fro	m past experiments			

See P. Eugenio talk on Thursday!

Jefferson L	_aboratory			
00000	0000	000	000000	0
Introduction	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search	Conclusions

Jefferson Laboratory (Newport News, VA, USA): home of the Continuous Electron Beam Accelerator Facility (CEBAF)

12-GeV e^- machine based on superconducting technology.

- 4 experimental Halls: A, B, C, D
- Multi-pass acceleration scheme, 2.2 GeV / pass
- Max. current: $\simeq 100 \mu \text{A}$ / Hall (A and C)
- CW beam, $\simeq 100\%$ duty-cycle
- Beam polarization $\simeq 80\%$

Introduction The MesonEx experiment The GlueX experiment Hidden-charm pentaquark search Conclusions 0000 000000 0

MesonEx (E12-12-005) in Hall-B at Jefferson Laboratory

Meson Spectroscopy program with quasi-real photons: low Q^2 electron scattering on a hydrogen target.

Goals:

- Measure the light-quarks mesons spectrum in the mass range 1.0 3.0 GeV
- Determine masses and properties of rare $q\overline{q}$ states
- Search for exotic mesons

Low Q^2 electron scattering:

- Provides a high-flux of high-energy, linearly polarized, quasi-real photons.
- Complementary and competitive to real photo-production
- Virtual photon kinematics and polarization determined event-by-event measuring scattered electron variables

Experimental technique: coincidence measurement between CLAS12 (final state hadrons) and Forward Tagger facility (low-angle scattered electron)

Introduction	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search	Conclusions
	0000			

CLAS12 / Forward tagger detectors

CLAS12: multi-purpouse, large acceptande, detector optimized for multi-particles final states (charged/neutrals)

- Nominal luminosity: $\mathcal{L}=10^{35}cm^{-2}s^{-1}$
- Charged particles tracking: toroidal magnet + drift chambers system
- Particle ID: TOF, Cerenkov, RICH
- Neutral particles: lead/plastic scintillator calorimeter

Forward tagger: forward spectrometer optimized for detection of e^- scattered at low angle.

- Lead-tungstate calorimeter (FT-Cal): measure scattered electrons energy $(\sigma_E \simeq \%)$
- Hodoscope (FT-Hodo): distinguish photons from electrons.
- Tracker (FT-Trck): determine the electron scattering plane.

Nominal acceptance: $2.5^\circ < \theta_e < 4.5^\circ$, $0.5 < E_e (GeV) < 4.5$

Isobar model for 3-pions production, $\sigma_{Tot} \simeq 10 \ \mu \text{barn}$ Production γ∽∽ Ex State J^{PC} Decay Mode 1++D $a_1(1260)$ $\rho\pi$ 2^{++} $a_2(1320)$ D $\rho\pi$ π_2 (1670) 2^{-+} Ρ $\rho\pi$ π_2 (1670) 2^{-+} F $\rho\pi$ $\pi_2(1670)$ 2^{-+} S $f_2\pi$ $\pi_2(1670)$ 2^{-+} $f_2\pi$ Ρ π_1 (1600) 1 - + $\rho\pi$

- 3π channel PWA feasible in MesonEx
- Sensitivity to $\pi_1(1600)$: $\sigma \ge 0.01\sigma_{Tot}$
- Leakage contribution to exotic waves from others: <1%

Introduction	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search
00000	0000	000	000000

MesonEx: expected results. Benchmark reaction $\gamma p \rightarrow p \pi^0 \eta$ MC study

Ad-hoc model for reaction cross-section,

 $\sigma_{tot} \simeq 1 \mu barn$:

- Known resonances: $a_0(980)$, $a_2(1320)$, $a_2(1700)$
- Exotic contribution: $\pi_1(1400)$
- Large- $M_{\pi^0\eta}$: double-Regge exchange

Results:

- Average acceptance: 3%, 180 k events/day
- Non-exotic contributions properly reconstructed from PWA procedure
- Sensitivity to $\pi_1(1400)$ signal down to 5% of dominant $a_2(1320)$ signal

Conclusions

Introduction	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search	Conclusions
	0000			

MesonEx: expected results. Benchmark reaction $\gamma p \rightarrow p \pi^0 \eta$ MC study

Ad-hoc model for reaction cross-section,

 $\sigma_{tot} \simeq 1 \mu barn$:

- Known resonances: $a_0(980)$, $a_2(1320)$, $a_2(1700)$
- Exotic contribution: $\pi_1(1400)$
- Large- $M_{\pi^0\eta}$: double-Regge exchange

Results:

- Average acceptance: 3%, 180 k events/day
- Non-exotic contributions properly reconstructed from PWA procedure
- Sensitivity to $\pi_1(1400)$ signal down to 5% of dominant $a_2(1320)$ signal

Introduction The MesonEx experiment **The GlueX experiment** Hidden-charm pentaguark search Conclusions o

The GlueX experiment in Hall-D at Jefferson Laboratory

Photo-production experiment (real photons) on a fixed LH₂ target

GlueX detector:

- Hermetic detector optimized for multi-particle final state measurement
- Charged particle tracking: 2.2 T solenoidal field + drift chambers (central/forward)
- Calorimetry: FCAL (lead glass) / central (lead + fibers)
- Particle ID: Time of flight, Start counter (future upgrade: DIRC detector)

Hall-D photon beam: coherent Bremmstrahlung on diamond target

- 12 GeV e^- beam, 0.05 2.2 μ A
- Coherent peak 8.4 9 GeV, $\mathcal{P}\simeq 40\%$
- Tagger spectrometer (Elbek-type) $\sigma_E/E \simeq 0.1\%$
- Pair spectrometer: $\sigma_P/P \simeq 5\%$

GlueX 2016 spring run: 12 GeV beam - 60 days GlueX engineering run. Data for early physics results. Promising preliminary results for exotic mesons spectroscopy:

Combos / 2.5 MeV/c

GLUE

Preliminary

- ππ spectroscopy
- Multi-photon final states (golden channel π⁰η: 4γs)

Introduction	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search	Conclusions
00000		00●	0000000	0
GlueX futu	re perspectives			

GlueX physics runs:

- GlueX-I: 2017-2018. Started in February, 10x more data than 2016 planned: data for physics analysis.
- GlueX-II: 2019+. Upgraded detector (better PID), higher luminosity

MC study of benchmark reaction $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

- PWA MC study performed with exotic state strenght: $\sigma_{\pi^1} = 1.6\% \cdot \sigma_{3\pi}$
- Thanks to the high acceptance and good resolution of the GlueX detector a complete Partial Wave Analysis is feasible.
- The contribution of small signals to the invariant mass spectrum can be clearly isolated and measured.

LHCb in 2015 announced³the discovery of two exotic structures in the J/ψ - p channel: P_c (4380) and P_c (4450), by measuring the decay $\Lambda_b^0 \rightarrow p J/\psi K^-$.

They claimed that the minimum quark content is *ccuud*.

Widths:

- P_c(4450): Γ = 39 MeV
- P_c(4380): Γ = 205 MeV

Quantum numbers (PWA most probable solution)

- $P_c(4450): J_P = \frac{5}{2}^-$
- P_c (4380): $J_p = \frac{3}{2}^+$

Altough: "Acceptable solutions are also found for additional cases with opposite parity"

³Phys. Rev. Lett. **115**, 072001 (2015)

Hidden-charm pentaquark photo-production

A p- J/ψ resonance would apper as an s-channel resonance in the direct photo-production reaction: $\gamma p \rightarrow p J/\psi$. $M_R = \sqrt{s} = M^2 + 2E_{\gamma}M$ $M_R \simeq 4.4 \text{GeV} \rightarrow E_{\gamma} \simeq 10.1 \text{GeV}$

"Naive" cross-section estimate ingredients⁴:

- Breit-Wigner *elastic* cross-section
- Vector Meson Dominance

 $\sigma(W) = \frac{2J+1}{4} \frac{4\pi}{k_i^2} \frac{B_{in} B_{out} \Gamma^2/4}{(W-M_R)^2 + \Gamma^4/4}$

Vector Meson Dominance:

 $B_{in} = (e/f_V)^2 B_{out} (k_{in}/k_{out})^{2L+1}$

$\begin{array}{l} \mbox{Cross-section estimate:}\\ P_c(4380): 1.5 \ \mu \mbox{barn} < \sigma_0/(B_{out}^2) < 50 \ \mu \mbox{barn} \\ P_c(4450): 12 \ \mu \mbox{barn} < \sigma_0/(B_{out}^2) < 360 \ \mu \mbox{barn} \end{array}$

⁴M. Karliner and J.L. Rosnerbz, arXiv:1508.01496

00000	0000	000	000000	0
Hall-C pro	posal ⁵			

Measure the elastic J/ψ photo-production on a hydrogen target trough an **untagged** real photon beam

- Bremmstrahlung photon beam: 11 GeV, 50 μA e⁻ beam impinging on a 9% copper radiator.
- e^+e^- pairs from J/ψ decay measured in coincidence trough the two high-momentum spectrometers, HMS and SHMS. Spectrometers settings optimized to enanhce s-channel resonance production over t-channel diffractive background
- Invariant mass W of ${\rm p}\text{-}J/\psi$ system reconstructed assuming elastic production.

⁵PR12-16-007, Z. E. Meziani *et al.*

00000	0000	000	000000	0
Hall-C pro	posal			

Expected results from 9 days of running:

- J/ψ mass reconstructed with $\sigma\simeq 5$ MeV, p- J/ψ invariant mass W resolution $\sigma_W\simeq 10$ MeV
- Discovery sensitivity for $BR(P_c(4450)\to pJ/\psi)>1.25\%\text{, for }J^P=5/2^+$
- The Hall-C experiment can measure the resonance line-shape (W-scan), but can't determine uniquely J^P quantum numbers due to the very limited angular acceptance

Proposal approved as "high-impact" experiment by JLab PAC44 (2016), with "A" rating.

	0000	000	0000000	0
Hall D prop	ocal			

Use CLAS12 + Forward tagger detector for p- J/ψ quasi-real photo-production with two complementary techniques:

Untagged photo-production

- Scattered electron at $\theta_e \simeq 0^\circ$ not detected
- Measure final state p and e^+e^- from J/ψ decay with CLAS12
- Higher luminosity, lower W resolution.

Tagged photo-production

- Scattered electron detected in Forward Tagger, $2.5^\circ < \theta_e < 4.5^\circ$
- Measure in coincidence final state p and/or and e^+e^- from J/ψ decay with CLAS12
- p- J/ψ invariant mass W measured as missing mass on scattered e^- in Forward Tagger
- Lower luminosity, higher W resolution.

Introduction	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search	Conclusions
			0000000	

Hall-B proposal

Full simulation of reaction performed considering $J/\psi \to e^+e^-$ decay, for un-tagged and tagged measurement

Results:

- Un-tagged measurement: CLAS12 acceptance for p,e^+,e^- measurement is $\simeq 10\%.$ Resolution: $\sigma_W\simeq 14~{\rm MeV}$
- Tagged measurement: different measurement strategies are possible. Acceptance for measurement of any two charged particles is $\simeq 50\%$. Resolution: $\sigma_W \simeq 4$ MeV
- On-going studies to exploit other J/ψ decay modes in tagged measurement, selecting J/ψ via proton missing mass

Experiment status:

- p- J/ψ photo-production measurement included in physics program of already-approved experiments: E12-12-001 and E12-11-005 (MesonEx)
- Results of detailed studies summarized in run-group proposal, submitted to JLab PAC45

Foreseen P_c yield, for BR($P_c \rightarrow p - J/\psi = 1\%$)

	Un-tagged	Tagged	Tagged (all)
$P_{c}(4380)$	24-750	10-330	130-3900
$P_{c}(4450)$	35-1100	14-440	180-5700

Introduction 00000	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search 00000●0	Conclusions 0

Hall-B proposal

Full simulation of reaction performed considering $J/\psi \to e^+e^-$ decay, for un-tagged and tagged measurement

Results:

- Un-tagged measurement: CLAS12 acceptance for p,e^+,e^- measurement is $\simeq 10\%.$ Resolution: $\sigma_W\simeq 14~{\rm MeV}$
- Tagged measurement: different measurement strategies are possible. Acceptance for measurement of any two charged particles is $\simeq 50\%$. Resolution: $\sigma_W \simeq 4$ MeV
- On-going studies to exploit other J/ψ decay modes in tagged measurement, selecting J/ψ via proton missing mass

Experiment status:

- p- J/ψ photo-production measurement included in physics program of already-approved experiments: E12-12-001 and E12-11-005 (MesonEx)
- Results of detailed studies summarized in run-group proposal, submitted to JLab PAC45

Foreseen P_c yield, for BR($P_c \rightarrow p - J/\psi = 1\%$)

	Un-tagged	Tagged	Tagged (all)
$P_c(4380)$	24-750	10-330	130-3900
$P_{c}(4450)$	35-1100	14-440	180-5700

Introduction 00000	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search 00000●0	Conclusions 0

Hall-B proposal

Full simulation of reaction performed considering $J/\psi \to e^+e^-$ decay, for un-tagged and tagged measurement

Results:

- Un-tagged measurement: CLAS12 acceptance for p,e^+,e^- measurement is $\simeq 10\%.$ Resolution: $\sigma_W\simeq 14~{\rm MeV}$
- Tagged measurement: different measurement strategies are possible. Acceptance for measurement of any two charged particles is $\simeq 50\%$. Resolution: $\sigma_W \simeq 4~{\rm MeV}$
- On-going studies to exploit other J/ψ decay modes in tagged measurement, selecting J/ψ via proton missing mass

Experiment status:

- p- J/ψ photo-production measurement included in physics program of already-approved experiments: E12-12-001 and E12-11-005 (MesonEx)
- Results of detailed studies summarized in run-group proposal, submitted to JLab PAC45

Foreseen P_c yield, for BR($P_c \rightarrow p - J/\psi = 1\%$)

	Un-tagged	Tagged	Tagged (all)
$P_{c}(4380)$	24-750	10-330	130-3900
$P_{c}(4450)$	35-1100	14-440	180-5700

GlueX recently released preliminary results for the measurement of J/ψ photo-production near threshold

- Full 2016 statistics
- Exclusive events, pe⁺e⁻.
 Lepton-PID trough EM calorimeters

Future plans: add the 2017 data and study the energy-depedence of cross-section to search for LHC_b pentaquarks

⁶From E. Chudakov talk at ECT*, Trento, April 2017

Introduction 00000	The MesonEx experiment	The GlueX experiment	Hidden-charm pentaquark search 0000000	Conclusions •
Conclusion	S			

- Experimental investigation of "exotic" hadrons is a powerful technique to answer to fundamental questions in QCD:
 - What is the origin of color confinement?
 - What is the role of gluons inside hadrons?
- With the advent of the 12 GeV era at Jefferson Laboratory a new generation of meson spectroscopy experiments starts: **GlueX** in Hall D and **MesonEx** in HallB.
- The goal of both is to use (quasi)-real photo-production to investigate the meson spectrum in the GeV energy range, looking for rare $q\bar{q}$ and non-CQM states.
- Recent LHC_b claim of hidden-charm pentaquarks in the $p-J/\psi$ system triggered the idea of studying these resonances in $s-{\rm channel}$ photoproduction: complementary measurements will be performed in Hall-B, Hall-D and Hall-C.

Backup slides

Rates

Low Q^2 limit \rightarrow the unpolarized reaction cross-section is: $d\sigma(\Omega', E') = \sigma_{\gamma}(\nu) \cdot d\Gamma$ Virtual photon flux:

$$d\Gamma(\Omega', E') = \frac{\alpha}{4\pi^2} \frac{E'}{E_0} \frac{\nu}{Q^2} \left[\frac{(2E_0 - \nu)^2}{\nu^2} + 1 \right] d\Omega' \, dE'$$

Integration over FT acceptance:

- $2.5^{\circ} < \theta_e < 4.5^{\circ}$
- $0.5 < E_e(GeV) < 4.5$
- Assuming constant $\sigma(\nu)$

 $\Gamma\simeq 0.04$

Equivalent photon flux at $\mathcal{L}=10^{35}cm^{-2}s^{-1}$: need to assume a certain target lenght for photo-production case. Consider d=50 cm. Then:

$$\begin{array}{lll} R_{electron} & = & \mathcal{L} \cdot \Gamma \cdot \sigma(\nu) \\ R_{photon} & = & \Phi_{\gamma} \cdot N_{Av} \rho \cdot d \cdot \sigma(\nu) \\ & \Phi_{\gamma} & \simeq & 10^9 \gamma/s \end{array}$$

The Forward Tagger Facility

3 components:

- Lead-tungstate calorimeter (FT-Cal): measure the energy of scattered electrons with few % resolution.
- Hodoscope (FT-Hodo): distinguish photons from electrons.
- Tracker (FT-Trck): determine the electron scattering plane.

Nominal design parameters:

	<u> </u>
	Range
$E_{e'}$	0.5 - 4.5 GeV
$\theta_{e'}$	$2.5^{o} - 4.5^{o}$
$\phi_{e'}$	$0^{\circ} - 360^{\circ}$
E_{γ}	6.5 - 10.5 GeV
P_{γ}	70 - 10 %
Q^2	0.01 - $0.3~{ m GeV}^2~(< Q^2 > 0.1~{ m GeV}^2)$
W	3.6 - 4.5 GeV

The Forward Tagger Facility

3 components:

- Lead-tungstate calorimeter (FT-Cal): measure the energy of scattered electrons with few % resolution.
- Hodoscope (FT-Hodo): distinguish photons from electrons.
- Tracker (FT-Trck): determine the electron scattering plane.

Nominal design parameters:

	Range
$E_{e'}$	0.5 - 4.5 GeV
$\theta_{e'}$	$2.5^{o} - 4.5^{o}$
$\phi_{e'}$	$0^{\circ} - 360^{\circ}$
E_{γ}	6.5 - 10.5 GeV
P_{γ}	70 - 10 %
Q^2	0.01 - $0.3~{ m GeV}^2~(< Q^2 > 0.1~{ m GeV}^2)$
W	3.6 - 4.5 GeV

